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ABSTRACT

The p160/steroid receptor coactivator (SRC) family comprises
three pleiotropic coregulators (SRC-1, SRC-2, and SRC-3;
otherwise known as NCOA1, NCOA2, and NCOA3, respective-
ly), which modulate a wide spectrum of physiological responses
and clinicopathologies. Such pleiotropy is achieved through their
inherent structural complexity, which allows this coregulator
class to control both nuclear receptor and non-nuclear receptor
signaling. As observed in other physiologic systems, members of
the SRC family have recently been shown to play pivotal roles in
uterine biology and pathobiology. In the murine uterus, SRC-1 is
required to launch a full steroid hormone response, without
which endometrial decidualization is markedly attenuated. From
‘‘dovetailing’’ clinical and mouse studies, an isoform of SRC-1
was recently identified which promotes endometriosis by
reprogramming endometrial cells to evade apoptosis and to
colonize as endometriotic lesions within the peritoneal cavity.
The endometrium fails to decidualize without SRC-2, which
accounts for the infertility phenotype exhibited by mice devoid of
this coregulator. In related studies on human endometrial
stromal cells, SRC-2 was shown to act as a molecular
‘‘pacemaker’’ of the glycolytic flux. This finding is significant
because acceleration of the glycolytic flux provides the necessary
bioenergy and biomolecules for endometrial stromal cells to
switch from quiescence to a proliferative phenotype, a critical
underpinning in the decidual progression program. Although
studies on uterine SRC-3 function are in their early stages,
clinical studies provide tantalizing support for the proposal that
SRC-3 is causally linked to endometrial hyperplasia as well as
with endometrial pathologies in patients diagnosed with poly-
cystic ovary syndrome. This proposal is now driving the
development and application of innovative technologies, partic-
ularly in the mouse, to further understand the functional role of
this elusive uterine coregulator in normal and abnormal

physiologic contexts. Because dysregulation of this coregulator
triad potentially presents a triple threat for increased risk of
subfecundity, infertility, or endometrial disease, a clearer
understanding of the individual and combinatorial roles of these
coregulators in uterine function is urgently required. This
minireview summarizes our current understanding of uterine
SRC function, with a particular emphasis on the next critical
questions that need to be addressed to ensure significant
expansion of our knowledge of this underexplored field of
uterine biology.

decidualization, endometriosis, implantation, metabolism,
placentation, steroid receptor coactivators, uterus

INTRODUCTION

Estrogen and progesterone are indispensable for the
establishment and maintenance of pregnancy, whereas dysreg-
ulation of these hormone signals is associated with a broad
spectrum of adverse reproductive outcomes and clinicopathol-
ogies, a subset of which is caused by a dysfunctional uterus [1].
To gain mechanistic insight into normal and abnormal hormone
responses of the uterus at the molecular level, significant effort
has been expended to identify the key downstream genes,
pathways, and networks that mediate a specific uterine response
to steroid hormone. These responses can be modulated at
multiple levels that regulate normal physiology but can also
contribute to disease when they become dysfunctional.
Although tremendous progress has been attained in disclosing
crucial steroid hormone signaling pathways in uterine physio-
logic and pathophysiologic contexts; reviewed previously [2–
5], the identity of the pivotal coregulators (coactivators or
corepressors) that operate in these signaling scenarios remains
elusive. Given coregulators in general are potent modulators of
a tissue’s transcriptional response to both intracellular and
extracellular physiologic signals [6, 7], identifying which of
these transcriptional coregulators is required for a given uterine
response constitutes a critical underpinning for future advances
in our mechanistic understanding of hormone-dependent uterine
biology and pathobiology. From a clinical perspective,
advancing our knowledge in this area promises to provide a
broader conceptual framework for understanding the etiopatho-
genesis of common reproductive morbidities that are causally
linked with an abnormal steroid hormone response of the
uterus; these include recurrent implantation failure, early
miscarriage due to placental insufficiency, increased time to
pregnancy, and endometriosis.

Remarkably, only a small number of coregulators (from
nearly 450 identified to date [8]; http://www.nursa.org) have
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been operationally linked to male and female reproductive
function and dysfunction [9–19]. Of these, the p160/steroid
receptor coactivator (SRC) family, which is a subset of the
nuclear coactivator (NCOA) family, has emerged as a
preeminent class of reproductive coregulators, with the
potential for being potent molecular descriptors and/or targets
for diagnosing and/or therapeutically treating a dysfunctional
uterus in the future. We focus this minireview on the role of
SRC family members in uterine function and dysfunction, and
highlight the invaluable contributions the genetically engi-
neered mouse has made to our understanding of this new field
of uterine coregulator biology.

THE p160/STEROID RECEPTOR COACTIVATOR FAMILY:
MULTIFUNCTIONAL INTEGRATORS OF DIVERSE
CELLULAR SIGNALS

A Multifunctional Domain Structure Drives Regulatory
Complexity

The SRC family consists of three evolutionary conserved
coregulators of transcription: SRC-1 (NCOA-1, RIP160 [20]),
SRC-2 (NCOA-2, TIF-2, GRIP-1 [21, 22]), and SRC-3
(NCOA-3, AIB-1, TRAM-1, pCIP [23–25]; Fig. 1A). The
SRCs were first recognized as primary coactivators that
transmit the transcriptional activation signal from DNA-bound
nuclear receptors (NRs) to secondary coregulators, which in
turn relay this signal to the downstream transcriptional
machinery to enhance target gene transcription [20] (Fig.
1B). For each SRC, however, amino acid sequence analysis
reveals a complex functional domain organization comprising
numerous diverse protein-protein interaction surfaces (Fig.
1A). These findings suggested that members of this coregulator
family possess the potential to act as multifunctional integrators
of a wide spectrum of signaling cues that extend far beyond NR
biology (Fig. 1C).

The three members of the SRC family belong to a broader
class of transcriptional regulators (transcription factors and
coregulators) that harbor the basic helix-loop-helix-Per-Arnt-
Sim (bHLH-PAS) domain [26]. Identified in 19 mammalian
bHLH-PAS proteins—which include such pleiotropic factors
as hypoxia-inducible factor-1a and hypoxia-inducible factor-
2a (HIF-1A and HIF-2A/EPAS1), circadian locomotor output
cycles kaput (CLOCK), and aryl hydrocarbon receptor
(AHR)—the bHLH-PAS domain consists of a bHLH sequence
contiguously followed by tandem PAS domains (PAS-A and
PAS-B) [26] (Fig. 1A). Because of its structural complexity,
this large composite domain mediates diverse functions, from
homodimerization and heterodimerization of proteins, to DNA
binding, to signal sensing and transduction. Located within the
first 380 amino acids of each SRC, the bHLH-PAS domain is
the most conserved region (60% amino acid identity) shared
between the three coregulator homologs (Fig. 1A) and acts as a
critical protein interface for binding not only secondary
coregulators (i.e., coiled-coil coactivator A [CoCoA/ Calcoco1]
[27]; GRIP1-associated coactivator 63 [GAC 63/SLC30A9]
[28]; and Flightless-I [Flii] [29]) but also transcription factors,
such as members of the signal transducer and activator of
transcription (STAT) family [30–32], TP53 [33], myocyte
enhancer factor-2C (MEF2C) [34], and transcriptional enhanc-
er factor-4 (TEF-4/TEAD2) [35]. Although the bHLH region
within bHLH-PAS proteins ordinarily mediates protein-protein
dimerization via its HLH region and directs DNA binding
through its four to six basic amino acids, SRCs have not been
shown to directly bind DNA, despite possessing this region.

The juxtaposed tandem PAS domains (each ;110 amino
acid residues in length) form an antiparallel b-sheet flanked by
three a-helices that generate an evolutionarily conserved
hydrophobic groove [36], which allows binding of proteins
containing an amphipathic helical LXXLL motif (L¼ leucine,
X¼ any amino acid) [37]. Because SRCs also contain LXXLL
motifs, SRC homodimerizations and heterodimerizations can
potentially occur through binding of their respective LXXLL
and PAS motifs [38, 39]. However, it is important to note that
because the bHLH-PAS domain also binds structurally
dissimilar proteins that lack LXXLL motifs (i.e., Calcoco1
and Flii [27, 29]), the specificity of this domain is significantly
broader than initially suspected. Given the large size of the
bHLH-PAS domain and complexity of its interaction surfaces,
it is believed that many signal inputs that interface with this
domain have yet to be determined. Because the bHLH-PAS
domain acts synergistically with two previously identified C-
terminal activation domains in SRCs to ensure target gene
transcription, the SRC bHLH-PAS domain is often referred to
as activation domain 3 (AD3 [27]; Fig. 1A).

The central region of SRCs contains the receptor interaction
domain (RID), which enables direct interaction of SRCs with
members of the NR superfamily. The RID contains three
LXXLL motifs [37], which bind to a hydrophobic pocket
within the ligand-binding domain of NRs (the activation
function-2 [AF-2] region); the AF-2 is formed following a
ligand-induced conformational change of the NR [40].
Therefore, the LXXLL motifs not only enable physical
recruitment of SRCs as primary coactivators to the transcrip-
tional complex but represent the first protein interface that
receives the NR transcriptional activation signal before
transmission to secondary coregulators.

Activation domains 1 and 2 (AD-1 and AD-2) in the C-
terminal portion of SRCs recruit secondary coregulators to the
nucleating transcriptional complex that locally remodel tran-
scriptionally inactive or repressed chromatin through post-
translational modifications (PTMs), as well as recruit and
interact with components of the RNA polymerase II transcrip-
tional preinitiation complex at target promoters. The AD-1
domain binds p300 and cyclic AMP-response element binding
(CREB) protein binding protein (CBP), both of which are
potent histone acetyltransferases (HATs) that unwind chroma-
tin to allow access and rapid formation of hierarchical protein
assemblies, which form the transcription preinitiation complex
[41, 42]. Of note, SRC-1 and SRC-3 also exhibit weak intrinsic
HAT activity in their C-terminal region, which may contribute
to PTM of components comprising the downstream transcrip-
tional machinery [43, 44]. The AD-1 domain also can bind
other members of the bHLH-PAS family (i.e., AHR and
ARNT/HIF-1b [45]) and transcription factors (NFKB1 [46]).
In concert with the AD-1 domain, the AD-2 domain recruits
protein arginine N-methyltransferase (PRMT) family members:
coactivator-associated arginine methyltransferase-1 (CARM1)
[47] and PRMT1 [48], which methylate guanidino nitrogens of
arginyl residues of histone proteins and other chromatin-
associated proteins. Therefore, SRCs act as the ‘‘molecular go-
between’’ for DNA-bound receptors and secondary coactiva-
tors in which the latter exhibit potent epigenetic enzymatic
activities required to modulate the rate of transcription.

Posttranslational Modifications Expand the Functional
Diversity of the SRC Family

Along with their complex domain structure, the functional
scope of SRCs is further extended and modulated by dynamic
sets of PTMs, which include phosphorylation, ubiquitination,
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sumoylation, and methylation of discrete amino acid residues
located throughout each coregulator [49]. Termed a PTM code,
specific permutations of PTMs confer distinct functional
readouts, from ‘‘fine-tuning’’ coactivator potency, to regulating
assembly or disassembly with other proteins, to increasing
coregulator stability or instability, to controlling intracellular
localization [50].

Pleiotropic Coregulators of Diverse Physiology and
Pathology

Although their distinct structural architecture and their
regulation by numerous PTMs enables SRCs to act as
pleiotropic coregulators in myriad physiological systems, SRCs
also serve as causative agents in many disease processes [51,

52]. Aberrant gene amplification and unscheduled ‘‘ramp-up’’
(or abnormal persistence) of SRC transcription were first
recognized in early studies as common mechanisms by which
dysregulation of this coregulator family leads to cancer [23, 52,
53]. Alteration of the fixed-domain structure of SRCs, which
generates fusion proteins or coregulator isoforms, has also been
linked to a number of pathologies. For example, chromosomal
translocation at each SRC locus has been shown to generate
fusion ‘‘oncoproteins’’ that contribute to a subset of aggressive
leukemias and other malignancies [54–59]. The fusion
oncoprotein in these clinical cases contains a truncated form
of the SRC, which includes the RID, AD-1, Q-rich region, and
AD-2 (Fig. 1A). Alternative splicing and proteolytic processing
are additional mechanisms by which SRCs escape their fixed-
domain structure to produce truncated variants or isoforms with

FIG. 1. The multidomain structure of SRCs underpins their multifunctionality. A) Protein functional domain organization of human SRC-1, SRC-2, and
SRC-3: the activation domains 1–3, receptor interaction domain, basic helix-loop-helix domain, the Per/ARNT/Sim domains A and B, leucine-X-X-
leucine-leucine (X¼ any amino acid), glutamine-rich/interaction motif, and polyglutamine sequence are denoted by AD1-3, RID, bHLH, PAS A and B,
LXXLL, Q-rich/IM, and poly-Q, respectively. B) Model of SRC-mediated transactivation of NRs: coiled-coil transcriptional coactivator A, CREB binding
protein, coactivator-associated arginine methyltransferase 1, transcription factor IIB, transcription factor binding protein, and RNA polymerase II are
indicated by CoCoA, CBP, CARM1, TF IIB, TBP, and RNA Pol II, respectively. C) The SRC family integrates signals beyond NR biology: NFKB [135],
SMADs [136], TP53 [33], RB [137], HPV E7 [138], GSK-3 [139], IKK [140], and MAPK [141, 142] denote nuclear factor kappa-light-chain-enhancer of
activated B cells, a contraction or pormanteau of Sma (Caenorhabditis elegans sma gene for small body size) and MAD (mothers against decapentaplegic),
tumor protein 53, retinoblastoma protein, human papillomavirus E-7, glycogen synthase kinase 3, inhibitor of kappa B kinase, and mitogen-activated
protein kinase, respectively.
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entirely different functions and subcellular locations compared
with their full-length precursors. These SRC variants have been
shown to exert diverse pathological responses, from promoting
mammary gland metastasis [60, 61] to driving endometriosis
(the latter will be discussed in more detail in the next section).

STEROID RECEPTOR COACTIVATOR-1

A Modulator of Steroid Hormone Responsiveness in
Reproductive Tissues

Two decades ago, a yeast two-hybrid screen isolated SRC-1
as the first identified SRC family member [20]. Because the C-
terminal region of human progesterone receptor (PR) was used
as bait, almost immediately this coregulator—and by extension
other members of the family—was proposed to have a crucial
role in steroid hormone-dependent reproductive biology. Soon
after, this proposal was confirmed in the mouse, in which
absence of SRC-1 leads to a significant decrease in steroid
hormone responsiveness in all major target tissues associated
with male or female reproductive biology [62]. In the case of the
female, a marked partial resistance to estrogen and progesterone
exposure was observed in the uterus and the mammary gland
[62]. Without SRC-1, the murine endometrium fails to exhibit a
full decidual response when exposed to a standard estrogen and
progesterone hormone regimen and deciduogenic stimulus [62].
Furthermore, the murine endometrium requires SRC-1 to
display a full uterotrophic response when exposed to unopposed
estrogen [62]. As a corollary, more recent studies using
combinatorial knockout mouse models indicate that SRC-1
may collaborate with SRC-3 in the embryo to ensure normal
placental morphogenesis [63]; a more detailed description of
these findings is provided later in this minireview.

The Long and the Short of SRC-10s Role in Endometriosis

An estrogen-dependent, proinflammatory disease, endome-
triosis, is defined as the survival, colonization, and growth of
endometrial tissue at anatomic sites outside the uterus,
primarily the pelvic peritoneal cavity and ovaries [64, 65].
Although its etiology is uncertain, Sampson [66] proposed
more than 90 years ago that endometriosis is caused by
retrograde menstruation of endometrial cells through the
fallopian tubes into the peritoneal cavity. Up to 10% of
reproductive-age women in the United States chronically suffer
from the symptoms of endometriosis, which include infertility
and severe pelvic pain [67]. Indeed, estimates of endometriosis
incidence as high as a third of all patients diagnosed with
infertility and nearly half of all patients with persistent pelvic
pain have been reported [67].

For the majority of endometriosis cases, small rather than
large endometriotic lesions are detected at inflamed ectopic
sites, indicating that cell survival rather than unbridled cell
division is initially favored by endometriotic cells following
their entry into the hostile inflammatory environment of the
pelvic peritoneal cavity [68]. In support of this proposal,
endometriotic cells are known to be extremely recalcitrant to
apoptosis and can survive in a foreign environment in which
proinflammatory cytokines would trigger apoptosis in normal
endometrial cells [69]. Therefore, a number of groups have
attempted to identify the distinguishing molecular features of
these endometriotic cells with a view to developing more
effective prognostic, diagnostic, and/or treatment strategies in
the clinical management of this debilitating disease.

In this regard, the O’Malley group recently discovered a
specific isoform of SRC-1 that is selectively expressed at high
levels in human and mouse ectopic endometriotic lesions [70].

Molecular analyses revealed that a 70-kDa SRC-1 C-terminal
isoform is proteolytically generated from full-length SRC-1 by
matrix metalloproteinase-9 (MMP9; Fig. 2), a proteinase that is
known to be upregulated in endometriotic cells during their
migration and implantation into distant anatomic sites [71, 72].
Intriguingly, MMP9 is induced by activated tumor necrosis
factor-a (TNFa), a cytokine that is secreted from activated
peritoneal leukocytes as part of the proinflammatory response
to ectopic menstrual effluents [73, 74]. Importantly, this newly
identified TNFa-MMP9-SRC-1 isoform signaling axis was
shown to promote the pathogenic progression of endometriosis
by preventing TNFa-mediated apoptosis in human endometri-
otic cells, thereby promoting survival (Fig. 2). This non-
genomic mechanism of action entails the interaction of the
SRC-1 isoform with cytosolic caspase 8 to block TNFa-
induced apoptosis (Fig. 2).

Therefore, these recent findings support the proposal that
endometrial cells from a subset of women at high risk for
endometriosis have evolved not only to evade but to co-opt the
systemic proinflammatory response that normally clears
ectopic endometrial cellular effluents from the peritoneal
cavity. By co-opting the TNFa proinflammatory response,
these endometrial cells generate a truncated isoform of SRC-1
that acts through a nongenomic pathway in the cytoplasm to
suppress the TNFa-induced programmed cell death pathway
(Fig. 2).

Apart from providing new insights into the molecular
pathogenesis of endometriosis, the discovery of a new
molecular signaling paradigm raises a number of important
questions to be addressed in the future. 1) Because the SRC-1
isoform also distributes to the nucleus and retains its NR
interaction function [70], does the isoform modulate the
transactivational function of estrogen receptor-b (ER-b) and/
or the orphan NR, steroidogenic factor-1 (SF-1/NR5A1)?
Expressed at high levels in endometriotic lesions, ER-b (rather
than ER-a) is considered a key NR mediator of estradiol-driven
endometriosis [75–77]. Similarly, SF-1 is highly expressed in
endometriotic cells and is primarily responsible for the local
production of estradiol [78]. 2) What are the initial molecular
triggers that activate the TNFa-MMP9-SRC-1 isoform axis?
Epigenetic dysregulation of MMP expression is one answer
recently put forward [79, 80]. 3) Is this signaling axis
operational in the etiopathogenesis of other target tissues in
which proinflammatory, steroid hormone, and coregulator
signals intersect? For example, the association between
inflammation and cancer progression is now well recognized
[81]. In particular, induction of MMP9 has been linked to the
progression of a number of cancers [82]. Whether cancer cells
similarly use the TNFa-MMP9-SRC-1 (or other SRC isoforms)
to evade apoptosis is an important question for future
investigation.

STEROID RECEPTOR COACTIVATOR-2

Establishment of the Gravid Uterus Requires SRC-2

Soon after the discovery of SRC-1, the human (TIF-2) and
murine (Grip-1) orthologs of SRC-2 were identified by the
Chambon/Gronemeyer and Stallcup groups, respectively [21,
22]. The close homology between SRC-1 and SRC-2 was the
first indication of a new family of transcriptional modulators
with overlapping and distinct coregulator properties [21]. As
with SRC-1, in vitro studies demonstrated that SRC-2 acts as a
coactivator for many members of the NR superfamily,
including NRs required for reproductive biology and dysfunc-
tion. Confirming predictions drawn from these early studies,
ablation of SRC-2 in the mouse demonstrated the functional
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importance of this coregulator to both male and female
reproductive function [83]. In the case of the female,
Chambon’s group revealed that a global knockout of murine
SRC-2 results in an infertility defect in which absence of
maternal SRC-2 leads to significant placental hypoplasia [83].
With decreased numbers of trophoblastic trabeculae in the
labyrinth zone caused by delayed development of the
chorioallantoic placenta, pregnancy failure occurs at midges-
tation in dams devoid of SRC-2. However, using an alternative
murine genetic approach in which SRC-2 function is abrogated
postnatally and specifically in cells expressing PR, Mukherjee
et al. [84] demonstrated that the requirement for endometrial
SRC-2 occurs much earlier, specifically during the peri-

implantation period. Absence of SRC-2 in uterine cells positive
for PR expression results in embryo implantation failure due to
an early block in progesterone-dependent endometrial stromal
cell (ESC) decidualization. As a critical cellular transformation
process that regulates the depth and orientation of embryo
invasion prior to chorioallantoic placentation, ESC decidual-
ization is indispensable for establishing the maternofetal
interface. Of clinical significance, SRC-2 also is critical for
progesterone-driven decidualization of primary human ESCs in
culture [85], supporting an evolutionarily conserved role for
this endometrial coregulator in the reproductive success of the
hemochorial placental mammal. Having demonstrated the
functional importance of SRC-2 in endometrial decidualiza-

FIG. 2. Endometriosis is driven by a short isoform of SRC-1. Retrograde menstruation from the uterus (red arrows) is hypothesized to release a
subpopulation of endometrial cells (red) that is predisposed to causing endometriosis. Although the majority of the endometrial cell effluent (green)
undergoes normal apoptosis in the peritoneal cavity in response to proinflammatory signals (i.e., tumor necrosis factor), the disease-forming subset of
endometrial cells (red) evades apoptosis by generating a cleaved isoform of SRC-1 (cSRC-1) through a nongenomic mechanism of action. In response to
proinflammatory cytokines, matrix metalloproteinase-9 proteolytically cleaves full-length SRC-1 to a ;70-kDa cleaved isoform (cSRC-1) in the cytoplasm.
Binding to procaspase-8, the cSRC-1 blocks programmed cell death, thereby allowing the endometrial cell to survive and colonize as an endometriotic
lesion in the hostile environment of the pelvic peritoneal cavity. Because the cSRC-1 isoform still retains the ability to enter the nucleus and interact with
NR family members, it is conceivable that this isoform also promotes NR-mediated (or genomic) signals that accelerate endometriosis progression. Tumor
necrosis factor, tumor necrosis factor receptor, steroid receptor coactivator-1, cleaved steroid receptor coactivator-1, matrix metalloproteinase-9, estrogen
receptor-b, and steroidogenic factor-1 are indicated by TNF, TNF-R, SRC-1, cSRC-1, MMP9, ER-b, and SF-1, respectively.
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tion, tandem studies on primary human ESCs and the mouse
would illuminate a novel metabolic signaling mechanism by
which SRC-2 elaborates the endometrial decidual response.

Metabolic Reprogramming by SRC-2 Underpins
Endometrial Decidualization

Prior to decidualization, the endometrium progresses from a
‘‘prereceptive’’ to a ‘‘receptive’’ state within a narrow time
frame (the window of receptivity), during which the luminal
epithelium of the endometrium is transiently responsive to
embryo apposition, attachment, and trophoblast invasion [2].
Even with normal embryo development, embryo implantation
will fail if the endometrium does not transition to the receptive
state. Of clinical importance, the inability to diagnose or
therapeutically correct a nonreceptive uterus continues to
impede improvements in the efficacy of current assisted
reproductive technologies that employ embryo transfer into a
receptive uterus [86].

Human cell and mouse studies showed that SRC-2 is
essential for rapid progesterone-driven ESC proliferation, a
critical cell division phase in the development of the receptive
endometrium [85]. This mitotic period serves to rapidly enlarge
the ESC population prior to its terminal differentiation into
decidual cells [87]. Because rapid expansion of the decidual
cell population is key to enabling deep invasion of the
conceptus into the maternal compartment [2], SRC-2 is
therefore crucial to early formation of the conceptus-endome-
trial interface. In the context of metabolism, a rapid
acceleration of cell division requires a significant increase in
both the intake and metabolism of glucose in order to provide:
1) bioenergy in the form of ATP and 2) metabolite
intermediates (i.e., amino acids, fatty acids, and nucleotides)
to increase biomass to levels that ensure one ESC can generate
two daughter cells following mitosis. To meet this bioenergetic
and biosynthetic demand, the rate of glycolysis from glucose to
pyruvate (the glycolytic flux) is rapidly accelerated to supply
sufficient levels of ATP and the requisite glycolytic interme-
diates to downstream anabolic pathways, which generate the
biomass (i.e., organelles and macromolecules) necessary for
cell growth prior to mitosis [88]. As long as glucose is
abundant, acceleration of the glycolytic flux can rapidly furnish
levels of ATP and biosynthetic precursors that far exceed those
produced by the slower metabolic process of mitochondrial
oxidative phosphorylation [88, 89].

In keeping with its established role as a pleiotropic
coregulator of metabolism [90], SRC-2 was shown to be
required for progesterone-dependent acceleration of the
glycolytic flux in cultured primary human ESCs prior to their
decidualization [85]. Specifically, SRC-2 maintains the induc-
tion by progesterone of 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase 3 (PFKFB3), a bifunctional enzyme with
essential roles in embryogenesis, postnatal cellular prolifera-
tion, and cancer progression [91–93]. Originally detected in the
human placenta [94], PFKFB3 was first shown to be induced
by progestins in cultured human breast cancer cells [95]. Since
then, numerous mitogenic, hypoxic, and inflammatory stimuli
have been shown to induce PFKFB3, depending on the cell and
signaling context [96–99]; importantly, PFKFB3 also is
constitutively expressed in many cancers [100, 101]. Through
its kinase domain, PFKFB3 converts fructose-6-phosphate to
fructose-2,6-bisphosphate, a potent allosteric activator of
phosphofructokinase-1 (PFK-1), which is a critical rate-
limiting checkpoint of glycolysis [102, 103] (Fig. 3). With
unfettered acceleration of the glycolytic flux through the PFK-
1 checkpoint, anabolic pathways, such as the pentose

phosphate pathway, can support rapid ESC proliferation and
subsequent decidualization (Fig. 3).

Along with advancing our understanding of SRC-2 function
in peri-implantation biology, these recent studies pose
intriguing questions. 1) Does endometrial SRC-2 regulate
other aspects of cellular metabolism that ensure normal ESC
decidualization and prevent placental dysfunction? Apart from
glucose metabolism, SRC-2 (as with other members of the
SRC family) is known to be involved in regulating carbohy-
drate, lipid, and amino acid metabolism in other target tissues
[90]. Because reproductive success is predicated on normal
metabolic homeostasis, it will be important to determine
whether this coregulator plays a part in other catabolic (and
anabolic) pathways required to maintain endometrial function-
ality. 2) Can aberrant glycolytic flux regulation explain SRC-
2 0s implicated role in endometrial disorders in patients
diagnosed with polycystic ovary syndrome or endometrial
cancer? Many cancers rely on the induction of PFKFB3 and the
promotion of the glycolytic flux for rapid cellular proliferation
[93, 97, 104]. Aberrant expression levels of SRC-2 (along with
SRC-3) have been detected in endometrial hyperplasia as well
as in the endometrium of patients diagnosed with polycystic
ovary syndrome [105], a patient cohort predisposed to
endometrial cancer [106, 107]. Whether dysregulation of
SRC-2 causes the unscheduled induction of PFKFB3 that
drives proliferative disorders of the endometrium awaits further
investigation. 3) Does estrogen require PFKFB3 for endome-
trial epithelial proliferation for normal function and/or
dysfunction? As shown for progesterone [95, 108], studies in
human breast cancer cells have recently revealed that PFKFB3
is a direct transcriptional target of the ER [109]. Because
estrogen is a potent mitogen in the uterine epithelium in normal
and abnormal physiologic contexts, establishing a signaling
connection between this steroid and accelerated glucose
catabolism could provide a new metabolic perspective to this
steroid’s mechanism of action as well as new opportunities for
therapy [93]. 4) Apart from PFKFB3 induction, does SRC-2
coregulate other progesterone signaling pathways that are
important for ESC decidualization? In the case of the mouse at
least, recent microarray array studies reveal that SRC-2 is
critically important for the full induction of the majority of
previously known molecular mediators of progesterone-driven
ESC decidualization [110]. Whether these findings can be
translated to the human ESC remains an open question.

STEROID RECEPTOR COACTIVATOR-3

Endometrial SRC-3: Least Known of the Coregulator Triad

Amplified and overexpressed in ER- and PR-positive
human breast cancers [23], SRC-3 (or AIB-1) was first
identified as an oncogene [111] and is now considered a key
coregulator in the progression and metastasis of many cancer
types [111–113]. Along with dwarfism, delayed puberty,
stunted mammary gland morphogenesis, and metabolic
abnormalities, a striking subfecundity phenotype is exhibited
by female mice lacking SRC-3 [114]. Decreased ovulatory
capacity, a lower pregnancy frequency, a smaller litter size, and
a longer estrous cycle together contribute to the subfertility
phenotype of the SRC-3 null female. Follow-up serum
hormone analysis indicated that SRC-3 systemically regulates
growth hormone signaling pathways as well as the production
of ovarian estrogen, explaining in part these diverse reproduc-
tive abnormalities [114].

Compared with SRC-1 and SRC-2, markedly less is known
concerning the individual functional role of SRC-3 in
endometrial biology and dysfunction; this knowledge-gap is
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significant because expression studies indicate that this
coregulator may have important roles in both endometrial
contexts. For example, clinical studies by the Lessey group first
revealed that SRC-3 expression levels (along with those of
SRC-2) are significantly elevated in the endometrium of
patients diagnosed with polycystic ovary syndrome [105],
suggesting that dysregulation in the expression levels of one or
both of these coregulators in this patient cohort may contribute
to endometrial dysfunction. Subsequent studies have shown
that significant elevation in the expression levels of endome-
trial SRC-3 is correlated with endometrial hyperplasia and
cancer [115–118]. Although providing correlative support,
these findings are nonetheless significant because unscheduled
upregulation of SRCs is the typical molecular ‘‘calling card’’
for the involvement of this coregulator family in tissue
pathogenesis [52]. Therefore, considering the established

importance of SRC-3 in aberrant cell behavior and tissue
dysfunction [23, 60, 112, 119], studies are urgently required to
confirm the predicted role of this coregulator in these uterine
functional abnormalities.

In the context of normal uterine function, SRC-3 expression is
induced in the primary decidual zone of the murine uterus at
Pregnancy Day 5.5 [120], suggesting a role for this coregulator in
late decidualization and/or early placentation. Interestingly,
absence of SRC-3 (along with SRC-1) in the embryo resulted
in a placental morphogenetic impairment that compromises the
survival of embryos that lack both coregulators. Using double
knockouts for SRC-3 and SRC-1, Chen et al. [63] revealed that
both coregulators in the embryo coordinately function to ensure
normal labyrinth morphogenesis of the placenta. Accordingly,
absence of both coregulators in the developing embryo resulted
in placental insufficiency and embryonic lethality at midgestation

FIG. 3. Acceleration of glycolytic flux by SRC-2 is required for endometrial stromal cell decidualization. Endometrial stromal fibroblasts undergo rapid
proliferation prior to differentiation in order to generate sufficient numbers of epithelioid decidual cells. To ensure that a single endometrial stromal cell
can generate two daughter cells through rapid cell division, glucose uptake and the rate of glycolysis from glucose to pyruvate (the glycolytic flux) must be
significantly increased. The net result of increasing the glycolytic flux is the generation of bioenergy (ATP) and biomolecules to support the formation of
two daughter cells from one endometrial stromal cell. The glycolytic flux is accelerated by SRC-2 through coregulation of PR-mediated induction of
PFKFB3, a critical positive regulator of the glycolytic flux. Through its regulatory kinase domain, PFKFB3 converts fructose-6-P to fructose-2,6-P, which is a
potent allosteric activator of a critical enzymatic checkpoint of glycolysis, PFK-1. Along with a net gain of 23 ATP molecules per glucose molecule
catabolized, glycolytic intermediates (i.e., glucose-6-P and pyruvate) provide the necessary precursors for macromolecular and organelle synthesis by
downstream anabolic pathways. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3, phosphofructokinase-1, steroid receptor coactivator-2, and
progesterone receptor are denoted by PFKFB3, PFK-1, SRC-2, and PR, respectively.
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[63]. However, the individual and combinatorial roles of these
coregulators in the maternal compartment during this pregnancy
period remain an open question because double knockouts for
both coregulators result in embryonic lethality. Given the
compelling support for a critical role for SRC-3 in uterine
biology, efforts are clearly required to apply innovative mouse
genetics to elucidate the role of this uterine coregulator in
physiologic and pathophysiologic contexts; development of cell
type-specific abrogation or overexpressor mouse models—as
used for SRC-2 [84, 85, 121]—may represent the first step
toward elucidation in the near future.

PERSPECTIVES

If past progress is prologue, we predict that further
innovations in experimental mouse genetics will continue to
play an active role in advancing our understanding of the SRC
family in the physiologic and pathophysiologic responses of
the female reproductive tract in general and of the uterus in
particular. For example, the recent CRISPR/Cas9 genome
editing revolution [122–124] promises to significantly aid
structure/functional analysis of SRC members not only in the
murine uterus in vivo but also in clinical translational models,
such as primary human endometrial cells in culture or in
xenografts. Currently, we have only a rudimentary knowledge
as to the extent a given SRC functional domain or PTM
contributes to a particular uterine cell response. The easy,
rapid, and precise mutational analysis afforded by CRISPR/
Cas9 technology is predicted to play a significant role in
accelerating our understanding of this understudied field of
uterine biology in the not-too-distant future.

Next-generation cre/loxP technology, in which gene func-
tion is conditionally ablated in a spatiotemporal manner, will be
indispensable for studying SRC function in the later stages of
gestation. To date, our knowledge of uterine SRC function is
limited to the processes of implantation, decidualization, and
early placentation; this limitation is due to technological
constraints imposed by conventional engineered mice. Ad-
dressing this limitation will be crucial because there is growing
support for the involvement of this coregulator family in later
stages of pregnancy, including parturition [125, 126]. Further-
more, because SRC family members have been detected in one
or more uterine cell types [120], the selective functions of
epithelial, stromal, and/or myometrial SRCs to a particular
normal or abnormal uterine response will be critical to further
resolving the functional role of each uterine SRC at the cellular
level. With the availability of cell type-specific cre/loxP
strategies [127–131], this type of research is now achievable.

As previously described, unwarranted elevation of SRC
expression levels has been correlated with a number of
endometrial pathologies [105, 115–118, 132, 133], supporting
the proposal that perturbation of cellular SRC levels promotes
such disorders. However, mice engineered to model SRC
overexpression have not been available to test this proposal.
Recently, Szwarc et al. [121] used state-of-the-art cre/loxP
genetic strategies to engineer mice that overexpress human
SRC-2 specifically in cells that express ER and PR. Although
they are at an early stage of investigation, studies reveal that
overexpression of SRC-2 in the murine endometrium results in
a severe subfertility defect, validating previous predictions
drawn from earlier clinical studies [105].

Such innovation notwithstanding, findings in the mouse will
always need to be tested for clinical relevance. Primary human
endometrial cells in culture have recently proven invaluable for
testing the clinical significance of findings made in the mouse
concerning uterine SRC function and dysfunction [85]. We

believe that partnership between murine in vivo models and
human in vitro and ex vivo systems will be essential in
addressing the next big questions concerning the contributions
of SRCs to endometrial biology and pathobiology. These
questions include: 1) Are SRCs part of the link between
abnormal metabolism and adverse reproductive outcome?
Outside the uterus, members of the SRC family act as
pleiotropic modulators of systems metabolism [90]. Because
epidemiological and clinical investigations have established a
causal connection between impaired metabolic homeostasis
(i.e., preconceptional and periconceptional maternal obesity or
gestational diabetes) and a broad spectrum of adverse
reproductive outcomes (i.e., infertility, increased time to
pregnancy, and recurrent early miscarriage), deciphering the
role of this coregulator family in this causal connection is an
immediate imperative. 2) What are the pivotal NR-mediated and
non-NR-mediated signaling pathways that each SRC integrates
to ensure normal reproductive function? By virtue of their
complex functional domain structure, SRC family members are
adept at integrating a remarkable array of input signals (Fig. 1).
With the advent of high-throughput genome-wide methodolo-
gies, such as RNA-Seq and ChIP-seq, we expect that a
comprehensive understanding of the pivotal molecular mech-
anisms that underpin SRC function in many aspects of female
reproductive medicine will be identified. 3) Does the SRC
family coordinate with other coregulator families to support
normal endometrial function? Although there are nearly 450
coregulators identified to date, only a small number of
coregulators (which includes the SRC family) have been shown
thus far to be critical for normal endometrial function. However,
just as data suggest that SRC family members functionally
coordinate and collaborate with each other to maintain normal
reproductive function [84, 120, 134], we predict that members
of the SRC family most likely cross talk with members of other
coregulator classes to achieve the same objective, thus raising
the study of reproductive coregulator biology yet again to an
unprecedented level of complexity.
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