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Loss of a Clueless-dGRASP complex results in ER stress and
blocks Integrin exit from the perinuclear endoplasmic reticulum in
Drosophila larval muscle

Zong-Heng Wang1, Catherine Rabouille2,3 and Erika R. Geisbrecht1,4,*

ABSTRACT

Drosophila Clueless (Clu) and its conserved orthologs are known for

their role in the prevention of mitochondrial clustering. Here, we

uncover a new role for Clu in the delivery of integrin subunits in muscle

tissue. In clu mutants, aPS2 integrin, but not bPS integrin, abnormally

accumulates in a perinuclear endoplasmic reticulum (ER) subdomain,

a site that mirrors the endogenous localization of Clu. Loss of components

essential for mitochondrial distribution do not phenocopy the clumutant

aPS2 phenotype. Conversely, RNAi knockdown of the Drosophila

Golgi reassembly and stacking protein GRASP55/65 (dGRASP)

recapitulates clu defects, including the abnormal accumulation of

aPS2 and larval locomotor activity. Both Clu and dGRASP proteins

physically interact and loss of Clu displaces dGRASP from ER exit

sites, suggesting that Clu cooperates with dGRASP for the exit of

aPS2 from a perinuclear subdomain in the ER. We also found that Clu

and dGRASP loss of function leads to ER stress and that the stability

of the ER exit site protein Sec16 is severely compromised in the clu

mutants, thus explaining the ER accumulation of aPS2. Remarkably,

exposure of clu RNAi larvae to chemical chaperones restores both

aPS2 delivery and functional ER exit sites. We propose that Clu

together with dGRASP prevents ER stress and therefore maintains

Sec16 stability essential for the functional organization of perinuclear

early secretory pathway. This, in turn, is essential for integrin subunit

aPS2 ER exit in Drosophila larval myofibers.
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INTRODUCTION
Integrins are integral transmembrane heterodimers that mediate

the adhesion of epithelial sheets with extracellular matrix

components (ECM), such as laminin and fibronectin. This

adhesion is essential for diverse biological processes including

embryonic development, cell migration, and muscle attachment.

Initiation and maintenance of these integrin adhesion complexes

is highly regulated. In addition to basic transcriptional and

translation control, integrins require transport to sites of adhesion

and subsequent protein turnover in response to either ligand

binding and/or modulation of intercellular signaling (Margadant

et al., 2011; Rodriguez-Boulan et al., 2005). Determining the

dynamic control of exo/endocytic integrin trafficking within

various cell types is crucial to understanding morphogenesis and

homeostasis in multicellular organisms.

Mammals display 18 a and 8 b subunits, so far known to

comprise 24 distinct integrin heterodimers (Hynes, 2002), while

Drosophila has only 3 a and 2 b Position Specific (PS) integrin

chains (called aPS1, aPS2, aPS3, bPS and bn) that assemble into

cell-type specific heterodimer complexes (Bulgakova et al.,

2012). This subunit simplicity in the fly model exemplifies the

utility of Drosophila as a model to understand integrin function in

developmental processes and cell-ECM interactions. In both flies

and vertebrate systems, integrin complexes accumulate at muscle

attachment sites (MASs) and the costameres (Charvet et al., 2012;

Schejter and Baylies, 2010; Schnorrer and Dickson, 2004;

Schweitzer et al., 2010). While many studies in the Drosophila

model have focused on the role of integrins in muscle attachment

(Estrada et al., 2007; Gilsohn and Volk, 2010; Liu et al., 2013),

little is known about trafficking of integrin subunits in the

secretory pathway.

The majority of integrin anterograde trafficking studies has been

conducted in cell culture and support a model whereby integrin

dimers are transported via the canonical secretory pathway, likely

mediated by interactions with other cytosolic proteins, including

talin or calnexin (Lenter and Vestweber, 1994; Martel et al., 2000).

The cytoplasmic domains of a/b subunits are necessary for

efficient exit of some integrin dimers from the ER (Briesewitz

et al., 1995; Ho and Springer, 1983). Talin can control the export of

newly synthesized integrins in AT22 cells through binding to

integrin cytoplasmic tails, possibly by exposing an export signal in

the a integrin chain (Martel et al., 2000). Moreover, studies using

conformation-specific monoclonal antibodies demonstrate that b1

integrins adopt an inactive, bent conformation after heterodimer

formation with a subunits in the ER. This obligate dimer persists as

transport continues through the Golgi to the plasma membrane

(Tiwari et al., 2011).

Drosophila GRASP (dGRASP), the single ortholog of

mammalian GRASP55/65, is one protein required for integrin

subunit delivery. Originally characterized as peripheral Golgi

proteins (Barr, 1997; Shorter, 1999), the GRASP family is

required for a diverse array of processes, including the

maintenance of Golgi architecture and unconventional protein

secretion (Vinke et al., 2011). In the Drosophila follicular

epithelium, integrin subunits are differentially transported to the
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basolateral surface of epithelial cells at the transition from stage
(st.) 10A to st. 10B, when follicle cell remodeling is occurring.

Specifically, the integrin a subunit (aPS1) that is expressed in
these epithelial cells, gets retained in the ER upon loss of
dGRASP (Schotman et al., 2008).

Membrane proteins, such as integrins, are sorted in the ER at

ER exit sites (ERES), or transitional ER (tER) sites. Sec16 is a
key player in maintaining the organization of ERES where it is
thought to recruit coat proteins necessary for vesicle formation

(Budnik and Stephens, 2009; Glick, 2014; Miller and Barlowe,
2010). In support of this, Sec16 protein localizes to budding cup-
shaped structures on the ER in both human and Drosophila S2

cells (Hughes et al., 2009; Ivan et al., 2008), and loss of Sec16
function in yeast and metazoans results in a loss of ERES
integrity and a block in protein secretion (Bhattacharyya and

Glick, 2007; Connerly et al., 2005; Hughes et al., 2009; Ivan
et al., 2008; Watson et al., 2006). Protein sorting at ERES is less
understood. Many proteins get transported through COPII
vesicles to the Golgi before reaching their final destination at

the plasma membrane or outside the cell (Barlowe and Miller,
2013; Venditti et al., 2014), while an increasing body of literature
describes alternative routes for protein delivery that bypass the

Golgi (Rabouille et al., 2012).
Using the Drosophila musculature as a model to study integrin

delivery, we focus on the Clu protein. Clu was originally

identified in the prevention of mitochondrial clustering in
Saccharomyces, Dictyostelium, Arabidopsis, and Drosophila

(Cox and Spradling, 2009; Dimmer et al., 2002; Fields et al.,

1998; Frederick and Shaw, 2007; Zhu et al., 1997). Clu has two
predicted domains based upon primary sequence conservation
with the human protein (KIAA0664); an undefined ‘Clu’ domain
(residues 424–666) and a C-terminal tetratricopeptide repeat

(TPR) domain, which may serve as a scaffold to mediate protein-
protein interactions (Cox and Spradling, 2009). The only known
protein that cooperates with Drosophila Clu and affects

mitochondria is the E3 ubiquitin ligase Parkin (Cox and
Spradling, 2009). Parkin ubiquitinates Mitofusin in the
clearance of damaged mitochondria and loss of Parkin results

in early onset Parkinson’s disease (Guo, 2012). However, the role
of Clu within the Parkin pathway and/or mitochondrial
distribution are unknown.

Herein we unravel a novel, mitochondrial-independent role for

Clu in the differential transport of integrin subunits in contractile
muscles. Decreased levels of Clu lead to the retention of aPS2,
which is phenocopied by loss of dGRASP function. Interestingly,

loss of Clu and dGRASP leads to an increase in ER stress and a
decrease in the number and size of ERES marked by Sec16
protein. We show that compounds alleviating this ER stress

restore aPS2 export and ERES functional organization. Taken
together, we propose that Clu together with dGRASP prevent ER
stress to maintain Sec16 stability in the early secretory pathway

and mediate aPS2 ER exit in Drosophila larval myofibers.

MATERIALS AND METHODS
Drosophila stocks and genetics
Drosophila stocks were maintained on standard cornmeal medium at

25 C̊, while RNA interference and rescue experiments were performed at

29 C̊. The original clud087 (clud08713) and Clu:GFP protein trap line

(CA06604) were provided by Rachel Cox (Cox and Spradling, 2009).

cluDW was generated by imprecise excision of the P[SUPor-

P]CG8443KG02346 insertion. This deletion removes the 59UTR and start

codon of Clu as verified by PCR and sequencing. Unless noted, the clu

mutants analyzed in our studies were clud087/cluDW. Stocks obtained from

the Bloomington Stock Center: w1118 (BL-3605); 24B-Gal4 (BL-1767)

(LaBeau-DiMenna et al., 2012); mef2-Gal4 (BL-27390) (Geisbrecht

et al., 2008); daughterless (da)-Gal4 (BL-55849) (Lindgren et al., 2008);

parkin1/TM3 (Bl-34747) (Cha et al., 2005; Zhang et al., 2007); UAS-

YFP:Rab5 (BL-24616) (Zhang et al., 2007); UAS-YFP:Rab7 (BL-

23641); spq-YFP:KDEL-ER (BL-7195) (LaJeunesse et al., 2004); spq-

UAS-YFP:Golgi (BL-7193) (LaJeunesse et al., 2004); UAS-

dGRASP:GFP (BL-8507); UAS-sec16 RNAi (on II; Catherine

Rabouille); UAS-sec16 RNAi (on III; Catherine Rabouille); UAS-

Rab5.S43N (BL-9772) (Entchev et al., 2000); UAS-Xbp1.EGFP (BL-

39720) (Sone et al., 2013). RNAi lines obtained from the Vienna

Drosophila RNAi Center: UAS-dgrasp RNAi (v22564); UAS-clu RNAi

(v42136 recombined with v42138 to generate a 26UAS-clu RNAi stock);

UAS-marf RNAi (v105261) (Debattisti et al., 2014). Standard

recombination was used to generate necessary stocks and verified by

complementation or PCR.

Molecular biology and antisera generation
The ORF of the full length clu cDNA (isoform A) was PCR amplified,

cloned into the proper reading frame into the Gateway entry vector, and

transferred into the UAS-myc destination vector using standard protocols

(Drosophila GATEWAYTM cloning system, Invitrogen). The sequenced

UAS-Clu:Myc construct was injected by Genetic Services, Inc. to obtain

transgenic flies. To make the dGRASP Ab, a region of the dgrasp cDNA

corresponding to nucleotides 601–942 was PCR amplified, cloned into

pGEX-4T-3, expressed in E. coli to generate a GST-dGRASP (domain B)

fusion protein and injected into rabbits.

Immunofluorescent staining and imaging analysis
L3 larvae were live-dissected in HL3 (70 mM NaCl, 5 mM KCl, 20 mM

MgCl2, 10 mM NaHCO3, 115 mM sucrose, and 5 mM Hepes, pH 7.2) or

PBS and fixed in 4% formaldehyde. Primary antibodies used: guinea pig

anti-Clu (1:2000) (Cox and Spradling, 2009); rabbit anti-dGRASP

(1:400) (this study); rabbit anti-Sec16 (1:500) (Ivan et al., 2008);

mouse anti-bPS-integrin [CF.6G11, 1:50, Developmental Studies

Hybridoma Bank (DSHB)]; mouse anti-aPS-integrin (CF.2C7, 1:20,

DSHB); rabbit anti-GFP (1:500, Invitrogen); mouse anti-ATP5 (15H4C4;

1:400, Mitosciences); mouse anti-BiP (1:100; Babraham Institute).

Secondary antibodies used were Alexa Fluor 488 or Alexa Fluor 568

(1:400, Molecular Probes). Phalloidin 594 was used for F-actin labeling

(Molecular Probes).

Immunoprecipitation and western blots
Third instar larva were homogenized in lysis buffer (50 mM Tris-HCl

pH57.5, 150 mM NaCl, 1 mM EDTA, 10% glycerol, 1% Triton X-100)

mixed with 50 mg/ml PMSF, 16Halt protease inhibitor cocktail (Pierce

Biotechnology, Inc.). After centrifugation at 4 C̊ at 12,000 g for 15 min,

the supernatant for immunoprecipitation was incubated with 25 ml anti-

Myc conjugated beads, 25 ml GFP-Trap beads (ChromoTek), for 4 h at

4 C̊. Beads were washed three times with lysis buffer and boiled in 56
Laemmli buffer. For protein level analysis, proteins were just extracted in

lysis buffer. The protein samples were then separated by 6% SDS-PAGE,

transferred to polyvinyl difluoride membranes (Pierce Biotechnology,

Inc.), and probed with primary antibodies: mouse anti-Myc (9E10,

1:1000, Sigma), rabbit anti-GFP (1:500, Invitrogen), rabbit anti-Clu

(1:1000) (Goh et al., 2013), rabbit anti-dGRASP (1:2000), rabbit anti-

Sec16 (1:2,000), or mouse anti-a-Tubulin (1:100,000, B-512, Sigma),

followed by incubation with Horseradish Peroxidase (HRP) conjugated

secondary antibodies (1:5000, GE Healthcare) and detection using the

ECL Plus Western Blotting detection system (Pierce).

Fluorescence in situ hybridization
FISH on larval muscles was performed as previously described (Gardiol

and St Johnston, 2014). Plasmids obtained from BDGP were linearized

for antisense or sense probes as follows: aPS2 LP16423: antisense

EcoRI/Sp6, sense XhoI/T7; bPS RE55238: antisense XhoI/T3, sense

BamHI/T7. Probes were transcribed using corresponding RNA

polymerases (New England Biolabs). Larva dissected in HL3 buffer
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were fixed in 4% formaldehyde, washed, washed in PBS Tween 0.1%,

pre-hybridized for 2 h at 55 C̊, and hybridized overnight with 2 mg of

probe. Fillets then were washed and incubated with Alkaline Phosphatase

(AP) conjugated anti-Dig (1:200, Roche) overnight. Probed mRNA was

detected by HNPP fluorescent detection kit (Roche) followed by

fluorescence secondary antibody staining.

Lethality analysis
Flies of the appropriate genotype were placed in cages supplied with

yeast paste on apple juice agar plates for egg laying. 100 embryos of the

indicated genotype were transferred to a fresh apple juice agar plates and

the number of viable animals at different developmental stages was

recorded each day. After the eclosion of the first adult, the remaining

pupae were kept for an additional 4 days to determine if any would

eclose.

Larval locomotion assays
Staged L3 larva of the indicated genotype were placed on a fresh apple

juice agar plate for 15 min to acclimate to their surroundings. Mobility

was video-recorded (6406480 pixel resolution) for 1 min. The videos

were transformed into time-lapse images (200 frame/min). The Grid

plugin of ImageJ was utilized to overlay lines on the time-lapse images

(area per point5150 pixels2) and the number of grids which larva

crawled through was recorded and converted to mm/sec.

Confocal imaging and statistics
Fluorescent images were collected on an Olympus Fluoview300 or

Zeiss700 confocal systems with single z50.5 mm, 5–6 mm total for 206;

z50.4 mm, 4–5 mm total for 406; and z50.35 mm, 3–4 mm total for 636
objectives, respectively. Maximum intensity projections of confocal z-

stacks were processed by using ImageJ software (NIH). Montage images

were obtained from continuous sub-z-stacks beneath the sarcolemma. All

images were assembled into figures using Adobe Photoshop.

Colocalization analysis was performed on multiple single step images

after montage generation. The colocalization efficiencies were obtained

by using JACoP plugin in ImageJ with Manders’ Coefficient algorithm.

For quantification for protein levels from Western blots, the band

intensities were measured by ImageJ and normalized by the levels of both

a-Tubulin from the corresponding genotypes and the same proteins in

WT. Line profiles of fluorescence intensity were plotted as shown

previously (Bothe et al., 2014; Folker et al., 2014). Single plane of

confocal z-stack picture was opened in ImageJ. A line selection was

made across the puncta or nuclei of interest. The fluorescence intensities

of single or double channel(s) on the selected line were depicted with

using ‘‘line profile’’ Macro.

RESULTS
aPS2 accumulates around the nuclei in clu mutants
Clu was identified in a screen designed to identify new proteins in
myogenesis. During our initial characterization of the clu

gene (Z.-H.W. and E.R.G., unpublished), we immunostained

clu mutants at different stages in development to look for defects
in muscle development and/or maintenance. Upon staining for the
integrin heterodimer complex, we made an interesting

observation in the contractile musculature of clu mutants. As
we reported previously by our group and others (LaBeau-
DiMenna et al., 2012; Leptin et al., 1989; Nabel-Rosen et al.,
1999), bPS (Fig. 1A,A9) and aPS2 (Fig. 1C,C9) normally

accumulate at muscle attachment sites (arrowheads) and
costameres (arrows) in contractile third instar larval (L3)
muscles (arrows). In clu mutant L3 animals, bPS distribution

appeared similar to WT L3 individuals (Fig. 1B,B9,F). However,
loss of Clu resulted in an obvious accumulation of aPS2 protein
in the region surrounding the muscle nuclei (Fig. 1D,D9), in a

compartment that we call the perinuclear ER. This accumulation
of aPS2 was strongly decreased upon the reintroduction of Clu

protein into clu mutants (Fig. 1G,H). In addition to this increase
in perinuclear staining, we occasionally observed a decrease in

aPS2 levels at muscle attachment sites and costameres. This
retention of aPS2 in clu mutants is consistent with a possible
accumulation in the perinuclear ER.

aPS2, but not bPS, is translated from a pool of targeted mRNA
To understand how aPS2 is retained in the perinuclear region of
muscle cells, we hypothesized that aPS2 could normally be

locally translated from a pool of targeted mRNAs around the
nucleus followed by active transport to its final destination, as it
is the case for Gurken in the Drosophila oocyte (Herpers and

Rabouille, 2004). Conversely, bPS mRNA would be
homogenously distributed. To test this, we performed RNA
FISH for both integrin subunits to confirm our hypothesis.

Although aPS2 mRNA is present in the entire cell, it is
concentrated around the nucleus (Fig. 1I, indented arrow),
whereas bPS mRNA is homogenous and does not show this
perinuclear concentration (Fig. 1J). This suggests that aPS2 is

locally translated in the peripheral ER and might require Clu for
its transport.

Clu protein localizes to a subdomain of the ER
To better understand how Clu may affect aPS2 trafficking, we
first focused on characterizing the location of endogenous Clu

within the WT larval musculature. Analysis of the protein trap
line cluCA06604 revealed a broad distribution of Clu:GFP,
including a faint but repeated pattern consistent with sarcomere

organization (arrows), localized throughout the muscle cell
(Fig. 2A). Remarkably, however, Clu protein (indented
arrowheads) was found strongly concentrated around the
nucleus in a pattern that mirrored the aPS2 perinuclear

accumulation in clu mutants (Fig. 1D,D9). To ensure the GFP
fusion tag did not interfere with its normal location within the
myofiber, we verified the localization of the native Clu protein

using an antibody generated against the N-terminal region of Clu
(Cox and Spradling, 2009). The distribution of endogenous
Clu (Fig. 2C,D) was identical to Clu-GFP (Fig. 2A), and the Clu

protein staining appeared specific as Clu signals were reduced in
clu mutants (Fig. 6K; supplementary material Fig. S1).

To further investigate the location of Clu within the muscle
cell, we double labeled it with fluorescently labeled organelle

markers followed by quantification of a region surrounding the
nucleus to determine the percentage of overlap between these
markers and Clu-positive signal. As Clu is in close proximity to

mitochondria in Drosophila germline cysts (Cox and Spradling,
2009), we first checked whether this perinuclear pattern
corresponds to mitochondria. Indeed, we observed a small

amount of overlap between immunostained mitochondria and
Clu:GFP particles (Fig. 2B,F). The early (Rab5:YFP) or late
(Rab7:YFP) endosome markers did not colocalize with Clu and

expression of a dominant-negative version of Rab5 in the
musculature did not result in perinuclear aPS2 accumulation
(supplementary material Fig. S1). These results rule out the role
of endocytosis as an explanation for the defects in clu mutants.

As aPS2 accumulates around the nucleus in clu mutants, the
distinct accumulation of Clu at the same location favors the idea
that Clu may be required for aPS2 trafficking. We next analyzed

the subcellular distribution of Clu in larval muscle tissue with
respect to the organelles of the early secretory pathway, the ER,
ERES, and Golgi. As in vertebrate muscle fibers (Percival and

Froehner, 2007; Ralston et al., 2001), we found that the ER
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pervades the entire cell, including the sarcomere and the nuclear

envelope that is continuous with the ER. Approximately 35% (see
Materials and Methods for details on quantification) of the
KDEL-YFP ER marker was found to co-localize with Clu

adjacent to the nuclear envelope (Fig. 2C,F) showing that a
portion of Clu localizes to this organelle. The Clu pattern
sometimes appears as puncta that could correspond to ERES and
we used Sec16 as a marker (Ivan et al., 2008). About 40% of

perinuclear ERES marked by Sec16 also contained Clu
(Fig. 2D,F). In Drosophila, the Golgi apparatus comprises
stacked elements that are found in very close proximity to

ERES to form tER-Golgi units (Kondylis and Rabouille, 2009).
Accordingly, some Clu protein was also detected in the same
location as Golgi-YFP puncta that surround the nucleus

(Fig. 2E,F). Knockdown of Clu using RNAi also resulted in the

retention of aPS2 (supplementary material Fig. S1). Taken
together, these data show that Clu is broadly localized within
the muscle cell, but a large pool of Clu localizes to the peripheral

ER, and co-localizes with ERES and the Golgi to a smaller
extent. This localization is consistent with a role in aPS2 export
for the ER and transport in the early secretory pathway in muscle
cells.

The role for Clu in mitochondrial distribution is independent
of its role in aPS2 localization
Due to the known role for Clu in mitochondrial dispersion in
diverse organisms (Cox and Spradling, 2009; Dimmer et al.,
2002; Fields et al., 1998; Zhu et al., 1997), we therefore tested if

Fig. 1. aPS2 accumulates within contractile muscles upon loss of Clu. (A–E,G) Immunolocalization of integrin proteins (green) and F-actin (red; phalloidin)
in muscles of filleted L3 individuals (n5nucleus). (A–B9) In both WT and clu2/2 muscles, bPS integrin is found at MASs (arrowheads in A,B) and costamere
structures that encircle the sarcolemma along the length of the muscle (arrows in A9,B9). (C,C9) aPS2 integrin also accumulates at the ends of WT muscles
(arrowhead in C) and at costameres (arrows in C9). (D,D9) In clu mutants, the aPS2 subunit accumulates around the periphery of the nucleus, as indicated by the
indented arrowheads. (E,G) The reintroduction of full-length clu cDNA into clu mutant muscle tissue has no effect on bPS integrin distribution (E) and restores
the accumulation of aPS2 to its normal location within the cell (G). (F,H) Quantification of bPS and aPS2 integrin distribution in the dorsal oblique (DO;
16,n,36) and ventral longitudinal (VL; 16,n,36) L3 muscles of indicated the genotypes. (I,J) Fluorescent in situ hybridizations (FISH) in L3 muscle tissue.
aPS2 mRNA accumulates around the nuclei (I, middle panel; n542), while bPS mRNA appears evenly distributed throughout the muscle cell (J; n523). The
sense probes for both mRNAs reveal little background signal (left panels). Quantitation of fluorescence intensity (dotted line) shows that the perinuclear signal of
aPS2 mRNA is higher than that of bPS2 mRNA. Scale bars, 50 mm (A–E,G), 10 mm (A9–D9), 5 mm (I,J).
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Clu is required for mitochondrial distribution in larval muscle
tissue. In WT myofibers, mitochondria were abundant between

adjacent nuclei at the muscle surface muscle (Fig. 3A) and in a
repeated sarcomeric pattern within muscles (Fig. 3A9). As
expected, the pattern of mitochondrial distribution was severely

disrupted in clu2/2 mutant muscles where we observed clustering
of mitochondria (Fig. 3B,B9). We next examined if mutants that
affect mitochondrial integrity or dynamics phenocopy the clu

mutant perinuclear accumulation of aPS2 (Fig. 3F). Examination

of parkin2/2 mutant muscles revealed multiple mitochondrial
aggregates within the cell (Fig. 3C,C9), but no obvious
accumulation of intracellular aPS2 around the nuclei (Fig. 3G).

To test this further, we knocked down the mitochondrial fusion
protein Mitofusin, encoded by the marf gene, using RNAi. As
expected, we observed a strong mitochondrial fission phenotype

(Fig. 3D,D9) in agreement with the published role of Marf

(Ziviani et al., 2010). However, marf RNAi did not affect aPS2
localization within contractile muscles (Fig. 3H). In all genotypes

examined (Fig. 3E9–H9), bPS did not accumulate around muscle
nuclei. Thus, we can conclude that within muscle tissue, Clu
exhibits two separable roles, one implicated in mitochondrial

distribution and the other, to mediate aPS2 transport.

dgrasp RNAi knockdown phenocopies muscle defects upon
loss of Clu
The integrin subunit retention phenotype in the perinuclear ER is
reminiscent to loss of dGRASP function in the follicular
epithelium (Schotman et al., 2008). To directly test if dGRASP

functions like Clu in aPS2 delivery in the muscle, we examined
the distribution of bPS and aPS2 upon dgrasp loss of function.
Previously published dgrasp mutants were no longer available

(Schotman et al., 2008), so we utilized RNAi techniques to

Fig. 2. Clu localizes with dGRASP and Sec16 ER exit sites.
(A–G) Muscle tissue from L3 larvae was dissected and
immunostained to examine the subcellular localization of Clu
protein. (A,A9) The Clu:GFP protein trap line (green) localizes in
a repeated pattern within the muscle (arrows) and accumulates
around the nuclei (n; indented arrows). The right panel is a
close up of the boxed region in the left panel. (B) The
perinuclear accumulation of Clu:GFP (green) reveals little
colocalization with mitochondria (red; anti-Complex V).
(C–F) An anti-Clu antibody (red) was used to confirm the
Clu:GFP nuclear staining pattern and also to discern the
localization of Clu puncta with other organelle markers (green)
in WT larval muscle. A composite Z-stack is followed by
representative single confocal slices. (C,D) Clu-positive puncta
overlap with both a general ER marker (C) and the ERES
protein Sec16 (D). (E,F) Clu colocalizes with a subset of
Golgi:YFP puncta (E). (F) The percentage of puncta of each
organelle marker that overlap with Clu protein. Colocalization
was determined from multiple single plane images calculated
using the Image J JACoP plug-in. Mean6s.e.m. Scale bars,
50 mm (A), 10 mm (A9,B–G).
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knockdown dGRASP function specifically in the L3 musculature.
First, we confirmed knockdown of dGRASP protein by

examining the intensity of immunofluorescence in 24B.dgrasp

RNAi larval muscles (Fig. 6K; supplementary material Fig. S2).
Second, in dgrasp RNAi L3 myofibers, bPS localization was WT
(Fig. 4A,C), whereas the normal distribution of aPS2 in WT

muscles (Fig. 4B) was altered and phenocopied the perinuclear
ER localization in clu mutant larvae (Fig. 4D). Therefore, Clu
and dGRASP loss of function leads to the same aPS2

accumulation in the perinuclear ER.

clu and dgrasp function in the same genetic pathway
Since clu mutants show an accumulation of aPS2 in L3 muscles
similar to dgrasp RNAi mutants, we explored whether dgrasp and
clu function in the same genetic pathway to mediate aPS2

trafficking. Indeed, the perinuclear accumulation of aPS2 in
dgrasp mutants co-localized with the endogenous location of Clu
protein (Fig. 4D). To test this further, we performed epistasis
experiments. If clu and dgrasp function in different pathways,

double mutants would be expected to exhibit stronger defects
than clu or dgrasp single mutants. If these two genes function
together in the same pathway, phenotypes observed in clu, dgrasp

double mutants should be similar to those observed in either
mutant alone. Larvae in which both clu and dgrasp function were
simultaneously removed showed aPS2 perinuclear accumulation

phenotypes (Fig. 4F), lethality curves (Fig. 4G), and larval
locomotion phenotypes (Fig. 4H), nearly identical to those
observed in either clu or dgrasp single mutants alone. These
data suggest that Clu and dGRASP are likely to act in the same

genetic pathway.

Clu and dGRASP physically interact
To gain evidence that the above genetic interaction reflects a
functional role for a Clu-dGRASP complex in aPS2 transport, we

first determined whether Clu and dGRASP colocalized in muscle
tissue. In yeast and Drosophila, dGRASP is known to localize to

both the ERES and Golgi on what is termed a transitional ER
(tER)-Golgi unit (Behnia et al., 2007; Kondylis et al., 2005;
Vinke et al., 2011). We expressed UAS-dGRASP-GFP in WT
muscle cells using mef2-GAL4. Both dGRASP:GFP (Fig. 5A)

and endogenous dGRASP protein (supplementary material Fig.
S2) are enriched around the nucleus in a punctate pattern
consistent with a Golgi localization (supplementary material Fig.

S2). Furthermore, dGRASP shows a close proximity to Sec16
(Fig. 5A9,A0; supplementary material Fig. S2), suggesting that, as
in other systems, dGRASP localizes to both Golgi and ERES.

This is consistent with Clu localization (Fig. 2). To confirm this,
we double labeled dGRASP:GFP and Clu and found a partial but
significant overlap around the nuclei (Fig. 5B–B0). In the reverse

experiment, we also found that ,50% of the endogenous
Clu:GFP fusion protein colocalizes with dGRASP protein
detected using anti-dGRASP antisera (supplementary material
Fig. S2).

We next assessed if Clu or dGRASP are reliant on one another for
their perinuclear localization. Indeed, we found that the WT
dGRASP localization pattern was altered upon loss of Clu.

dGRASP appeared more diffuse in the cytoplasm (Fig. 5E,F,
brackets) when compared to the tight localization in WT puncta
(Fig. 5C,D), suggesting that Clu is involved in dGRASP

localization and in the organization/dispersion of the early
secretory pathway. The dGRASP clustering around the nucleus
was reminiscent of the aPS2 pattern also observed in the clu mutant.
Accordingly, aPS2 and dGRASP showed tight colocalization

(Fig. 5E–E0,G) whereas bPS was less affected (Fig. 5F–F0,G). Of
note, Clu localization was unaffected in dgrasp RNAi muscle cells
(data not shown).

The dependence of dGRASP on Clu for WT localization, as
well as the strong similarity in the aPS2 phenotype upon loss of

Fig. 3. The requirement for Clu and dGRASP in
integrin localization is separable from mitochondrial
organization. (A–D) The distribution of mitochondria
(anti-Complex V) in muscle 6 (n5nucleus). (A–D) Z-
stacks of the muscle surface and internal myofibrils. (A9–
D9) Internal muscle cell slices. (A,A9) The mitochondria
in WT muscle cells are evenly distributed and align in a
repeated pattern (arrows). (B–D9) Either clu2/2 (B,B9) or
parkin2/2 (C,C9) mutants exhibit severe mitochondrial
clustering (arrowheads). Knockdown of marf RNAi in the
muscle with 24B-GAL4 results in fragmented
mitochondria (small arrows). (E–H) The perinuclear
aPS2 localization phenotype is only apparent in clu

mutants (indented arrows in F), and not upon a
decrease in parkin (G) or marf (H). (E9–H9) bPS does not
accumulate in the perinuclear region in WT (E9), clu2/2

(F9) mutants, parkin2/2 mutants (G9), or marf RNAi

muscles (H9). Scale bars, 50 mm (A–D,G), 10 mm (E–H,
A9–H9).
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function of both proteins, suggests the possibility that dGRASP
and Clu may form a physical interaction. To test this hypothesis,

we performed co-immunoprecipitations (co-IPs) of tagged forms
of Clu and dGRASP from L3 larval lysates (Fig. 5I). Immuno-
isolation of dGRASP-GFP using anti-GFP beads resulted in the
detection of Clu in a biochemical complex by Western blotting.

In the reciprocal experiment, we were able to detect dGRASP in
IPed Clu-myc complexes. However, we were not able to detect a
Clu-dGRASP complex in control lysates that did not have tagged

forms of both Clu and dGRASP together. Our results strongly
suggest that a Clu-dGRASP biochemical complex is required for
aPS2 export from the perinuclear ER where it is synthesized from

its targeted mRNA followed by its transport to the plasma
membrane.

Sec16 stability depends on Clu
As mentioned above, transport out of the ER typically occurs at
ERES and one of the key proteins in ERES functional
organization is Sec16. To test whether this is also true for

integrin subunits, we depleted Sec16 in the muscle and examined
whether integrin localization was changed. First we confirmed
that Sec16 protein levels were reduced upon sec16 RNAi

knockdown in muscle tissue (supplementary material Fig. S3).

Next, we found that loss of Sec16 altered the normal localization
of aPS2 (Fig. 6A), where it was found strongly concentrated

around the perinuclear ER (Fig. 6B,E), in agreement with its site
of synthesis (Fig. 1I). We also confirmed this perinuclear
accumulation of aPS2 protein by expressing a second,
independently generated sec16 RNAi construct (supplementary

material Fig. S3). This suggests that as expected, aPS2 uses
ERES machinery for ER exit. Accordingly, there was also a small
increase in bPS perinuclear accumulation (Fig. 6D,E), as might

be expected for the depletion of any components of the ERES.
To examine how Clu or dGRASP may alter integrin transport

out of the ER via ERES, we examined the distribution and levels

of Sec16 protein in mutant backgrounds. Sec16 levels in clu

mutants was reduced, shown both by IF (Fig. 6G) and WB
(Fig. 6K). The number (Fig. 6I) and relative size (Fig. 6J) of

Sec16 puncta were smaller compared to WT (Fig. 6F). This result
was specific for clu mutants, as Sec16 protein levels were not
altered in dgrasp RNAi muscle cells (Fig. 6H–K). Altogether,
we propose a model in which Clu forms a complex with dGRASP

to maintain its localization in the perinuclear early secretory
pathway as well as maintaining Sec16 stability. This, in turn,
is necessary for the ERES function and aPS2 exit out of the

ERES.

Fig. 4. dGRASP RNAi in the muscle phenocopies
clu mutants. (A–D) L3 muscle fillets reveal the
localization of integrins (green) and Clu (red). bPS
(A) and aPS2 (B) show relatively normal integrin
distribution in WT muscle (n5nucleus). In 24B.dgrasp

RNAi muscles, bPS integrin appears WT (C), while the
aPS2 subunit colocalizes with endogenous Clu in the
nuclear periphery (D; indented arrowheads). (E,F) bPS
localization in muscles mutant for clu that also
knockdown dGRASP levels (cluDW/clud087; 24B.

dgrasp RNAi) are similar to WT (E), while the
perinuclear distribution of aPS2 looks like clu2/2 or
dgrasp RNAi alone (F; indented arrowheads).
(G) Survival curve for clu and dgrasp mutants at
different developmental stages (E, embryo; L1, 1st instar
larva; L2, 2nd instar larva; 3rd instar larva; A, adult). (H)
Locomotor activity analysis for early L3 larvae of
indicated genotypes (mean6s.e.m.; **p,0.005;
****p,0.0001). Scale bars, 25 mm (A–D); 50 mm (E,F).
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ER stress induced by loss of Clu or dGRASP is ameliorated by
chemical chaperones
Protein stability and localization can be affected by several

stresses (Barlowe and Miller, 2013), and given Sec16 localization
to ERES, we asked whether Sec16 decline in clu mutants could
be a consequence of ER stress. In response to the accumulation of

misfolded or unfolded proteins in the ER, one such marker for ER
stress is the transcription factor Xbp1 (Sone et al., 2013). In L3
contractile muscles, oral intake of the ER stress inducer DTT

resulted in upregulation of the XBP1-GFP reporter (Fig. 7B,E)
when compared to non-DTT fed control larvae (Fig. 7A,E).

RNAi knockdown of clu (Fig. 7C) or dgrasp (Fig. 7D) also
induced activation of the Xbp1-GFP reporter (Fig. 7E). We
confirmed and extended these results using the ER stress marker

Binding immunoglobulin protein (BiP). As expected, there was
an increase in BiP immunostaining (supplementary material Fig.
S4) upon exposure of L3 muscles to DTT or in clu and dgrasp

RNAi muscles (Fig. 7F). Importantly, we found that both ER
stress (Fig. 7F) and aPS2 accumulation (Fig. 7G–K) were
reduced upon treatment with the chemical chaperones

tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid
(PBA), which both relieve ER stress (Oslowski and Urano, 2011;

Fig. 5. Clu physically binds to and mediates the localization of dGRASP to puncta. (A–B0) UAS-dGRASP-GFP is expressed in the muscle using by mef2-
GAL4 and is found in puncta surrounding the nuclei (n; arrows in A,B). High magnification images and line intensity profiles (dotted lines) reveal a partial overlap
with Sec16 (arrowheads in A9,A0) and colocalization with Clu (arrowheads in B9,B0). (C–F9) Micrographs (C–F) and the corresponding fluorescent intensity line
profiles to illustrate colocalization (C9–F9; dotted lines) between dGRASP (red) and integrins (green). The dGRASP-positive puncta (arrows) at the ERES and
Golgi exhibit little overlap with aPS2 (C,C9) and bPS (D,D9) in the cell. dGRASP protein is more diffuse in clu mutants (E,F; brackets) and colocalizes with
aPS2 around the nuclei (asterisk in E,E9). (G) Quantitation of results in panels C–F showing the fraction of dGRASP signal that colocalizes with integrins
(mean6s.e.m.; ****p,0.0001). (H) A myc-tagged version of Clu and a dGRASP-GFP fusion protein were expressed using the GAL4/UAS system in the L3
stage. Immunoprecipitation of the resulting lysates with either anti-myc (left panel) or anti-GFP (right panel) resulted in the detection of a Clu-dGRASP complex
using Western blot analysis. Asterisk indicates background band. Scale bars, 5 mm (A–F).
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Samali et al., 2010). Furthermore, amelioration of ER stress also

rescued the size of Sec16-positive puncta, or size of ER exit sites
upon a reduction in Clu (Fig. 7L–P). We conclude that aPS2
accumulates in the ER as a result of ER stress induced upon loss

of Clu and dGRASP.

DISCUSSION
Our data demonstrate a novel role for Clu in aPS2 exit from the
perinuclear ER in larval muscle that is different from previously

reported roles. As mentioned previously, the first established

function is in the prevention of mitochondrial clustering (Cox and
Spradling, 2009; Dimmer et al., 2002; Fields et al., 1998; Zhu
et al., 1997). The second role of Clu regulates aPKC activity in

neuroblast stem cell divisions (Goh et al., 2013). A third role for
Clu was published just before submission of this manuscript.
Mammalian CLUH can function as an mRNA-binding protein for

RNAs encoding nuclear mitochondrial proteins, thus possibly
providing a link for mitochondrial biogenesis and localization

Fig. 6. Sec16 protein levels are reduced in clu mutants. (A–D) Immunostaining of integrin (green) and dGRASP (red) in L3 contractile muscles. Low amounts
of both aPS2 (A) and bPS (C) colocalize with dGRASP around nuclei (n) in WT muscle cells. (B,D) RNAi knockdown of Sec16 in muscle tissues results in
the retention of aPS2 in dGRASP-positive puncta (B), while low levels of bPS accumulate around the nuclei (D). (E) Graph depicting the fraction of Sec16 puncta
that overlap integrins based upon analysis of multiple images like those presented in panels A–F (*p,0.05; ***p,0.0005). (F–H) Perinuclear staining of
Sec16 staining in the indicated genotypes. Sec16 puncta are reduced in clu mutants (G) when compared to WT (F) or dgrasp-depleted muscle tissue (H).
(I,J) The number (I) and size (J) of Sec12-positive ERES are reduced in clu mutants. (K) Western blot and band intensity quantification of Sec16, Clu and
dGRASP protein levels in the indicated genotypes. Sec16 protein levels are reduced in clu, but not dGRASP mutants (mean6s.e.m.; *p,0.05; ***p,0.005).
Scale bars, 10 mm (A–D,F–H).
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(Gao et al., 2014). Thus, Clu is a multifaceted protein whose

cellular and developmental roles are just beginning to be
elucidated.

The role of the Clu-dGRASP complex in aPS2 ER exit
Here we show that aPS2 is synthesized from a pool of mRNA
that is targeted around the nucleus. As aPS2 is a transmembrane
protein, this would allow for local synthesis of this protein in the

perinuclear ER. This same idea has been proposed in polarized

cells, where the coupling of mRNA retention and local
translational allows for efficient sorting to the final sites of
membrane deposition and/or secretion (Herpers and Rabouille,

2004). When the machinery for aPS2 ER exit is disrupted, aPS2
is retained in the perinuclear ER, as observed in Clu and
dGRASP. How aPS2 mRNA is targeted to this location is not
known. The ER can form either networked tubules or stacked

Fig. 7. Molecular chaperones can alleviate ER stress due to a reduction in either Clu or dGRASP. (A–F) ER stress markers are upregulated in clu or
dGRASP RNAi. The ER stress reporter Xbp1-GFP is elevated upon induction of ER stress by DTT (B) or upon RNAi knockdown of clu (C) or dGRASP (D) in L3
muscles (n5nucleus). (E) Quantitation of the ER stress inducer Xbp1-GFP in the indicated genotypes. (F) Independent measurements of ER stress
measuring the amount of Bip levels in L3 muscle. ER stress in increased upon feeding with DTT or in clu or dGRASP RNAi and can be ameliorated upon
treatment with the molecular chaperones TUDCA or 4PBA (*p,0.05; ***p,0.0005; ****p,0.0001). (G–K) aPS2 accumulates in clu RNAi (H) muscle tissue and
this perinuclear accumulation is alleviated upon treatment with TUDCA (I) or 4PBA (J). (K) Graph depicting the internal accumulation of aPS2 upon loss of Clu
only. (L–P) The size of Sec16 ERES is reduced in clu RNAi (M), but is restored upon inhibition of ER stress (N–P) (mean6s.e.m.; *p,0.05; **p,0.01;
***p,0.005). Scale bars, 10 mm (A–D, G–J); 2 mm (L–O).
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sheets, the latter being more abundant around nuclei (Joensuu
et al., 2014; Terasaki et al., 2013) and it is therefore possible that

ER structure plays a role in mRNA targeting.
Both Clu and dGRASP form a complex that functionally

localizes to ERES. The role of this complex could be either direct,
such as an interaction with ER cargo receptors such as p24 family

members (Strating and Martens, 2009), or indirect. For instance,
loss of Clu or dGRASP could affect the microtubule (MT) network
and compromise the functional integrity of ERES. Previous data

shows that the MT cytoskeleton is closely associated with the
reorganization of tER-Golgi units near the nuclear envelope in rat
contractile myofibers (Ralston et al., 2001). However, we were

able to rule out a role for the MT cytoskeleton in aPS2 delivery.
Loss of Clu or dGRASP did not alter the organization of the MT
network in larval muscle cells. Furthermore, disruption of the MT

cytoskeleton by muscle-specific overexpression of the MT-
severing protein Spastin (Sherwood et al., 2004) in L3 larval
muscles did not recapitulate the perinuclear accumulation of aPS2
(data not shown).

Clu acts to mediate aPS2 export through modulation of Sec16
stability, a key factor required for COPII coated vesicle
dynamics. We also show that Clu and dGRASP act to inhibit

ER stress. Upon loss of Clu, ER stress increases, leading to Sec16
degradation and impairment of aPS2 export, and ER retention.
Importantly, alleviating ER stress with the chemical chaperones

TUDCA and 4PBA suppressed both aPS2 accumulation and the
size of ERES. This data provides at least one mechanism for the
regulation of aPS2 transport by Clu-dGRASP in myofibers.

ER stress and mechanical stress
The biological inputs that trigger ER stress in muscle tissue are not
clear. Studies in Drosophila follicle cells support the intriguing

hypothesis that integrins trigger their own mode of transport in
response to mechanical stress (Schotman et al., 2009). The physical
tension generated during epithelial remodeling induces an

upregulation of dgrasp mRNA and is dependent upon integrins
and the subsequent recruitment and/or activation of RhoA and the
LIM protein PINCH (Schotman et al., 2009). Interestingly,

elevated PINCH levels also suppress hypercontraction muscle
mutants (Pronovost et al., 2013). Thus, maybe PINCH is a key
sensory component in tissues that sense, transduce, and alter
secretion routes of proteins to withstand changes in physical forces.

Supporting this idea are multiple pieces of evidence where changes
in patterned muscle activity alter the distribution of the Golgi and
ERES (Jasmin et al., 1989; Percival and Froehner, 2007; Ralston

et al., 2001). Furthermore, The RNA binding protein HOW is
involved in dgrasp mRNA stability the in the follicular epithelium
(Giuliani et al., 2014) and interesting, how mutants show a muscle

phenotype (Baehrecke, 1997; Nabel-Rosen et al., 1999). If Clu is
acting as a sensor in transducing mechanical stress, for example, it
may have the ability to alter the trafficking of proteins in response

to such physiological changes.

Classical secretion of integrins versus Golgi bypass in
muscle cells
The general organization of ERES and the Golgi complex seem
conserved between Drosophila and mammalian skeletal muscles,
where these organelles are broadly distributed throughout the cell

with accumulation around nuclei (Percival and Froehner, 2007;
Ralston et al., 2001). Studies of glycoprotein processing show
that multiple delivery routes exist in multinucleated myotubes

(Rahkila et al., 1998). For example, influenza virus

hemagglutinin (HA) is transported through the Golgi to the cell
surface in rat L6 muscle cells. However, half of the pool of

labeled vesicular stomatitis virus (VSV) G protein exits the ER
but gets shuttled into intracellular vesicles independent of the
Golgi. It is not surprising that the complexity of muscle cells may
require multiple or redundant routes for membrane delivery.

Like aPS2 in our system, the a integrin subunit (aPS1) in the
Drosophila follicular epithelium is also retained in the ER in
the absence of dGRASP function and reaches the plasma

membrane in a Golgi independent manner (Schotman et al.,
2008). This leads to the question as to whether aPS2 in larval
muscles also bypasses the Golgi. Our preliminary results of

Syntaxin 5 (an essential SNAREs for protein transport to and
through the Golgi) knockdown showed severely impaired larval
survival, but did not phenocopy the clu or dgrasp aPS2

accumulation phenotype (data not shown). This suggests that
aPS2 could bypass the Golgi. However, biochemical evidence
demonstrating the presence or absence of Golgi-specific post
translational modifications have proven difficult to gather and it

remains an open question. Interestingly, in HeLa cells, Golgi
bypass of CFTR has been linked to ER stress leading to
GRASP55 binding to the C-terminal PDZ1 domain of CFTR

(Gee et al., 2011).
One outcome from this work is a departure from the notion that

a/b heterodimer formation is a prerequisite for ER exit, and

therefore the accumulation of aPS2, but not bPS is counterintuitive.
Of note, bPS is not excluded from the perinuclear ER, so the
role of Clu as a chaperone might still hold true. Nevertheless the

ER export of integrins (as a complex or as individual subunits),
at least in Drosophila, might be more complex than anticipated
and might change at different stages of development. Taken
together, require more studies to determine what domains of Clu

and/or interacting partners are essential for various cellular
activities.
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