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Abstract Sudden death syndrome (SDS), caused by

Fusarium virguliforme, has spread to northern soy-

bean growing regions in the US causing significant

yield losses. The objectives of this study were to

identify loci underlying variation in plant responses to

SDS through association mapping (AM) and to assess

prediction accuracy of genomic selection (GS) in a

panel of early maturing soybean germplasm. A set of

282 soybean breeding lines was selected from the

University of Minnesota soybean breeding program

and then genotyped using a genome-wide panel of

1536 single-nucleotide polymorphism markers. Four

resistance traits, root lesion severity (RLS), foliar

symptom severity (FSS), root retention (RR), and dry

matter reduction (DMR), were evaluated using soil

inoculation in the greenhouse. AM identified sig-

nificant peaks in genomic regions of known SDS

resistance quantitative trait loci cqSDS001, cqRfs4,

and SDS11-2. Additionally, two novel loci, one on

chromosome 3 and another on chromosome 18, were

tentatively identified. A ninefold cross-validation

scheme was used to assess the prediction accuracy of

GS for SDS resistance. The prediction accuracy of

single-trait GS (ST-GS) was 0.64 for RLS, but less

than 0.30 for RR, DMR, and FSS. Compared to ST-

GS, none of multi-trait GS (MT-GS) models sig-

nificantly improved the prediction accuracy due to

weak correlations between the four traits. This study

suggests both AM and GS hold promise for imple-

mentation in genetic improvement of SDS resistance

in existing soybean breeding programs.
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DMR Dry matter reduction

FDR False discovery rate

FSS Foliar symptom severity

GEBV Genomic estimated breeding value
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LD Linkage disequilibrium

MAF Minor allele frequency

MAS Marker-assisted selection

PCA Principal component analysis

QTL Quantitative trait loci
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REML Restricted maximum likelihood

RLS Root lesion severity

RR Root retention

RR-BLUP Ridge-regression best linear unbiased

prediction

SDS Soybean sudden death syndrome

SNP Single-nucleotide polymorphism

Introduction

Sudden death syndrome (SDS) of soybean [Glycine

max (L.) Merr.], caused by Fusarium virguliforme

(Aoki et al. 2003), is an important disease that

continues to spread across northern growing regions

in the USA (Bernstein et al. 2007; Chilvers and

Brown-Rytlewski 2010; Malvick and Bussey 2008;

Navi and Yang 2008; Kurle et al. 2003), causing

significant yield losses in infected fields (Wrather and

Koenning 2009). Hyphae penetrate soybean roots and

eventually colonize the vascular tissue of the plant

causing the development of root rot (Jin et al. 1996).

Subsequently, phytotoxin FvTox1 is produced by F.

virguliforme and translocated to plant leaves during

reproductive stages, causing diagnostic foliar symp-

toms such as leaf scorch (Brar et al. 2011; Jin et al.

1996). Both the root rot and leaf scorch lead to yield

losses varying from 5 to 80 % in individual soybean

fields greatly affected by environmental conditions

(Roy et al. 1997).

Crop rotation is generally ineffective in reducing the

occurrence and severity of SDS becauseF. virguliforme

in the form of chlamydospore or macroconidia can

persist in crop residue and soil for many years (Roy

et al. 1997). Therefore, SDSmanagement relies heavily

on planting resistant or tolerant cultivars complemented

by optimal cultural practices. To date, soybean cultivars

with partial resistance to SDS have been identified and

developed (Hartman et al. 1997; Mueller et al. 2002,

2003; Njiti et al. 2002; Schmidt et al. 1999). However,

no highly resistant soybean cultivars adapted to north-

ern growing regions are yet available for soybean

growers to use. Consequently, there is an urgent need to

develop early maturing soybean cultivars with effective

and durable resistance to SDS.

Developing SDS-resistant soybean cultivars has

proven difficult mainly due to the complex genetic

basis of SDS resistance, the interaction of pathogen and

plant with the environment, and imperfect screening

methods. Both the pathogen and disease are greatly

influenced by environmental factors such as tem-

perature, soil fertility, soil texture, rainfall, and planting

date, which makes characterization and evaluation of

cultivar performance extremely challenging (de Farias

Neto et al. 2006; Gongora-Canul and Leandro 2011a, b;

Jin et al. 1996; Sanogo and Yang 2001; Vick et al.

2003). For example, rainfall and temperature in the

early season can lead to great variability in evaluation

of SDS resistance in soybean genotypes because cool

and wet conditions favor the initial infection of soybean

roots by F. virguliforme, while weather during repro-

ductive stages influences foliar symptom expression. In

order to accurately screen for resistance to SDS,

extensive field trials of soybean genotypes across

multiple locations and years are necessary.

The genetic architecture of (partial) resistance to SDS

is complex. A total of 58 QTL have been reported as

providing resistance to SDS in bi-parental mapping

populations (www.soybase.org, verified June 11, 2014),

and only a few of them have been consistent across

mapping populations from different genetic back-

grounds (Kazi et al. 2008). However, the resistance loci

cqRfs4 on linkage groupC2 (chromosome 6), cqSDS001

on linkage group D2 (chromosome 17), cqRfs1, cqRfs2,

cqRfs3 on linkage group G (chromosome 18), and

cqRfs6 on linkage group N (chromosome 3) were re-

peatedlymapped inmultiple populations (deFariasNeto

et al. 2007; Hnetkovsky et al. 1996; Iqbal et al. 2001;

Kassem et al. 2006; Kazi et al. 2008; Lightfoot et al.

2001; Njiti et al. 1998, 2002; Prabhu et al. 1999). Po-

tentially, the genetic markers identified from previous

QTLmapping studies can assist in the selection of SDS-

resistant cultivars in a timely and resource-efficient

manner (Prabhu et al. 1999). Luckew et al. (2013) re-

cently evaluated ten confirmed SDS QTL in F2-derived

lines from six populations and suggested the possibility

of stacking QTL to achieve durable SDS resistance.

QTL mapping in bi-parental populations has been

limited by the specific genetic backgrounds of the

population under study, which reduces the ability to

detect resistance genes. By contrast, association map-

ping (AM) (Rafalski 2002) provides an opportunity to

identify QTL at a higher resolution by taking advantage

of historical linkage disequilibrium (LD) in diverse

populations. With increasing numbers of single-nu-

cleotide polymorphisms (SNPs) combined with declin-

ing costs in genotyping, AM has become an attractive
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approach for revealing the genetic basis of target traits in

crop species (Asoro et al. 2013; Bao et al. 2014; Huang

et al. 2010; Mamidi et al. 2011, 2014; Jia et al. 2013;

Sukumaran et al. 2012; Zhou and Steffenson 2013;

Zhou et al. 2014). A recently published AM study

identified QTL for SDS resistance in two soybean

panels composed of released cultivars and advanced

breeding lines from multiple soybean breeding pro-

grams (Wen et al. 2014). Compared to this earlier study,

a panel of early maturing soybean lines adapted to short

season growing condition was investigated and care-

fully evaluated below-ground phenotypes including

root lesion severity and root retention in the greenhouse.

The results suggest that SDS disease analysis based on

root symptoms can be more informative with higher

heritability than other approaches to SDS phenotyping.

A new marker-based approach known as genomic

selection (GS) could potentially be an alternative strategy

to stack numerous genes to achieve durable SDS

resistance. Rather than utilizing only molecular markers

in tight association with targeted QTLs, GS has been

developed with the aim of directly predicting genetic

value for quantitative traits by taking advantage of all

available genome-wide marker information (Bernardo

and Yu 2007; Meuwissen and Goddard 2010). In the GS

scheme,QTLmapping is replaced bygenomic prediction

model training which involves fitting both phenotypic

and genotypic data from a training population in either

linear or nonlinear models. Marker effects estimated

from themodels are subsequently summed up to estimate

genomic breeding values of individuals in a validation or

breeding population with only genotypic data. Previous

results in crop species, including soybean, have indicated

that GS holds the potential to improve disease resistance

with complex genetic architecture in breeding programs

(Bao et al. 2014; Lorenz et al. 2012; Rutkoski et al. 2012,

2014). Here, we seek to investigate the potential use of

GS to select SDS resistance in a typical public soybean

breeding program with a focus on early maturing

germplasm.

Materials and methods

Population, genotyping, population structure,

and linkage disequilibrium

Details about the population and genotyping strategy

were described previously, as were characterization of

the population structure and linkage disequilibrium

(LD) (Bao et al. 2014). Briefly, 282 soybean lines were

selected including ancestral lines, advanced breeding

lines, released public cultivars, and landraces from

University of Minnesota Soybean Breeding Program

(Table S1; Bao et al. 2014). An Illumina GoldenGate

assaywith 1536 SNPmarkers was used to genotype the

selected soybean lines (Hyten et al. 2010). A total of

1247 SNP markers with greater than 5 % minor allele

frequency (MAF) and missing data rate less than 50 %

were used in subsequent analyses (Bao et al. 2014).

Both STRUCTURE (Pritchard et al. 2000) and princi-

pal component analysis (PCA) identified a pattern of

three clusters in the population approximately corre-

sponding to three distinct genetic groups (Table S1;

Bao et al. 2014). LD was characterized and illustrated

using Haploview4.2 (Barrett et al. 2005).

Phenotyping and data analysis

In spring 2013, a total of 279 soybean lines (seeds of

three lines were unavailable) were evaluated for SDS

resistance in the greenhouse using the inoculation

procedure of Luckew et al. (2012). An isolate of F.

virguliforme, Somerset #1A, originating in Minnesota

had been maintained on PDA until it was used to

inoculate autoclaved sorghum for use in these screening

experiments. The sorghumwas prepared for inoculation

by soaking 1.5 liter quantities overnight in sterilizable

spawn bags (Fungi Perfecti LLC, Olympia, WA)

followed by autoclaving and cooling. The cooled

sorghum was then inoculated with 15 9 5 mm blocks

of PDA infested with 2-week-old cultures of the

Somerset #1A isolate. Bags were incubated at room

temperature with normal fluorescent room lighting for

30 days. The contents of each bag were mixed daily to

ensure uniform infestation of the sorghum throughout

the bag. At the time of soybean planting, the growth

media was inoculated with a 1:20 (volume/volume)

ratio of infested sorghum inoculum to media. The

uninoculated control treatment contained only growth

media. Each entry was planted in a Jumbo Junior

(Belden Plastics Co., St. Paul, MN) square pot contain-

ing 800 ml of soil. After planting, the pots were placed

in the greenhouse, watered to field capacity daily, and

maintained at 22 �C with 14 h daylight.

The greenhouse experiment was conducted as six

separate plantings because of space limitations. The

six plantings were conducted consecutively under the
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same greenhouse conditions. Each planting consisted

of 30–50 soybean lines with five inoculated replica-

tions plus one uninoculated replication for each line.

Two check cultivars: ‘McCall’ (susceptible) and

‘MN03020 (resistant) were included in each planting.

For each planting, each plant was evaluated for four

symptoms or responses associated with SDS by the

same experienced evaluator 4 weeks after planting.

These observations included: root lesion severity

(RLS), foliar symptom severity (FSS), root retention

(RR), and dry matter reduction (DMR).

RLS is a measure of the severity of root lesion

development caused by F. virguliforme infection

ranging from 1 (no lesion) to 10 (most severe lesion

development): 1 = no lesions visible on taproot,

2 = lesions on 10 % of the taproot, 3 = lesions on

20 % of the taproot, 4 = lesions on 30 % of the

taproot, 5 = lesions on 40 % of the taproot, 6 = le-

sions on 50 % of the taproot, 7 = lesions on 60 % of

the taproot, 8 = lesions on 70 % of the taproot,

9 = lesions on 90 to 100 % of the taproot, and

10 = lesions on[90 % of the taproot of the taproot or

the taproot is completely missing.

FSS is a rating of the severity of leaf scorch caused

by F. virguliforme (Bowen and Slaminko 2008,

personal communication; Chawla et al. 2013):

1 = no scorch, 2 = slight symptom development,

with mottling on leaves, 3 = moderate symptom

development with interveinal chlorosis and necrosis,

4 = intermediate symptom development with inter-

veinal chlorosis and necrosis, 5 = severe interveinal

chlorosis and necrosis accompanied by cupping,

6 = interveinal chlorosis and necrosis accompanied

by cupping with some defoliation, 7 = most leaves

displaying necrosis, and 8 = dead plants.

Percentage of root or shoot dry weight change

caused by F. virguliforme infection was calculated as

RR = (root dry weight of inoculated plant)/(root dry

weight of uninoculated plant) 9 100. DMR = 100 -

(shoot dry weight of inoculated plant)/(shoot dry

weight of uninoculated plant) 9 100.

The ratings of each trait were then fitted into a linear

regression model: y = u ? L ? e within each plant-

ing and performed analysis of variation (ANOVA)

with the PROCANOVA in Statistical Analysis System

(SAS) Version 9.4 (Cary, NC), where y was one of the

four trait ratings of each plant, u was the intercept,

Lwas the effect of soybean line, and ewas the residual.
The effect of line 9 replication was used as the error

term to test significance of the effect of line. The

phenotypic value of each soybean line was represented

as the mean of trait ratings across five replications for

each trait and used the phenotypic values for subse-

quent AM and GS modeling. Scatter plots were

constructed based on the pair-wise correlation between

the phenotypic values of each pair of traits.

Association mapping

We performed AM for RLS, FSS, RR, and DMR,

respectively, with mixed linear model in the ‘rrBLUP’

package (Endelman 2011) in R (R Development Core

Team 2005). The mixed linear model:

y = Xa ? Pb ? Kc ? e was used, where y is the

vector of phenotypic values, X is the vector of SNP

marker genotypes, a is the coefficient of marker effect

being estimated, P is the matrix of first three principal

components from PCA accounting for the population

structure plus the covariate vector of experimental

plantings, b is the coefficient of principal components

and experimental plantings, K is the additive relation-

ship matrix estimated based on SNP genotypes ac-

counting for genetic kinship among the individuals, c is
the vector of random effects corresponding to genetic

kinship, and e is the vector of random effects corre-

sponding to residuals. The variances of c and e are

Var(c) = 2KVg and Var(e) = VR, respectively, where

K is the genetic kinship, Vg is the genetic variance, and

VR is the residual variance. False discovery rate (FDR)

of 0.05 was used to correct for multiple comparisons in

AM using package ‘QVALUE’ in R (R Development

Core Team 2005). SNP markers with FDR q val-

ue\0.05 were defined as significant SNPs associated

with SDS resistance. Given the low SNP density on the

genotyping panel, significant SNP markers are not

expected to be exact locations of causal genes control-

ling variation of plant response to SDS. In the vicinity of

the significant SNPs, previously described SDS resis-

tance QTL was scanned in soybean genome (www.

soybase.org). Manhattan plots were created based on

the AM results with SNPEVG (Wang et al. 2012).

Prediction accuracy of genomic selection

To assess prediction accuracy of genomic selection

(GS) for SDS resistance, the same set of phenotypic and

genotypic data was used in a ninefold cross-validation

study. Specifically, 279 soybean lines first were
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randomly divided into nine subsets. In each fold, eight

subsets of lines (248 lines)were used as training sets and

the remaining subset (31 lines) was a validation set. In

the training set, the marker effects were simultaneously

estimated by fitting a statistical model to both pheno-

typic and genotypic data. The marker effects were then

used to predict the genetic values of individuals in the

validation set. Prediction accuracywas calculated as the

correlation between marker-based prediction and phe-

notypic values. The cross-validation process was

repeated nine times (nine folds), with every subset of

soybean lines used exactly once as the validation set.

Genomic selection model

Since there are four phenotypic traits associated with

SDS resistance in the data set, both single-trait

genomic selection (ST-GS) model and multi-trait

genomic selection (MT-GS) were evaluated, and their

accuracies for predicting SDS resistance were com-

pared. For ST-GS, a mixed linear model was con-

structed to estimate marker effects of phenotypic

traits: y ¼ Xbþ Zaþ e, where y is the vector (n 9 1)

of phenotypic observations of n individuals, X is the

design matrix (n 9 r) for fixed planting effects, b is

the vector (r 9 1) of planting effects, Z is the design

matrix (n 9 m) for additive effects of SNP markers, a
is the vector (m 9 1) of additive effects of SNP

markers, and e is the vector (n 9 1) of residuals. The

variances of a and e are VarðaÞ ¼ Imr2a and

VarðeÞ ¼ Inr2e , respectively, where Im is the m 9 m

identity matrix, r2a is the additive genetic variance for
each maker, r2e is the residual variance, and In is the

n 9 n identity matrix. A computationally efficient

method, ridge-regression best linear unbiased predic-

tion (RR-BLUP) was employed to solve the mixed

model. Previous GS studies suggested slight differ-

ences between different genomic prediction algo-

rithms including G-BLUP (which is equivalent to RR-

BLUP), Bayesian approaches, and machine learning

algorithms (Asoro et al. 2011; Bao et al. 2014;

Lorenzana and Bernardo 2009; Lorenz et al. 2012;

Rutkoski et al. 2012). The marker effects were

simultaneously estimated by solving the mixed model

through the restricted maximum likelihood (REML)

method implemented in R package ‘rrBLUP’ (R

Development Core Team 2005). Variance of additive

effects and variance of residual effects were estimated.

MT-GS models were developed by fitting the pheno-

typic observations of multiple traits (t) simultaneously in

a multivariate mixed linear model:

y ¼ ðIt � XÞbþ ðIt � ZÞaþ e, where y is the matrix

(n 9 t) of phenotypic observations for t traits of n

individuals, It is the identity matrix (t 9 t), X is the

design matrix (n 9 r) for fixed planting effects for

each trait, b is the matrix (r 9 t) of planting effects for

t trait, Z is the design matrix (n 9 m) for additive

effects of SNP markers for each trait, a is the matrix

(m 9 t) of additive effects of SNP markers for t trait, e

is the matrix (n 9 t) of residuals, and � denotes the

Kronecker product. The variances of a and e are

VarðaÞ ¼ G0 � A and VarðeÞ ¼ R0 � In, respectively,

where G0 is the covariance matrix (t 9 t) of additive

effects, A is the additive genetic relationship matrix

(n 9 n), R0 is the covariance matrix (t 9 t) of

residuals, and In is the identity matrix (n 9 n). The

marker effects of each trait were simultaneously

estimated by solving the mixed model through REML

method implemented in R package ‘rrBLUP’ (R

Development Core Team 2005). The pair-wise genetic

correlation was estimated as rg12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rg11rg22
p

, where rg
is the genetic variance–covariance matrix for multiple

traits. rg was calculated as
Pm

i¼1 VarðSNPiÞaiaTi (Jia

and Jannink 2012), where var(SNPi) is the genotype

variance for SNPi and a is the vector (m 9 1) of

additive effects for SNPi. The additive genetic vari-

ance and the residual variance were estimated. Ten

types of MT-GS models were developed: RLS_FSS

model for RLS and FSS; RLS_RR model for RLS and

RR; RLS_DMR model for RLS and DMR; FSS_RR

model for FSS and RR; FSS_DMRmodel for FSS and

DMR; RR_DMR model for RR and DMR;

RLS_FSS_DMR model for RLS, FSS, and DMR;

RLS_FSS_RR model for RLS, FSS, and RR;

RR_FSS_DMR model for RR, FSS, and DMR; and

FT model for all four traits. A notched boxplot was

made to compare the prediction performance of MT-

GS models to ST-GS models for each trait. The notch

marks the 95 % confidence interval for the medians. In

the notched boxplot, the medians significantly differ if

two boxes’ notches do not overlap.

Marker number

The effect of marker numbers on GS accuracy was

also determined through nine-fold cross-validation by
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including random samples of 96, 192, 384, and 768

SNPs from the full marker set. Within each fold, the

analysis was repeated 100 times to avoid sampling

bias for markers. All prediction accuracies were

estimated with R package ‘rrBLUP’ (R Development

Core Team 2005). A notched boxplot was made to

compare the prediction performance of GS models

with different subsets of markers for each trait. The

notch marks the 95 % confidence interval for the

medians. In the notched boxplot, the medians sig-

nificantly differ if two boxes’ notches do not overlap.

Results

Phenotypic data

Analysis of variance (ANOVA) for each of four SDS

resistance traits was conducted within each planting.

ANOVA showed the effect of soybean genotypes was

significant (p\ 0.05) in all plantings, except for FSS

in plantings 4 and 6, and RR and DMR in planting 5

(Table 1). The lack of significance of genotype effect

in ANOVA indicated that the effect of replica-

tion 9 genotype contributed a large portion of the

trait variation within the planting.

Susceptible and resistant check cultivars were set

up to provide the means of comparing phenotyping

performance in the six plantings. As expected, the

susceptible check ‘McCall’ exhibited high RLS scores

ranging from 5.5 to 8.8 within plantings with an

exception of 2.4 in Planting 3; the resistant check

‘MN0302’ exhibited low RLS scores ranging from 2.2

to 4.6 within plantings with an exception of 6.4 in

Planting 1 (Data not shown).

In general, soybean lines showed a wider range of

responses to SDS for both RR and DMR than RLS and

FSS scores (Supplemental Fig. S1). The phenotypic

data density of RLS was more evenly distributed than

that of the other three traits (Supplemental Fig. S1).

RLS scores ranged from 2.4 to 10 with a total of 49

lines exhibiting scores less severe than the resistant

check ‘MN0302’ (Supplemental Fig. S1). FSS scores

ranged from 1 to 8 with a total of 81 lines that did not

develop any foliar symptoms plus another 43 less

severe than ‘MN0302’ (Supplemental Fig. S1). The

range observed in RR was 0–1141 % with a total of 69

lines more resistant than ‘MN0302’ (Supplemental

Fig. S1). A total of 29 lines did not show any dry

matter reduction plus another 64 lines with DMR less

severe than ‘MN0302’ (Supplemental Fig. S1). Based

on all four traits associated with SDS resistance, 11

soybean lines consistently exhibited symptoms less

severe than that of the resistant check ‘MN0302’ and

have potential to be used as breeding parents in the

SDS resistance improvement program (Supplemental

Table S1).

Pair-wise correlations of traits

The pair-wise correlations between the phenotypic

values of each pair of traits were calculated and are

displayed in scatter plots (Fig. 1). As expected, a

strong negative correlation was observed between RR

and DMR, while RLS and FSS were positively

correlated with r = 0.47 (Fig. 1). By contrast, the

correlations between RR and RLS, DMR and FSS,

RLS and FSS, and RR and FLS were poor (Fig. 1).

Similar pair-wise phenotypic correlations within each

of six plantings (Data not shown) were observed, and

pair-wise genetic correlation of traits was consistent

with the observation in phenotypic correlation (Sup-

plemental Table S2).

Significant markers in association mapping

analysis

Association mapping (AM) was performed for RLS,

FSS, RR, and DMR. The QQ plot indicated the model

we implemented for AM was sufficient to control the

false positive (Supplemental Fig. S2). We identified

two and eight significant (qFDR\ 0.05) SNP markers

for DMR and RR, respectively, but none for the other

two traits (Table 2; Supplemental Fig. S3). Among the

eight distinct significant markers, three were in the

same genomic intervals as the known SDS resistance

quantitative trait loci (QTL) cqSDS001 on linkage

group D2 (chromosome 17) (Table 2; Supplemental

Fig. S3). Another marker at position 80.28 cM on

linkage group C2 (chromosome 6) was in the genomic

region of cqRfs4 (Table 2; Supplemental Fig. S3).

Both cqSDS001 and cqRfs4 have been previously

identified and confirmed in multiple bi-parental

populations (de Farias Neto et al. 2007; Hnetkovsky

et al. 1996; Iqbal et al. 2001; Kassem et al. 2012; Kazi

et al. 2008; Njiti et al. 2002). Additionally, two

significant SNP markers in the present study con-

firmed a previously identified QTL, SDS11-2, on
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Table 1 ANOVA for four

SDS resistance traits within

each planting

RLS root lesion severity,

FSS foliar symptom

severity, RR root retention,

DMR dry matter reduction,

Df degree of freedom, MS

mean of square

* P B 0.05; ** P B 0.01;

*** P B 0.001

Planting Source RLS FSS RR DMR

Df MS Df MS Df MS Df MS

1 Line 50 7.20** 50 11.55** 49 0.68** 49 0.33**

Error 198 3.82 198 6.28 194 0.36 194 0.20

2 Line 51 7.44*** 51 5.66** 51 0.28** 51 0.19***

Error 184 3.37 184 3.61 184 0.15 184 0.07

3 Line 46 11.78*** 46 7.08*** 46 0.62** 46 2.38***

Error 188 4.66 188 3.53 188 0.36 188 0.16

4 Line 50 9.62* 50 6.41 50 1.13** 50 2.98***

Error 191 7.85 191 5.53 191 0.66 191 1.03

5 Line 49 9.65*** 49 10.20** 49 0.15 49 0.09

Error 177 4.38 177 5.63 176 0.13 177 0.08

6 Line 31 12.73** 31 4.19 31 18.97*** 31 15.22***

Error 111 7.22 111 3.99 111 1.75 111 1.28

Fig. 1 Scatter plots of pair-

wise correlation of traits

associated with SDS

resistance. RLS root lesion

severity, FSS foliar

symptom severity, RR root

retention (%), DMR dry

matter reduction (%). The

values in the scatter plot

matrix represent the r values

of pair-wise correlation of

traits
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linkage group D2 (chromosome 17) (Kazi et al. 2008).

The rediscovery of the previously identified QTL

strengthened the confidence in the overall quality of

AM analysis. Notably, a SNP marker near the

telomere on chromosome 3 (linkage group N) was

tentatively identified as associated with RR variation,

and another SNP marker near the telomere on

chromosome 18 (linkage group G) was associated

with the variation in both RR and DMR (Table 2;

Supplemental Fig. S3; Supplemental Fig. S4). Since

no previous QTL had been discovered near these two

genomic locations, the two newly identified loci were

provisionally named SDS14-1 (on chromosome 3) and

SDS14-2 (on chromosome 18). For each of the five loci

(namely, cqSDS001, cqRfs4, SDS11-2, SDS14-1, and

SDS14-2), RR and DMR peaks were coincident with

each other (Supplemental Fig. S4).

Single-trait versus multi-trait genomic selection

Besides identifying causal loci associated with SDS

resistance through AM, the phenotypic and genotypic

data sets were used to evaluate the utility of GS in

predicting SDS resistance phenotypes. Overall, the

prediction accuracy of the ST models was 0.64, 0.20,

0.18, and 0.16 for RLS, FSS, RR, and DMR,

respectively (Fig. 2). However, among these ST

models, only the prediction accuracy for RLS was

significantly different from zero. To determine

whether multi-trait (MT) models improved prediction

accuracy, ST and MT models were also compared.

Compared to ST models, none of MT-GS models

significantly improved the prediction accuracy for any

trait (Fig. 2). The RLS_FSS_DMRmodel did increase

the prediction accuracy for DMR from 0.16 to 0.25

while maintaining a similar accuracy for FSS, but

reduced the accuracy for RLS to 0.26 (Fig. 2). The FT

model performed equivalently to ST models for all

four traits (Fig. 2).

Marker number effect on prediction accuracy

To determine the effect of marker number on predic-

tion accuracy, the prediction accuracy with different

sizes of marker set used in ST-GS models was

compared. The prediction accuracy generally in-

creased as the number of SNP markers increased for

RLS, RR, and DMR, but not for FSS (Fig. 3).The rate

of gain in accuracy was greatest when the marker set

increased from 96 to 192 (Fig. 3). With 96 random

genome-wide SNPs, the prediction accuracy of ST

model was only 0.25, 0.02, 0.14, and 0.04 for RLS,

FSS, RR, and DMR, respectively (Fig. 3).

Discussion

Accurate assessment of phenotypic variation is essen-

tial for understanding disease biology, effective resis-

tance breeding, and dissection of genetic architecture.

Table 2 The significant SNPs (false discovery rate\ 0.05) detected from association mapping (AM) for SDS resistance

Trait Marker LG Chromosome Position (cM) Position (bp) P qFDRa

RR BARC-044643-08744 N 3 4.71 460,387 2E-04 0.03

BARC-028177-05786 C2 6 80.28 13,550,856 1E-04 0.02

BARC-051665-11191 D2 17 72.14 14,849,926 2E-07 0.0002

BARC-023721-03465 D2 17 75.11 20,352,435 2E-04 0.03

BARC-064101-18557 D2 17 75.44 25,852,278 2E-05 0.008

BARC-059487-15840 D2 17 76.12 35,057,016 1E-05 0.006

BARC-061049-17016 D2 17 77.39 36,090,548 7E-06 0.005

BARC-024251-04812 G 18 94.3 59,472,567 6E-05 0.002

DMR BARC-051665-11191 D2 17 72.14 14,849,926 2E-05 0.01

BARC-024251-04812 G 18 94.3 59,472,567 6E-06 0.008

RR root retention, DMR dry matter retention, LG linkage group
a qFDR q value of false discovery rate (FDR) estimated with R package ‘‘QVALUE.’’ SNP markers with FDR q value\ 0.05 were

defined as significant SNPs associated with SDS resistance
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The heritability of greenhouse evaluation of SDS

resistance ranged from 33 to 66 % in previous studies

(Njiti et al. 2001). In the greenhouse experiment, the

effect of soybean genotypes was significant (p\ 0.05)

in most plantings indicating an overall reliability of

phenotypic data (Table 1). However, we still observed

substantial replication 9 genotype variation in four

trait 9 planting experiments (Table 1). The high level

of phenotypic variation between replications has also

been observed in previous studies (Kazi et al. 2008;

Luckew et al. 2013) and could be attributed to the

complex genetic basis of SDS resistance, interactive

effects of genotype with environment, and/or imper-

fect screening methods. Another limitation in the

current study was the low throughput capacity of the

phenotyping system; soybean lines had to be evaluated

in six plantings, which might have reduced the ability

to detect all causative QTL and/or led to biased

estimations. In other words, the genetic effects might

have been confounded by the effect of consecutive

experimental plantings conducted over time, limiting

the ability to induce SDS symptoms consistently, and

as a result, reducing the explanatory power of AM. For

example, changing light intensity and ambient tem-

perature variation associated with seasonal changes in

sun angle and ambient temperature presumably added

to variability in SDS phenotype. To minimize the

influences of these sources of variance of among

plantings, we conducted the greenhouse experiments

with supplemental lighting and air conditioning, and

accounted for the effect of plantings as a fixed effect in

the AM model.

Eight and two SNPmarkers in significant association

with RR and DMR were identified, respectively,

Fig. 2 Prediction accuracy with multi-trait genomic selection

(GS) models compared with single-trait GSmodels for four SDS

resistance traits. RLS root lesion severity, RR root retention, FSS

foliar symptom severity, DMR dry matter reduction, ST single-

trait model, RLS_FSS model for RLS and FSS; RLS_RR model

for RLS and RR; RLS_DMR model for RLS and DMR;

FSS_RR model for FSS and RR; FSS_DMR model for FSS and

DMR; RR_DMR model for RR and DMR; RLS_FSS_DMR

model for RLS, FSS, and DMR; RLS_FSS_RR model for RLS,

FSS, and RR; RR_FSS_DMR model for RR, FSS, and DMR;

and FT model for all four traits. Red dot represents median of

accuracies for each model. Notch marks the 95 % confidence

interval for the medians. (Color figure online)
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indicating a total of five loci underlying SDS resistance.

Among the five loci identified in this study, cqSDS001

and cqRfs4 had been previously identified and con-

firmed in more than one population, which strengthens

the confidence of the overall analysis. The cqSDS001

locus was first discovered at positions 78 and 85 cM on

linkage group D2 from the resistant sources PI567374

and Ripley, respectively (de Farias Neto et al. 2007) and

was later confirmed in another population derived from

Hartwig (Kazi et al. 2008). A second SDS resistance

locus, cqRfs4, was reported to be associated with foliar

resistance (Kazi et al. 2008; Luckew et al. 2013;

Triwitayakorn et al. 2005); however, we identified a

significant SNP marker, BARC-028177-05786, under-

lying variation of RR in this QTL interval. Given

increasing numbers of SNPs in newly developed

genotyping assay for soybean (Song et al. 2013), higher

resolution of genetic mapping might pinpoint the

potential candidate genes in the genomic regions

underlying SDS resistance. Additionally, two SNP

markers on linkage group D2 were detected as being

significantly associated with RR in our study, which

adds support to the SDS11-2 locus identified previously

in Kazi et al. (2008).

A cluster of SDS resistance genes, cqRfs1, cqRfs2,

cqRfs3, has been repeatedly mapped on linkage group

G (chromosome 18) (Chang et al. 1996; Iqbal et al.

2001; Meksem et al. 1999; Njiti et al. 1998, 2002;

Prabhu et al. 1999; Kazi et al. 2008), but these genes

were not detected in our collection of soybean

accessions. More recently, Wen et al. (2014) detected

a strong peak at or near the Rfs2 locus in all the SDS

disease assessment criteria evaluated their AM study.

Possible explanations for these differences include

different sources of germplasm used in different

studies as well as the methods used for resistance

evaluation. In the present study, the mapping panel

germplasm included released cultivars and advanced

breeding lines adapted to Minnesota across maturity

group 00 to I in contrast to the later maturing

germplasm in Wen et al. (2014). In the present study,

we also inoculated plants with an isolate of F.

virguliforme originating in Minnesota. Finally, we

extended the detailed examination to target below-

ground phenotypes in greenhouse. By contrast, SDS

resistance was evaluated in naturally infested fields for

above-ground symptoms in Wen et al. (2014). Since

both root rot and leaf scorch traits are responsible for

yield losses caused by SDS, the loci associated with

below-ground phenotypes discovered in the present

study should complement to the findings in Wen et al.

(2014) and other earlier genetic mapping studies of

SDS resistance.

Instead of Rfs2, a significant SNP marker BARC-

024251-04812 on the opposite end of chromosome 18

was identified, which accounted for variation in both

Fig. 3 Prediction accuracy

with different numbers of

markers for four SDS

resistance traits. RLS root

lesion severity, RR root

retention, FSS foliar

symptom severity, DMR dry

matter reduction. Red dot

represents median of

accuracies for each subset of

markers. Notch marks the

95 % confidence interval for

the medians. (Color figure

online)
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RR and DMR. This SNP was about 1.7 Mb away from

a previously described resistance QTL SDS4-2 (Njiti

et al. 1998). Another novel locus was tagged by a SNP

marker BARC-044643-08744 located near the telom-

eric region of chromosome 3. These two novel loci

could be validated in future investigation of either a bi-

parental mapping population or another AM popula-

tion with a higher density of SNP markers.

To pyramid these resistance QTL into commercial

soybean cultivars, the significant SNP markers iden-

tified in present study can be developed as a breeder-

friendly SNP array for conducting MAS in SDS

resistance breeding programs. However, stacking

multiple QTL and introgressing them to an adapted

elite parent would require considerable resources and

time. As an alternative to stacking major SDS resis-

tance genes, GS may provide breeders an opportunity

to integrate a broader set of causative loci underlying

SDS resistance with the goal of more durable resistant

soybean cultivars. Despite successful rediscovery of

knownQTL for RR andDMR,we failed to identify any

significant signals (qFDR\ 0.05) for RLS and FSS

with AM. Thismight indicate that the genetic variation

of RLS and FSS captured in the population is

associated with numerous causative genes each with

a small effect. In this case, genome-wide selection as

implemented through GS is expected to be more

effective thanMAS because GSwould enable breeders

to select candidate lines with higher levels of cumu-

lative resistance to SDS conferred by numerous small

effect loci. Estimates of prediction accuracy for RLS

were as high as 0.64 (Fig. 2), which is comparable to

that for SCN resistance in soybean (Bao et al. 2014),

Fusarium head blight resistance in barley and wheat

(Lorenz et al. 2012; Rutkoski et al. 2012), and northern

leaf blight in corn (Technow et al. 2013). Given the

high prediction accuracy, GS holds great potential for

implementation in genetic evaluation of breeding

candidates in an actual soybean improvement program

targeting at SDS resistance.

SDS resistance breeding is further complicated by

the existence of two apparently distinct resistance

mechanisms involved in expression of root versus

foliar responses to SDS (Kazi et al. 2008; Triwitayako-

rn et al. 2005). Some known QTL confer specific

resistance to root rot or foliar scorch, while others

confer resistance to both (de Farias Neto et al. 2007;

Hnetkovsky et al. 1996; Iqbal et al. 2001; Kassem et al.

2006; Kazi et al. 2008; Njiti et al. 1998, 2002). To

develop soybean cultivars with both root and foliar

resistance to SDS, multi-trait GS (MT-GS) has the

potential to be an effective selection strategy for

implementing an SDS resistance improvement pro-

gram. An MT-GS model is developed by simultane-

ously fitting phenotypic data from the evaluations of

root and foliar symptoms as dependent variables in the

model. Subsequently, the MT-GS model using one

marker panel leads to simultaneous prediction of both

root and foliar symptoms.

Our results suggested that the prediction accuracy

of GS model based on single traits (ST-GS) for FSS,

RR, and DMR was comparatively low (\0.3) (Fig. 2).

In a simulation study, Jia and Jannink (2012) indicated

that the prediction accuracy for low-heritability traits

could be improved by GS models based on multiple

related traits (MT-GS) models. The underlying

mechanism of improved accuracy for low-heritability

traits in MT-GS is presumably genetic relationship

between the highly related traits (Jia and Jannink

2012). In the case of SDS resistance, we hypothesized

that MT-GS might be capable of taking advantage of

the genetic relationship between low-heritability

traits: FSS, RR and DMR, and high-heritability trait:

RLS. However, the FT model based on all four SDS

resistance traits performed equivalently to the ST

models in the study (Fig. 2) and none of the MT-GS

models significantly improved the prediction accura-

cy. An increase in the prediction accuracy for DMR

with the RLS_FSS_DMR model was observed, while

the RLS_FSS_DMR model failed to maintain similar

prediction accuracy for RLS and FSS as that in ST-GS

models (Fig. 2).

A simulation study indicated that MT-GS greatly

increased the prediction accuracy only when the

genetic correlation between two related traits was

higher than 0.7 (Jia and Jannink 2012). The MT-GS

models performed equivalent to the ST-GS models;

this indicates that the genetic basis of FSS, RR, and

DMR might not be highly correlated with that of RLS.

Indeed, consistently weak pair-wise correlation of

FSS 9 RLS, RR 9 RLS and DMR 9 RLS was ob-

served as shown in Fig. 1 and Table S2. Mueller et al.

(2002) also suggested that the correlation between root

rot and foliar severity was not significant. Considering

that root rot is caused by direct infection of F.

virguliforme (Jin et al. 1996), while foliar scorch is

caused by phytotoxin FvTox1 produced by F. virguli-

forme (Brar et al. 2011; Jin et al. 1996), different

Mol Breeding (2015) 35:128 Page 11 of 14 128

123



genetic mechanisms appear to be involved in root

versus foliar resistances.

Conclusion

The present study suggests AM could be used as an

alternative method for mapping QTL underlying SDS

resistance, and GS holds potential for implementation

in genetic evaluation of root lesion severity associated

with SDS. We conclude that SDS resistance is a

complex disease trait, leading to numerous challenges

in evaluating and breeding for SDS-resistant soybean

cultivars. Firstly, improving phenotypic screening

methods to ensure high-quality and high-throughput

evaluation of SDS resistance should remain as an

important component of the current SDS breeding

program. Secondly, high-density genome-wide mark-

ers or sequence-based genotyping methods could be

employed to dissect the genetic architecture of SDS

resistance more precisely. Lastly, the realized respon-

se and cost-effectiveness of GS deserves further

investigation in both greenhouse and field prior to

implementing GS for developing durable SDS resis-

tance in soybeans.
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