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Abstract: An innovative approach to physical activity recognition based on the use
of discrete variables obtained from accelerometer sensors is presented. The system first
performs a discretization process for each variable, which allows efficient recognition of
activities performed by users using as little energy as possible. To this end, an innovative
discretization and classification technique is presented based on the χ2 distribution.
Furthermore, the entire recognition process is executed on the smartphone, which determines
not only the activity performed, but also the frequency at which it is carried out. These
techniques and the new classification system presented reduce energy consumption caused
by the activity monitoring system. The energy saved increases smartphone usage time to
more than 27 h without recharging while maintaining accuracy.
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1. Introduction

Just 30 min of moderate activity five days a week can improve your health, according to the Centers for
Disease Control and Prevention. By enabling activity monitoring on an individual scale over an extended
period of time in a ubiquitous way, physical and psychological health and fitness can be improved.
Studies performed by certain health institutes [1–4] have shown significant associations between physical
activity and reduced risk of incident coronary heart disease and coronary events. Their results can be
seen in Figure 1, where the inverse correlation between the risk of cardiovascular incidents and physical
activity level is shown through a comparison of four separate studies.

2 

The first difference observed between the systems developed so far is the type of sensors used. There are systems that use
specific hardware (Nishkam Ravi, Nikhil D, Preetham Mysore, 2005) [10] [11], while others use general purpose hardware 
[12] [13] [6]. Obviously, generic hardware use is a benefit for users, since the cost of such devices and versatility are assets
in their favour and the risk of loss and of leaving the hardware behind is decreased since objects, like users’ smartphones, 
have already been integrated into the users’ daily life. However, general purpose devices are used for other purposes, such as
making phone calls, surfing the Internet, and listening to music. For this reason, the physical activity recognition system must
be executed in background mode and cause the least possible impact on the system, in terms of complexity and energy 
consumption.

Another difference found between related studies is the number and position of the sensors. In [14], it can be seen that the 
accelerometer sensor is placed in a glove, which user must wear, and it can recognize a multitude of activities depending on 
the movement of the hand. In contrast, certain studies use various sensors all over the body to recognize these activities [15] 
[16]. In recent years, as a result of technological progress, it has been possible to build sensors of such a diminutive size that 
they can be installed into users’ clothes [17] or attached to the user’s body [18] [19]. 

According to certain comparative studies and research based on multiple sensors, this type of sensor produces results of 
higher accuracy, although, in work such as that by [12], it is shown that it is more comfortable for the user when the sensor 
placed in the user's pocket. This is because installing them in the under monitoring persons’ body is easier, not to mention 
that infrastructure is much lower. 

Once the most comfortable alternative for users is determined, then the various sensors can be analyzed in terms of the 
way basis data is obtained to perform the activity recognition. As noted above, certain related work has made use of sensors 
such as GPS, accelerometers and microphones, and the most efficient sensor with which to obtain the highest accuracy must 
be selected. 

In order to determine the method which provokes the least drain of energy, a comparison between the energy 
consumption of the most frequently used sensors in the literature is made. This is critical in choosing the best sensor method 
since, together with performance, these constitute the two main issues upon which the final decision is based. To this end, an 
application is developed which measures the battery energy consumed by each sensor. To prevent problems arising from the 
use of certain devices, the application was installed on 60 users’ smartphones with different features. The 8 most used 
sensors (microphone, GPS, Wi-Fi, accelerometer, NFC, Bluetooth, electrocardiograph connected by Bluetooth and 
gyroscope) from the literature in the field of activities recognition were analyzed. The result of this comparison is shown in 
Figure 2, where the time is represented on the horizontal axis, and on the vertical axis the battery level at a specific instant of 
time appears. It can be seen in the figure, that the lowest power consumption is given by the microphone, followed by that of 
the accelerometer sensor. Therefore, from these results it can be deducted that the use of GPS or Bluetooth does not 
constitute a good choice for the development of an energy-efficient physical-activity recognition system.
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Figure 1: Associations between physical activity and reduced risk of incident coronary heart disease and coronary events Figure 1. Associations between the risk of cardiovascular incidents and physical
activity level.

In recent years, thanks largely to increased interest in monitoring certain sectors of the population,
such as elderly people with dementia and people in rehabilitation, activity recognition systems have
increased in both number and quality. Furthermore, communication between relatives, friends and
professionals can be improved by means of graphs of weekly activity (highly relevant for sportsmen
and relatives of elderly people), whereby the doctor can be automatically alerted if any strange activity
is detected. In fact, automatic recognition of human activity represents one of the most important
research areas in ubiquitous computing [5,6]. For this reason, it is extremely important to ensure that the
intrusion level caused by the system is the lowest possible. Some recent works, such as [7–9], attempt
to solve this problem by using a variety of sensors, such as accelerometers, gyroscopes, GPS and even
radio-frequency identification and near-field communication (NFC) sensors.

As will be seen below, however, the use of these sensors causes a major drain on the energy of
autonomous devices running on batteries, such as smartphones. On the other hand, by using data acquired
from these sensors and applying certain classification methods, it is possible to perform pervasive
physical activity monitoring. Some of these algorithms, such as Bayesian decision (BDM), decision
tree algorithms (RBA), least-squares methods (LSM), support vector machines (SVM), K-nearest
neighborhood (KNN) and artificial neural networks (ANN), will be analyzed and compared in this
work. The results show the main differences between different studies, and certain drawbacks will be
determined. These drawbacks, commonly related to energy consumption and computational cost, do not
make possible their implementation on real users’ smartphones. The first difference observed between
the systems developed so far is the type of sensor used.
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There are systems that use specific hardware [10–12], whereas others use general purpose
hardware [7,13,14]. Obviously, the use of generic hardware, as smartphones, is a benefit to users,
because the cost of such devices and their versatility are assets in their favor. The risk of loss, forgetting
and disuse is decreased because users’ smartphones have already been integrated into the users’ daily
life. However, general purpose devices are used for other purposes, such as making phone calls, surfing
the Internet and listening to music. For this reason, the physical activity recognition system must be
executed in background mode and should cause the least impact as possible on the system in terms of
complexity and energy consumption.

Another difference found among related studies is the number and position of sensors used. In [15],
the accelerometer sensor is placed in a glove, which the user must wear. This sensor can recognize a
multitude of activities, depending on the movement of the hand. In contrast, some studies use diverse
sensors all over the body to recognize these activities [16–18]. In recent years, as a result of technological
progress, it has been possible to build sensors of reduced size that can be installed into the user’s
clothes [19] or attached to the user’s body [20,21]. According to some comparative studies and research
based on multiple sensors, this type of sensor gives higher accuracy, although [13] shows that it is more
comfortable for the user when the sensor is placed into the user’s pocket or at the hip. This increased
user acceptance for devices attached at the hip or in the pocket is because the installation on a monitored
person’s body is easier, not to mention that the infrastructure is much more simple and inexpensive. Once
the most comfortable alternative for users is determined, some device sensors can be chosen to perform
the activity monitoring.

Some works, close to social computing, make use of microphones [22–26] and electrocardiogram
(ECG) sensors [27–29] for this purpose. The former type, which consists of microphone and Bluetooth
devices, helps to obtain contextual information about the user’s environments and would be appropriate
to perform a deeper analysis of the activity, for instance if the user is walking in a disco or at home, if the
user is alone or with someone. However, high-level activity recognition (walking, playing, running or
standing up) is done using other sensors. ECG can help in determining high-level activities by means of
heart rate processing. In this sense, some activities (walking or running) could be discerned based on the
effort needed to perform them. The problem here is that ECG sensors are expensive and uncomfortable
for the user.

In other works [21], data for activity recognition are obtained through any kind of mobile device (not
only mobile phones), although these data are sent to a server, where the information is subsequently
processed. Thus, the computational cost is not a handicap, as learning and/or recognition are performed
in the server and a more complex processing can be applied. In contrast, when processing is carried out in
the mobile device itself [30], efficiency becomes a crucial issue. In this vein, in order to apply a solution
based on distributed computing, the device must always be connected to a data network. This does not
currently represent a major drawback, since most devices have this kind of connectivity, although there
are still users (mostly elderly) whose devices have not been associated with a continuous data connection
outside the range of WiFi networks. Finally, decrease the energy cost conflicts with the need to send the
data collected in a continuous way between device and server. This means that current strategies of
sensor batching (as will be seen hereafter) cannot be applied, and devices must be continually waking up
from sleep mode. Furthermore, the intensive use of the data network has a deep impact on the energy use.
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The work in [31] shows the increase in energy consumption when 3G and WiFi are used, and in [32], it
can also be observed that approximately 44% of battery usage in smartphones occurs by the use of GSM
(3G or 2G).

Taking into account previous works, physical activity monitoring through smartphones presents the
following challenges:

• To decrease as far as possible the risk of forgetting the processing device, so as to carry out
continuous monitoring of users, everywhere and anytime;
• To reduce the energy impact on the smartphone, developing an accurate and efficient system;
• To integrate learning and monitoring on the device itself, in real time and without server

information sharing.

Along this work, all of these challenges are addressed, and certain solutions are offered to achieve
the proposed objective: to build a complete, accurate and low energy consumption system for pervasive
physical activity monitoring using sensors embedded on smartphones.

The remainder of this paper is organized as follows. Section 2 presents the need to reduce the energy
consumed by physical activity monitoring systems when they are executed in a smartphone. Section 3
presents the feature extraction model, the dataset obtained from sensors and all physical activities that
can be recognized by the described system. In Section 4, discretizing continuous variables and a
classification process are presented. Section 5 compares the presented method and other methods used
previously in the literature. Finally, Section 6 discusses the advantages of the proposed algorithm, as
well as some challenges and future works about the recognition system described.

2. Justification for the Reduction of Energy Consumption

Applying Moore’s law, manufacturers increase processing power at least twice each year, in contrast
with battery development, which did not even double over the last five years. This is not secondary at
all. From a survey performed by North American Technologies [33], battery life is the second most
important purchase decision factor for smartphones. Users’ acceptance of context-aware applications
in general and of activity monitoring systems in particular is critical. For this reason, not only has an
accurate and fast system been developed, but a low energy consumption model from the viewpoint of
discrete techniques is also presented throughout this work.

To determine the building blocks that promote the least drain of energy, a comparison between the
energy consumption of the most frequently-used smartphone sensors in the literature is made. This is
critical for choosing the most efficient sensors to be used in the monitoring application. Although some
of these sensors cannot be used separately to determine the physical activity performed, some of them
could work together.

An application has been developed to measure the battery energy consumed by each sensor in a real
environment. For this purpose, Samsung Galaxy S2, Nexus One, Samsung Galaxy S3, Nexus 5 and HTC
Tatoo were used. The application was run for four weeks, with battery consumption calculated based on
the activated sensors. To prevent problems arising from the use of concrete devices, the application was
installed on 20 users’ smartphones with different features. The eight most-used sensors (microphone,
GPS, WiFi, accelerometer, NFC, Bluetooth, ECG connected by Bluetooth and gyroscope) from the
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literature in the field of activity recognition were analyzed. It must be taken into account that battery
consumption for the microphone depends not only on the microphone sensor itself, but also on the sample
rate and the buffer. The last one is useful to keep the audio codec, memory controller and DMA engines
awake for the shortest possible time.

To avoid battery capacity and the energy expenditure of the smartphone without performing any
action and with no user interaction, a useless energy cost trend line is generated. This line (generated
in the absence of normal user usage) is useful as the baseline, regardless of the time and the power
consumption of sensors over several kinds of smartphones with different features. Figure 2 shows the
result of this comparison (The values are displayed in hours regarding a generic device. However, during
the evaluation process, the lifetime deviation compared to the values of useless energy cost has been
studied on different devices), with the time represented on the horizontal axis and the battery level at
a specific instant of time appearing on the vertical axis. The procedure to represent the results was as
follows. The useless energy cost is measured for all devices on which the study was conducted. Once this
value is measured (associated with 100% of the battery lifetime), the rest of the battery time runs using
different sensors (GPS energy cost, accelerometer energy cost, and so on) was obtained. By a simple
ratio, the percentage of reduction in the lifetime of the battery relative to the baseline (useless energy
cost) is calculated. Thus, an approximate percentage of the impact that sensors have on the battery
lifetime was obtained. Finally, to illustrate the results, these percentages are reflected on a generic
device where the unused battery time is about 56 h. It can be seen in the figure that the lowest power
consumption is given by the microphone, followed by the accelerometer sensor. Therefore, from these
results, it can be deduced that the use of GPS or Bluetooth does not constitute a good choice to develop
an energy-efficient physical activity monitoring system, despite their having higher accuracy. In the case
of Bluetooth, advances in this sensors have reduced the energy consumption, but this technology still
suffers from serious problems when being used in the field of activities recognition. On the one hand,
the infrastructure must be installed in each location where it will be used. Currently, there are just a few
public Bluetooth access points. Furthermore, dynamic activities, such as walking, running or cycling,
can hardly be recognized by Bluetooth, unless additional devices associated with these activities are
installed on the objects (bike, skateboard, and so on). It must be noted that nowadays, the smartphone is
the only device (together with certain wearables, such as smart-watches) carried continuously for most
users. Therefore, the use of Bluetooth devices for activity recognition systems must force the use of
these devices, which would not be suitable for user acceptance of AR (Activity Recognition) systems.
Finally, the cost of infrastructure is also a determining factor. Bluetooth access point networks are more
expensive than embedding all of the necessary technology in the smartphone itself.

Other research is based on the use of microphone and voice recognition to determine the context
of the user [34], and it could be thought that the result is more energy efficient. However, voice
recognition presents problems when the environment is noisy or the user is alone, so sometimes, it is
not possible to obtain results from the audio signal classifier. Thus, in the cited work, this process was
complemented with other methods based on inertial measurement units (IMUs). It must be noted that
an IMU is a device that measures velocity, orientation and gravitational forces, using a combination of
accelerometers, gyroscopes and magnetometers.
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To reduce the cost related to process accelerometer signals, this paper opts for an innovative technique,
through which, the work is performed in the field of discrete variables. Thanks to a discretization
process, the classification cost is much lower than that obtained when working with continuous variables.
Any dependence between variables during the recognition process is therefore eliminated, and energy
consumption from the process itself is reduced.
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Figure 2. Energy cost comparison between sensors embedded in smartphones.

3. Building the Dataset

3.1. Embedded Sensor Limitations

Throughout this work, a triaxial accelerometer, BMA150 Bosh, integrated into a Google Nexus S,
and other similar accelerometers integrated into a Samsung Galaxy S3 and a Nexus 5 were used. These
sensors have a range of sampling frequencies between 25 Hz and 1500 Hz; however, human activities
have a relatively low frequency, so it is not necessary to fully exploit the capabilities of the sensor.
Activities, such as walking, running and jumping, can be determined with small blocks of data. This
choice is also supported by other related works using similar devices [35]. However, when working
with these elements, not only the high energy consumption required by the data collection, but also the
processing of such data must be taken into account.

Mobile devices currently feature a multitude of sensors that are used routinely. This means that, as a
result of high energy consumption, the useful time between device recharges is very low. Thus, usage is
conditioned by dependence on the electric grid to recharge the mobile device. On the other hand, there
are various solutions using specific hardware [36] that have a high degree of autonomy. The problems
faced by these elements, however, include the aforementioned risk of loss and the risk of leaving the
hardware behind, together with the discomfort for users. Furthermore, these solutions tend to be very
expensive and are not oriented towards a wide range of applications.

3.2. Feature Extraction

Certain related studies attain results on activity recognition off-line. A comprehensive training set
from the inertial sensor output is first needed before data can be classified into any of the recognized
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activities. For this purpose, both training and recognition sets are obtained using overlapped time
windows of fixed duration. Following the conducting of a performance and system accuracy analysis,
it is determined that the optimum length for these windows is 4 s with 1 s overlapping [37,38]. The
recognition delay is determined by the following relation:

delay = size(v) · 0.75 + k · f(size(v)) (1)

where size(v) is the length of the time window, k is a computational constant that depends on the
specific device and the f function represents the discretization and classification complexity, which
depends on the length of the time window. The length of each time window has been chosen, because
it is very important to ensure that each time window contains at least one activity cycle. Figure 3 shows
the segmentation process and activity cycle.
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As a premise for the use of time windows as a data collection method, it is assumed that the physical
activities recognized by the system must have a duration greater than or equal to the size of this time
window. Therefore, certain activities, such as a fall, may not be recognized by the system due to their
exceptionality. Once data have been obtained, it is necessary to perform a filtering process before making
the classification in order to remove all signal noise. In most cases, the noise of IMUs is negligible,
although one kind of noise that can seriously affect the activity classification exists. This noise is
produced by vibrations that take place on the device when it is carried by the user. A Butterworth low
pass filter is applied to reduce the noise generated. Finally, following this strategy, a total of 561 temporal
and frequential variables were derived from the inertial sensors on the devices.

3.3. Set of Activities

To improve and establish a comparative baseline for classification algorithms, which is easy and
publicly replicable, it was decided to use two public datasets and one built for this study. The first
dataset under study, named the Human Activity Recognition Using Smartphones Data Set, presented in
UCI [39], is composed of 10,299 instances of time windows sampled in fixed-width sliding windows
of 2.56 s and 50% overlap (128 readings/window) at a constant rate of 50 Hz, 561 variables and six
activities labeled, carried out with a group of 30 volunteers with an age bracket of 19–48 years. The
second public dataset, named the PAMAP2 Physical Activity Monitoring Data Set and published in UCI,
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as well [40], consists of 2,211,669 RAW data from three IMUs and 18 activities, performed with nine
subjects between 26 and 31 years. RAW data were grouped into 8847 overlapped time windows, and
system variables were obtained from them. The structure and content resulting from these datasets are
very similar. Both are composed of a set of rows, and each row contains the variable values separated by
a comma. Some features, such as the mean, standard deviation, median deviation, maximum, minimum,
energy, interquartile range, signal entropy, correlation coefficient, skewness, kurtosis, angle between
vectors and the Jerkmean, are processed in order to generate the complete dataset from RAW values of
the accelerometer and gyroscope (this being understood as data obtained directly from IMUs embedded
in the smartphone, i.e., triaxial acceleration from the accelerometer and triaxial angular velocity from
the gyroscope).

The users involved in the experiment followed a protocol in which the activities were performed
wearing a waist-mounted smartphone. Each subject performed the protocol twice: in the first trial, the
smartphone was fixed on the left side of the belt, and in the second, it was placed by the user himself as
preferred. Through visual and sound signals, users were informed about the change of activity. The
tasks were performed in laboratory conditions, but volunteers were asked to perform the sequence
of activities freely for a more naturalistic dataset. In the laboratory, as users were performing each
activity, a researcher was annotating them in a mobile application. The result of this annotation was a
dataset for each instance (activity performed by each user) with start time, end time, activity, comments
(interesting for further works) and user identification. Thanks to this information, data collected on the
user smartphone from IMUs could be split and labeled.

Finally, to carry out a comparative analysis of the accuracy and performance of the discrete
recognition method proposed in this paper, a new dataset was built. This file contains 6874 overlapped
time windows with 170 variables associated with each one and eight activities supported. These activities
are standing, walking, running, jumping, cycling, driving, upstairs and downstairs. A group of 10 users
with Samsung Galaxy S3. Samsung Galaxy S4 and LG Nexus 5 smartphones participated in the
experiment. Table 1 contains information about the users’ smartphone distribution along the experiment.
Each row shows the phone model used by the user and the number of time windows obtained throughout
the whole experiment.

Table 1. Distribution of users’ smartphones during the experiment.

User Phone Model Time Windows Collected

1 Samsung Galaxy S3 740
2 Samsung Galaxy S4 683
3 Samsung Galaxy S3 830
4 LG Nexus 5 716
5 Samsung Galaxy S3 519
6 LG Nexus 5 683
7 Samsung Galaxy S4 478
8 Samsung Galaxy S4 854
9 Samsung Galaxy S3 729
10 LG Nexus 5 642
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However, far from being a static system, the kind of activities recognized depends on the user. In this
line, thanks to the proposed method for new activity detection, introduced later, the system can determine
when the users are carrying out activities that had not been learned before. As will be seen later, this is
based on the analysis of pattern recognition and identification of low-probability instances.

4. Experimental Section

Working in the domain of discrete variables to perform learning and recognition of activities
constitutes the innovative contribution offered by this work. Learning algorithms based on continuous
variables, which traditionally have been used for this purpose over the years, lack a high complexity. A
main aim in this paper is to use an approach based on discrete variables, which reduces this complexity,
as will be shown. Therefore, prior to self-recognition and learning, it is necessary to carry out a process
of discretization, which is performed through the application of the Ameva algorithm [41].

This algorithm has a number of advantages, chief among them being the small number of intervals
generated, which facilitates and reduces the computational cost of the recognition process. It is worth
noting that the Ameva algorithm has always been used as a discretization process [42–44]. In this paper,
a new method that allows using the algorithm Ameva as a classification method has been developed.

Figure 4 shows the methodology for the system training. Along this section, each building block
is presented, more specifically, the data processing and classification methods. Both make use of
discrete techniques for classification, unlike other related works, which usually employ continuous
methods [45,46].
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Figure 4. Methodology pipeline for the activity recognition training subsystem.

4.1. Ameva Algorithm

Working in the domain of discrete variables to perform the learning and recognition of activities is
a new approach offered by this work. This decision was largely due to the high computational cost
required for learning algorithms based on continuous variables that have been used for this purpose over
the years.

In [43], a labeling process, like a discretization process, is used to obtain a similarity index, so it
can be said that a transformation of the continuous domain to the discrete domain of the values of the



Sensors 2015, 15 5172

variables is beneficial in certain aspects. However, before self-recognition or learning, it is necessary to
carry out a process of Ameva discretization from its algorithm [41]. The most notable of these algorithms
is the small number of intervals generated, which facilitates and reduces the computational cost of the
recognition process.

Let us introduce these algorithms. Let X = {x1, x2, . . . , xn} be a dataset of an attribute X of
mixed-mode data, such that each example xi belongs to only one of the ` classes of class variables
denoted by C = {C1, C2, . . . , C`}, ` ≥ 2. Table 2 shows a toy dataset with 6 statistics, 10 samples and
3 classes.

Table 2. Example dataset with 6 statistics, 10 samples and 3 different classes.

Statistics ClassMean Std Deviation Maximum Minimum Energy Skewness

10.1 3.9 5.1 13.3 9.7 1.9 C1

12.7 8.6 3.1 16.4 16.2 0.1 C2

8.3 1.5 8.3 9.5 1.8 −2.4 C3

11.3 4.1 6.3 14.9 11.2 1.1 C1

8.6 1.2 8.7 9.1 1.2 1.3 C3

9.8 2.7 6.5 13.2 9.7 1.7 C1

14.7 9.2 3.6 15.3 17.1 −0.2 C2

11.7 8.5 2.9 16.8 14.3 −1.7 C2

10.6 3.6 5.1 13.8 11.2 0.8 C1

9.2 0.7 8.9 9.7 0.9 −1.8 C3

A continuous attribute discretization is a function D : X → C, which assigns a class Ci ∈ C to
each value x ∈ X in the domain of property that is being discretized. Let us consider a discretization
D that discretizes X into k discrete intervals: L(k;X ; C) = {L1, L2, . . . , Lk}, where L1 is the interval
[d0, d1] and Lj is the interval (dj−1, dj], j = 2, 3, . . . , k. Thus, a discretization variable is defined as
L(k) = L(k;X ; C), which verifies that, for all xi ∈ X , a unique Lj exists, such that xi ∈ Lj for
i = 1, 2, . . . , n and j = 1, 2, . . . , k.

The main aim of the Ameva method [41] is to maximize the dependency relationship between the
class labels C and the continuous-values attribute L(k) and, at the same time, to minimize the number of
discrete intervals k. For this, the following statistic is used:

Ameva(k) =
χ2(k)

k(`− 1)

where:

χ2(k) = N

(
−1 +

∑̀
i=1

k∑
j=1

n2
ij

n·inj·

)
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and nij denotes the total number of continuous values belonging to theCi class that are inside the interval
Lj , ni· is the total number of instances belonging to the class Ci and n·j is the total number of instances
that belong to the interval Lj , for i = 1, 2, . . . , ` and j = 1, 2, . . . , k, fulfilling the following:

ni· =
k∑

j=1

nij, n·j =
∑̀
i=1

nij, N =
∑̀
i=1

k∑
j=1

nij

Table 3 shows this interval grouping process over 12,480 instances and 6 intervals. The number of
instances contained in each class for a given interval is shown in each row. Columns contain the number
of instances inside each interval for a given class. The last row and the last column contain the sum of
instances for each class and each interval, respectively.

Table 3. Number of values of each Ci class contained in each interval Lj .

Interval Class
ni·C1 C2 C3

L1 3213 65 1 3279
L2 412 156 4 572
L3 318 891 86 1295
L4 136 2178 312 2626
L5 49 710 813 1572
L6 0 13 3,123 3136

n·j 4128 4013 4339 12,480 (N )

4.2. Discretization Process

Let S = {S1, S2, . . . , Sm} be a set of m statistics. Hence, for each statistic Sp ∈ S, the discretization
process is performed, obtaining a matrix of order kp × 2, where kp is the number of class intervals and
2 denotes the inf(Lp,i) and sup(Lp,i) interval limits i of the p statistic. This three-dimensional matrix
containing the set of interval limits for each statistic is called the discretization matrix and is denoted by
W = (wpij), where p = 1, 2, . . . ,m, i = 1, 2, . . . , kp and j = 1, 2.

Therefore, the discretization matrix determines the interval at which each datum belongs to the
different statistical associated values, carrying out a simple and fast discretization process. Table 4 shows
an example of this process.

Appendix A shows the distribution for the first 21 statistics. Each distribution contains the intervals
generated on the horizontal axis and the number of associated samples. In this figure, it can be noted that
samples are not equally distributed, and the number of intervals is not the same for all statistics. These
elements depend on the number of samples for each activity in the dataset and the value distribution.
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Table 4. Example of a discretization matrix.

Interval Limit
inf(Lp,i) sup(Lp,i)

Lp,1 −∞ −0.99
Lp,2 −0.99 −0.98
Lp,3 −0.98 −0.66
Lp,4 −0.66 −0.28
Lp,5 −0.28 0.02
Lp,6 0.02 +∞

4.2.1. Class Integration

The aim in the next step of the algorithm is to provide a probability associated with the statistical
data for each of the activities based on previously generated intervals. For this purpose, the elements of
the training set x ∈ X are processed to associate the label of the concrete activity in the training set.
In addition, the value of each statistic is calculated based on the time window.

To carry out the previous process, a class matrix, V , is defined as a three-dimensional matrix that
contains the number of data from the training set associated with an L interval in a C activity for each
statistic S of the system. This matrix is defined as follows: V = (vpij), where vpij = |{x ∈ X |
inf(Lp,i) < x ≤ sup(Lp,i)}|, and S = Sp, C = Cj , p = 1, 2, . . . ,m, i = 1, 2, . . . , kp and j = 1, 2, . . . , `.

Thus, each position in V is uniquely associated with a position in W determined by its associated
interval. Table 5 shows the contents of a real class matrix obtained during a learning process from
a standard deviation statistic (Sp). In this table, the six intervals previously calculated by the Ameva
algorithm and stored inW can be observed.

Table 5. Example of class matrix V for 6 discretization intervals and 6 activities.

Interval Activity
Walking Upstairs Downstairs Sitting Standing Lying

Lp,1 0 0 0 440 524 124
Lp,2 0 0 0 367 351 388
Lp,3 3 0 0 349 362 734
Lp,4 690 375 24 1 0 17
Lp,5 394 534 226 0 0 3
Lp,6 17 57 637 0 0 0

Total 1104 966 887 1157 1237 1266

At this point, it is not only possible to determine the discretization interval, but the class matrix
also helps to obtain the probability associated with the discretization process performed with the
Ameva algorithm.

4.2.2. Activity-Interval Matrix

Now, a matrix of relative probabilities is obtained. This three-dimensional matrix, called the
activity-interval matrix and denoted by U , determines the likelihood that a given value x associated
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with an S statistic corresponds to C activity in a L interval. This ratio is based on obtaining the goodness
of the Ameva discretization, and the aim is to determine the most probable activity from the data and the
intervals generated for the training set.

Each value of U is defined as follows:

upij =
vpij
vp·j

1

`− 1

∑̀
q=1,q 6=j

(
1− vpiq

vp·q

)

where vp·j is the total number of time windows of the training process labeled with the j activity for the
p statistic, and p = 1, 2, . . . ,m, i = 1, 2, . . . , kp and j = 1, 2, . . . , `

Given these values, U for the p statistic is defined as:

Up =



up00 . . . up0j . . . up0`
... . . . ... . . . ...

upi0 . . . upij . . . upi`
... . . . ... . . . ...

upkp0 . . . upkpj . . . upkp`


Then, the following condition must be considered in order for the above definition to be complete and

without errors in the training: vp·q = 0→ vpiq
vp·q

= 0.
As can be seen in the definition of U , the probability that a datum x is associated with the interval Li

corresponding to the activity Cj depends not only on the data, but on all of the elements associated with
the interval Li for the other activities.

Thus, each upij matrix position can be considered as the probability that a given x belongs to Cj

activity, that it is included in the Li interval of the Sp statistic.
Similarly, the elements of U have the following properties:

• upij = 0 ⇐⇒ vpij = 0 ∨ vpiq = vp·q, q 6= j

• upij = 1 ⇐⇒ vpij = vp·j = vpi·

Table 6 shows a set of different values obtained for each of the positions of the activity-interval matrix
U . These results were obtained from the training set from the class matrix described in Table 5.

Table 6. Activity-interval matrix U for the standard deviation with 6 discretization intervals
and 6 activities.

Interval Activity
Walking Upstairs Downstairs Sitting Standing Lying

Lp,1 0.00 0.00 0.00 0.42 0.48 0.10
Lp,2 0.00 0.00 0.00 0.35 0.31 0.34
Lp,3 0.00 0.00 0.00 0.25 0.24 0.51
Lp,4 0.61 0.36 0.02 0.00 0.00 0.01
Lp,5 0.30 0.49 0.21 0.00 0.00 0.00
Lp,6 0.02 0.07 0.92 0.00 0.00 0.00
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4.3. Classification Process

This section presents the process of classification from the data of the time windows analysis. This
process is divided into two main parts. First, the way to perform the recognition of physical activity is
described. Later, the task to determine the frequency of a particular activity is exposed.

4.3.1. Classifying Data

For the classification process, the more likely activity is decided by a majority voting system from the
activity-interval matrix and a set of data x ∈ X for the S set.

Therefore, it consists of finding an activity Ci ∈ C that maximizes the likelihood. The
above criterion is collected in the following expression, denoted by mpa, mpa(x) = Ck, where,

k = argmax
j

(
m∑
p=1

upij; inf(Lp,i) < x ≤ Lp,i

)
. The expression shows that the weight contributed by

each statistic to the likely calculation function is the same. This can be done under the assumption that
all statistics provide the same information to the system, and there is no correlation between them. Thus,
the most likely activity represents the activity whose data, obtained through the processing time window,
are more suited to the value set from the activity-interval matrix.

In this way, the proposed algorithm not only determines the mpa, but its associated probability.
Figure 5 shows the total interval probability based on a training set and 100 features (Downstairs and
upstairs activities make reference to the dynamic activities of ascending and descending stairs). The
peaks presented in this chart correspond to the features giving more information to the system. From this
likelihood, certain activities that do not adapt well to sets of generic classification can be identified.
It is an indication that the user is carrying out new activities for which the system has not been
trained previously.
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Figure 5. Association level of each activity for the 100 first features.

Figure 6 shows the process flow described in this section for process recognition from the
activity-interval matrix calculated in the previous section.
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Figure 6. Flow diagram for the recognition process.

4.3.2. Activity Cycle Cadence Approach

The cadence at which any activity is performed is really important in order to get the calories
burned and the intensity of the recognized activity. For this reason, although this factor does not make
contributions to the field of activity recognition systems, it is crucial to get a system with added value
applicable in a real life context. To determine the frequency for each activity cycle, the maximum module
of the time window frequencies must first be calculated. Subsequently, the frequency associated with
the maximum module (τ) represents the number of cycles per second for the activity related to the time
window processed. From this and by using a simple expression, from the frequency value associated
with the activity recognized in the current time window, the frequency of the activities per minute (z(X))
can be obtained as follows:

z(X) = τ · 60 sec

4.4. Dynamic Sample Rate and Duty Cycle

It is crucial to consider energy consumption and the processing cost of the system when it is working
on a mobile device. The broadened problem of activity recognition systems based on IMU sensors is
the high power consumption caused by keeping the smartphone awake in order to perform all tasks
needed, such as sensor sampling and activity classification. The literature has explored three ways
of solving this drawback: selecting the system features depending on the computational cost for their
calculation [47,48], reducing the sampling rate below the threshold of 50 Hz [49] and implementing a
dynamic sampling rate method in the proposed solutions [35,50].

Dynamic sampling rate approaches, the most extensive over the last few years, is based on the
demonstration that different activities exhibit differing levels of classification accuracy, depending on
the on-body placement of the accelerometers [51]. Through this comparison, the Dynamic Ameva
Classification System has been applied, implementing a dynamic sampling rate method for energy
reduction. The frequency varies from 32 Hz for sitting, standing and lying to 50 Hz for walking, upstairs
and downstairs. It must be taken into account that these frequencies were obtained experimentally
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by studying the pattern of the different activities from the point of view of the accelerometery.
This study was conducted covering over 600,000 different time windows of activities obtained from
10 different users.

To respect the heterogeneity of the target users of the proposed recognition system, users with
different profiles were selected, from those 21 years of age with an athletic profile, to seniors 82 years
of age with a sedentary profile. Thanks to this information, it is possible to determine a suitable
accelerometer frequency spectrum according to each activity. It should be noted that this frequency
will have not only a power impact due to the decrease of data obtained from the accelerometer, but will
also cause a reduction of the execution time of the algorithm, due to the smaller size of the time windows.

Algorithm 1 calculates the sampling rate corresponding to a recognized activity at a given time.
For the calculation, the current recognized activity and previous detected activity are taken into
account. If the recognition process enters into a stable phase, i.e., there is continuity in the last set of
recognized activities, the algorithm proceeds to update the sample rate. This update is calculated from the
sampling rate associated with the activity detected, which is obtained from the map SampleRateList. As
mentioned before, the specific values for the list SampleRateList are calculated experimentally for each
of the activities recognized. Later, if stabilization occurs for a prolonged period, our proposal proceeds
to the regular updating of the sample rate based on the base log2 of the number of memories used.

Algorithm 1 Dynamic sampling rate algorithm.
SampleRateList← InitSampleRate(Frequencies)
MaxMemoryList← InitMemoryList(Memories)
AmevaIsRunning ← true
Count← 0
WinSize← 5
WinSamples← 50 * WinSize;
Aprevious ← GetAmevaActivity(Statistics)
while AmevaIsRunning do
Alast ← GetAmevaActivity(Statistics)
if Alast == Aprevious then
Count← ActivityMemory + 1

else
Count← 0

end if
if IsCriticalActivity(Alast) and
Count > GetMaxMemory(Alast) then
NewFrequency ← SampleRateList(Alast)
WinSamples← NewFrequency ∗WinSize

end if
if Count%30 ==MaxMemoryList(Alast) then
WinSize←WinSize + log2(Count%30)
WinSamples← NewFrequency ∗WinSize

end if
Aprevious ← Alast

end while
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The maximum memory limit is defined as the specific period for which an activity is considered
stable. This maximum memory is fixed experimentally and depends on the specific activity. In [52]
can be seen a related work, in which the sample rate is calculated from the estimated power required
for each sample rate. The main problem of this work is that it does not take into account the specific
activity to update the sample rate. Thus, errors may occur due to the low sample rate reached in the case
of activity stabilization for a long period. Such excessively low sampling frequencies cause a decrease
in the accuracy of the system, as can be seen in [52]. In [53], another system of dynamic frequency is
proposed. In this case, the sample rate is only addressed from the activity being performed. This means
that at the same time that an activity is recognized, the algorithm immediately proceeds to update the
sample rate.

This causes two problems. On the one hand, it could be a case of sporadic activities (e.g., a fall)
directly affecting the frequency of sampling and having a negative impact on the next set of activities
recognized. On the other hand, by failing to update the sample rate periodically, the ability to minimize
power consumption when a long-term stabilization occurs (e.g., when the user goes to sleep) is reduced.

In the proposed algorithm, the size of the time windows is increased, thus decreasing the number
of times for carrying out the classification process and, therefore, the consumption caused by the main
CPU to perform this action. It should be noted that increasing the size of the temporal window has
a direct impact on power consumption, especially in those devices having a coprocessor for context
purposes [54]. This CPU, separate from the main CPU, allows autonomous acquisition of contextual
data, usually from the accelerometer or gyroscope, without activating the main processor. This produces
a decrease in power consumption while these data are collected in the form of an asynchronous batch
operation. Thus, by increasing the size of the time window, maximizing the use of the contextual
coprocessor and delaying the use of the main CPU for the implementation of the classification algorithm,
an increase in the lifetime of the battery is achieved while the recognition system is being used. Keep in
mind that this improvement in the use of the coprocessor has not been applied in the comparison with
other methods, because it is understood that it may be applied to other comparable jobs with no impact
on accuracy. However, it has been key for the lifetime data in the comparison shown in Figure 7, where
the three versions of the proposed activity recognition system have been subjected to a cross-comparison.

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200 1400 1600

%
 B
AT

TE
RY

 R
EM

AI
N
IN
G

TIME (MINUTES)

Ameva AR

Ameva w/ Dynamic Sample

Ameva w/ Dynamic Sample and Duty
Cycle
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Furthermore, a second step towards energy savings is introduced by applying idle activity detection.
It is well known that for some time, users do not wear their smartphones, so activity recognition is not
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available. However, during this time, the system is running and, thus, consuming power. Thanks to
the idle activity recognition, the system can detect this situation and, consequently, reduce the windows
processed per unit time. This decision saves energy and reduces the system overload. For this purpose,
when no acceleration is detected on the smartphone, idle mode is enabled.

Algorithm 2 presents this process.

Algorithm 2 Duty cycle algorithm.
DutyCyclePeriods← 3,600,000, 1,800,000, 600,000, 300,000, 60,000, 10,000, 3000
AccDataCollection← ∅
Threshold← 0.3
Alast ← ∅
AmevaIsRunning ← true
WindowsSleep← 0
MinWindowsSleep← 5
DutyIndex← 0
WinSamples←WindowLength(WindowSize);
while AmevaIsRunning do

while size(AccDataCollection) < WinSamples do
AccDataCollection← GetLastAccData()

end while
WindowV ar ← V ar(AccDataCollection)
if WindowV ar < Threshold then
Alast ← NoDevice
WindowsSleep←WindowsSleep+ 1
if WindowsSleep ==MinWindowsSleep then

if DutyIndex < size(DutyCyclePeriods) then
DutyIndex← DutyIndex+ 1

end ifSleep(DutyCyclePeriods[DutyIndex])
end if

else
DutyIndex← 0

end if
end while

First, a number of periods are defined in milliseconds, which will be the values that lead to sleep mode
for the activity recognition system. Once the time window is obtained and the variance over this window
is calculated, it is determined whether the variance is less than Threshold. This Threshold was set to
0.3 during the experiments carried out. If the variance exceeds this threshold, this indicates that there
has been no significant movement on the device. If so, the WindowsSleep varis increased, responsible
for counting the number of windows without activity. If WindowsSleep is equal to the number of
windows needed to decide that the device is in a period of inactivity, given by MinWindowsSleep,
the algorithm proceeds to the activation or update of the duty cycle. This update consists of a gradual
increase, depending on the values of DutyCyclePeriods, of the idle time, while it is determined that
there is no movement in the successive time windows.

The impact of such optimization in the battery lifetime can be seen in Figure 7. By using the simple
Ameva detection, the battery life time reaches 14 h. This is because the system is always on and the
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accelerometers are working at 50 Hz. Applying the first optimization criteria, the dynamic sampling rate,
a battery life of 18 h is obtained, 3 more than previously, because some activities reduce the sampling
rate and, therefore, the battery consumption. The last optimization applied to Ameva classification is the
idle activity detection. Because most users expend much time at home or working with the device on
the table, idle activity detection tunes up the system, avoiding unnecessary energy drain, and the battery
lifetime is up to 26 h.

5. Results and Discussion

Once the basis of the activity recognition algorithm has been laid out, an analysis of the new proposal
can be performed. To this end, the new development is compared with widely-used recognition systems
based on neural network, decision tree, SVM and the naive Bayes classifier. These systems have been
trained using MATLAB R2014b and implemented on the devices through the Android Studio and
SDK tools provided by Google. In order to obtain energy consumption results, as will be explained
further below, the monitoring software, Trepn, has been used. Trepn Profiler is an on-target power
and performance profiling application for mobile devices distributed by Qualcomm for monitoring
snapdragon processors. This diagnostic tool allows profiling of the performance and power consumption
of Android applications running under this family of processors. Figure 8 shows a screenshot of this
tool. As can be observed in the upper side, battery power is being monitored.

Figure 8. Trepn profiling tool screenshot.
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In this case, both learning and recognition are performed by continuous methods. The test process
is conducted on Google Nexus S, Samsung Galaxy S3, LG Nexus 5 and Google Nexus One devices for
a group of 10 users. Notably, the activity habits of these users are quite different, as two of them are
under 25 years old, five users are between 25 and 40 years old and three are over 40. To determine the
energy impact of the developed system over the used smartphones, each user was monitored for 15 days.
The application ran continuously in the users’ smartphones during these 15 days. A total of 3640 h were
monitored for all users through the Android application developed.

Furthermore, to perform the accuracy evaluation, each user introduced into the same application the
activity that was carried out. In this case, getting users to record their daily activity at all times was very
complicated, and hence, a total of 1215 h of registered activities was obtained. From these, a study on
the precision was completed. More specifically, the evaluation dataset for each activity is composed as
follows: no device (332 h), standing (87 h), walking (198 h), lying (371 h), sitting (215 h), upstairs (5 h)
and downstairs (7 h).

5.1. Performance Analysis

In this section, the results of the performance analysis comparison between the method presented
in this paper and different related works are presented. These methods are Ameva, ANN, binary tree,
Bayesian, KNN, SVM, Mahalanobis distance and discriminant analysis. This test is conducted on eight
different activities to unify the results for all users. Based on data from the UCI HAR, UCI PAMAP2 and
the dataset built in this paper, a more in-depth comparison is performed. To this end, various measures for
the evaluation of the performance of the information retrieval system are used. All measures used below
assume a ground truth (gold standard value) contained in the labeled datasets. This comparison was
performed from the implementation of the algorithms referenced previously. In Table 7, the differences
between the compared methods can be observed (These results have been obtained using the UCI HAR
dataset, the PAMAP2 dataset and a custom dataset built in this work). Most values presented for each
measure show that the Ameva method gives better classification than the other algorithms, especially
regarding precision. That is, the number of false positives in the Ameva method is lower than in the others
methods. Furthermore, the training process for Ameva was faster than the others, except for binary tree,
where the time was very similar. Appendix B shows more in-depth performance measures obtained by
applying different algorithms compared in the table above. These values have been separated according
to the specific activity. Thus, the accuracy variation can be observed more in detail between the different
methods depending on the activity undertaken. However, as can be seen in these tables, there is no
great difference between the values obtained in terms of activity. Therefore, it can be concluded that the
compared learning methods are robust to the activities under monitoring. Based on the results for error
and classification analysis above, it can be determined that the Ameva method for activity recognition
presents better results than the other methods, which are widely used throughout the literature, especially
SVM and Bayesian. Furthermore, not only is the execution time of the Ameva algorithm faster than that
given by the others, the risk of overloading the system under the Ameva method is also lower. This
is because a majority vote brings a dynamism that makes certain statistical values not critical when
performing the classification, as for example with classification trees.
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Table 7. Performance comparison in % by using measures of evaluation.

Method Accuracy Recall Specificity Precision F1-Measure

Ameva 99.23 96.93 99.56 96.94 96.93
ANN 98.36 93.50 99.07 93.47 93.48
C4.5 97.51 90.08 98.58 90.04 90.03

Bayesian 92.56 70.96 95.75 70.22 70.41
KNN 97.66 90.74 98.66 90.66 90.69
SVM 90.56 63.09 94.61 62.22 62.41

Mahalanobis distance 93.48 87.41 93.87 91.74 91.67
Discriminant analysis 99.15 96.14 97.75 96.37 96.28

5.2. Energy Consumption Results

A comparison with other works in the field of energy consumption is not easy at all. The main
problems are the heterogeneity of smartphones on the market with different batteries, consumption,
screens and processors and the use of the smartphone for other tasks, such as calling, reading emails
or using WhatsApp. A real analysis without any restriction to the users was carried out. Users utilize
theirs smartphones normally. Hence, battery consumption depends on this use. Tests were executed on
LG Nexus 5, Samsung Galaxy S3 and Samsung Galaxy S4 devices. The devices were restored to their
original configuration after each test to avoid interference from external application consumption.

Figure 9 shows the battery lifetime for 10 users by applying the Ameva method with the optimizations
described above. As can be seen, battery life depends largely on the users’ habits. Whereas, for User 3,
the usage time is up to 23 h, for User 4, it is close to 18 h. It must be noted that all users are related to
computer science environments, and the use of their devices is quite high.

The current work is now compared with KNN, binary decision tree (C4.5), SVM, neural networks
and the naive Bayes classifier. In all cases, the process for obtaining the needed data and
calculating the features is the same. This allows comparison of just the computational cost of the
classification algorithms.
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Figure 9. Analysis of battery lifetime through different user habits.

Table 8 shows the battery lifetime (in minutes) for each classifier, with four tests conducted for each
one. As can be observed, the Ameva classifier extends the battery time by three hours compared with the
next most efficient method, the binary decision tree (C4.5). In this section, learning times are not taken
into account; only the recognition process was evaluated.
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Table 8. Battery lifetime in minutes for the execution with different classifiers.

Algorithm Test Mean1 2 3 4

Ameva 1130 1150 1070 1205 1138
KNN 750 730 760 700 731
Binary decision tree (C4.5) 915 925 898 907 905
SVM 820 870 780 830 822
Neural Networks 515 597 578 510 548
Naive Bayes 780 750 820 870 814

Finally, this work is compared with other AR systems from the literature [30,50,55,56] implemented
and run on the same user’s smartphone. Figure 10 shows the results.

Figure 10. Battery lifetime analysis over other methods.

It can be observed in Figure 10 that the Ameva system increases the battery lifetime by up to
4.5 h. As mentioned before, all methods were executed in the same smartphone used by the same
user, each for five days. Later, other works will be compared in terms of accuracy, but for now, we
can see that the proposed system significantly reduces the energy consumed. Figure 11 shows a power
consumption comparison based on W/h (The watt-hour (W/h) is a unit of energy equivalent to one
watt of power expended for one hour) for each compared method. To reduce deviations from the
power consumption given by Trepn software, the device was previously calibrated using a spectrum
analyzer, which measured the real consumption. Thereby, the correctness of the Trepn Qualcomm
software readings was checked. Moreover, because of the impact that CPU consumption obviously
has on processing cost, it was decided to keep a wake lock on the device. This ensured that the processor
would not enter into a low-power mode during the performance comparison. Thus, the baseline for
comparison is one in which the device is not used, but the processors remain awake. It should be noted
that this wake lock was deactivated for the battery life tests, in order to perform testing of each algorithm
behavior in a real application scenario. As can be seen in Figure 11, the energy consumption of the
Ameva algorithm is significantly less than the other alternatives. Specifically, it can be seen that the
consumption is about 50% that of the most efficient alternative among those compared. This is mainly
due to two reasons: first, the possibility of carrying out a selection of variables at run time, depending
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on the coefficient Ameva for each statistic; and second, the reduced computational cost of the proposed
classification method.
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Figure 11. Power consumption analysis.

To clarify the differences in the power consumption characteristics of different classifiers, these are
compared with the proposed algorithm. The C4.5 algorithm will specifically be discussed, which was a
priori more efficient from the point of view of complexity and which has been used by many studies in
the literature. Regarding accuracy, there is no big difference between Ameva and the algorithm based
on C4.5, as was shown previously. However, there is a difference from the point of view of energy
consumption. Specifically, Ameva is about 50% below the average consumption of the algorithm C4.5.
This is mainly due to the capability of automatic selection that is made based on the characteristics of
the Ameva coefficient. Those intervals generated by Ameva whose coefficient is less than the threshold
(at this moment, the threshold is defined in a static way) are removed, and the associated statistics are
not taken into account when computing the result. This makes the used statistic, on average, 40% of the
pre-established attributes of each temporal window. This process, applied to the UCI HAR dataset [39],
makes the total statistics considered go from 561 to 63, while C4.5 should consider 117 attributes for
classification. The tree generated by the C4.5 algorithm can be seen in Figure 12. Consequently, this
decrease in the processed attributes makes it unnecessary to process the data on the time window in order
to get them and, as a result, reduces the complexity of the process of collecting statistics regarding the
C4.5 algorithm.

In conclusion, the power consumption aim of this work has been accomplished. It is noted in [57]
that users recharge their smartphones once a day, mostly happening at 8 pm, when users are at home.
Because our system allows the user to maintain the device battery for more than 18 hours in all cases,
they can retain their recharging habits.
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Figure 12. C4.5 bounded decision tree.

5.3. Data Traffic Reduction

Regarding the flow of information between device and server, it has been determined that it is much
lower in the case of the Ameva method. This server is responsible for safeguarding the training data and
recognized activities. The received data flow necessary for the maintenance of such data is 4.7 Kbytes
for the system based on neural networks and 500 bytes in the case of Ameva. That is, the data flow
between device and server is reduced by more than 70%. This reduction prevents additional costs arising
from excessive use of the data network, because, with the Ameva method, it is only necessary to send the
bounds of the intervals. However, using neural networks to train the system, every network parameter
and weight must be sent, thereby resulting in a much greater size. The same occurs for all continuous
learning methods.

5.4. Comparing with Other Works

Once the proposal has been analyzed and optimization has been applied to the original system, a
comparison with other proposals for activity monitoring is made in this section. The comparison is
based on the following attributes: number of activities, average accuracy, number of sensors, execution
environment (the device on which to carry out the recognition), average processing time and battery
lifetime. Based on previous data, an analysis of the latest work in the activity recognition field was
developed. From all related works, four studies were chosen to carry out the analysis. All four studies
are recent and present a large number of citations.

Table 9 shows the results of the comparison. An analysis of the table shows that the number of
activities recognized by our proposal is higher than those in the other proposals, except for the Kerem
Altun study. However, the Kerem Altun proposal uses five specific sensors, whereas our proposal uses
only one sensor embedded in the user’s own device.
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Table 9. Comparison with other activity recognition systems. ND (not determined). * These
results are a little confusing. Most smartphones’ batteries rarely reach up to 120 h making
intensive use of the accelerometer. Furthermore, only two activities (stable or moving) are
recognized. ** Making intensive use of Bluetooth.

No. of Average No. of Execution Average Process Battery
Method Activities Accuracy (%) Sensors Environment Time (s) Life (h)

Our proposal 2014 9 98 1 general Smartphone 0.3 18 (measured)
Kerem Altun [21] 2010 16 97 5 specific AMD Athlon 64 X2 0.1 Not applicable

Chang Goo Han [11] 2010 6 92 1 specific PC ND Not applicable
Tanzeem Choudhury [36] 2008 8 84 2 specific Specific device ND 10–20 (experimental)

Sasank Reddy [30] 2010 5 93 8 general Phone 15.0 8.2 (measured)
Hong Lu [49] 2010 5 94 1 general Smartphone ND 14 (experimental)

Vijay Srinivasan [50] 2012 6 91 1 general Smartphone 0.6 12.5 (measured)
Khan [55] 2010 7 97 1 specific Specific device 2.3 10 (measured)

Yi Wang [58] 2012 2 90 1 general Phone ND 150 (experimental) (*)
Jia [59] 2013 7 98 2 specific Smartphone 1.5 7 (measured) (**)

Andreas Zinnen [56] 2009 21 85 5 general Smartphone ND 6.5 (measured) (**)

The Chang Goo and Tanzeem Choudour proposals use just one sensor, but the accuracy is lower than
that presented in this paper. Furthermore, the possibility of integrating the whole recognition system
inside a mobile phone renders the device more convenient for users.

Another aspect to consider in the comparison is the efficiency of the methods at performing
the whole process. In this sense, it is necessary to differentiate between two types of proposals:
smartphone-embedded methods and server methods. In the former, the process is executed entirely in
the mobile phone, whereas in the latter, a computer is required to execute the solution and to process the
data. For this reason, in the Kerem Altun and Chang Goo proposals, the battery life is longer than that in
our proposal, which collects and processes the data in the device itself.

Andreas Zinnen marked a new point of view of activity recognition, called model-oriented methods.
In that work, some accelerometers are placed on the user’s arm, the aim being to recognize the
movements made by the body like a three-dimensional model of the user. This technique is often used
in animation, but the main drawback is the number of sensors needed. Furthermore, one of the aims of
this work is to develop the entire system in the user’s smartphone, without external sensors. However, as
can be seen in [56], the number of activities recognized is quite high.

Finally, Jia’s work introduces other external sensors, such as the ECG meter, which improves the
accuracy of the whole system. However, this kind of system has a drawback: the power consumption
caused by the Bluetooth connection between external sensors and the smartphone.

6. Conclusions and Future Work

This work presents a highly accurate recognition system, based on discrete variables, that uses
the Ameva discretization algorithm and a new Ameva-based classification system. It has therefore
been possible to achieve an average accuracy of 98% for the recognition of eight types of activities.
Furthermore, working with discrete variables significantly reduces the computational cost associated
with data processing during the recognition process. By using this process to increase recognition
frequency, it has been possible to obtain a physical activity reading every four seconds and to save
this contextual information in the user activity live log.
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The main problem detected in the system based on statistical learning is the limitation of the number
of activities that can be recognized. Actually, the problem is not provoked by the method itself, but by
the accelerometer sensors. The number of system features is limited, thus leading to a strong correlation
between these variables. This problem could be solved by including new sensors (NFC, Bluetooth, and
so on), which provide more information to the system.

Based on the studies performed and the conclusions reached in the Dynamic Sample Rate and Duty
Cycle section, the accuracy of the system, once duty cycle optimization is applied, does not vary
depending on the user who performs the test. As was mentioned before, this method has a very slight
impact on system accuracy. This is because its auto-reconfiguration makes it possible to increase the
sample rate if necessary. However, this strategy brings considerable benefit in terms of the energy
savings achieved.

In this way, a system that extends the number of recognized activities is currently being developed.
It is based on the data presented in this work combined with the help of GPS and NFC sensors embedded
in the device. The system involves the analysis of labels installed in smart items that, in addition to
providing information about the item itself, inform the system about the activities supported. Therefore,
if a user is sitting near the television remote control, then the new activity recognition would be watching
TV. Similarly, if a user is walking and GPS information indicates that the user is in the park, the activity
would be walking through the park.
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Figure A1. Distribution of instances in each interval for the first 21 statistics.
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Appendix B

Table B1. Confusion matrix and performance values for the Ameva-based classification system.

Test/Real Walk Jump Immobile Run Up Down Cycle Drive Instances TP TN FP FN Accuracy Recall Specificity Precision F1-Measure

Walk 7200 10 10 61 80 40 37 89 7527 7200 52,135 327 291 98.97% 96.12% 99.38% 95.66% 95.88%
Jump 10 7304 0 152 0 0 21 8 7495 7304 52,180 191 278 99.22% 96.33% 99.64% 97.45% 96.89%

Immobile 0 0 7256 0 0 0 0 142 7398 7256 52,529 142 26 99.72% 99.64% 99.73% 98.08% 98.86%
Run 16 128 0 7298 0 7 40 8 7497 7298 52,205 199 251 99.25% 96.68% 99.62% 97.35% 97.01%
Up 89 70 0 8 7273 195 2 2 7639 7273 51,918 366 396 98.73% 94.84% 99.30% 95.21% 95.02%

Down 96 0 0 23 316 7252 4 5 7696 7252 52,015 444 242 98.86% 96.77% 99.15% 94.23% 95.48%
Cycle 0 0 0 0 0 0 7302 1 7303 7302 52,536 1 114 99.81% 98.46% 100.00% 99.99% 99.22%
Drive 80 70 16 7 0 0 10 7215 7398 7215 52,300 183 255 99.27% 96.59% 99.65% 97.53% 97.05%

Accumulated 7491 7582 7282 7549 7669 7494 7416 7470 59,953 58,100 417,818 1853 1853 99.23% 96.93% 99.56% 96.94% 96.93%

Table B2. Confusion matrix and performance values for the ANN-based classification system.

Test/Real Walk Jump Immobile Run Up Down Cycle Drive Instances TP TN FP FN Accuracy Recall Specificity Precision F1-Measure

Walk 6930 46 41 117 107 79 86 121 7527 6930 51,807 597 619 97.97% 91.80% 98.86% 92.07% 91.93%
Jump 76 7124 16 187 13 8 46 25 7495 7124 51,892 371 566 98.44% 92.64% 99.29% 95.05% 93.,83%

Immobile 47 9 6970 4 63 46 13 246 7398 6970 52,307 428 248 98.87% 96.56% 99.19% 94.21% 95.37%
Run 44 221 3 7060 39 43 59 28 7497 7060 52,016 437 440 98.54% 94.13% 99.17% 94.17% 94.15%
Up 126 89 17 25 7091 256 19 16 7639 7091 51,587 548 727 97.87% 90.70% 98.95% 92.83% 91.75%

Down 103 4 7 27 415 7103 16 21 7696 7103 51,754 593 503 98.17% 93.39% 98.87% 92.29% 92.84%
Cycle 36 32 43 35 75 56 6928 98 7303 6928 52,386 375 264 98.93% 96.33% 99.29% 94.87% 95.59%
Drive 187 165 121 45 15 15 25 6825 7398 6825 52,000 573 555 98.12% 92.48% 98.91% 92.25% 92.37%

Accumulated 7549 7690 7218 7500 7818 7606 7192 7380 59,953 56,031 415,749 3922 3922 98.36% 93.50% 99.07% 93.47% 93.48%

Table B3. Confusion matrix and performance values for the C4.5-based classification system.

Test/Real Walk Jump Immobile Run Up Down Cycle Drive Instances TP TN FP FN Accuracy Recall Specificity Precision F1-Measure

Walk 6210 78 98 318 298 96 92 337 7527 6210 51,570 1317 856 96.38% 87.89% 97.51% 82.50% 85.11%
Jump 113 6932 54 245 36 17 67 31 7495 6932 51,645 563 813 97.70% 89.50% 98.92% 92.49% 90.97%

Immobile 59 15 6790 23 83 72 59 297 7398 6790 52,073 608 482 98.18% 93.37% 98.85% 91.78% 92.57%
Run 54 294 23 6896 64 57 71 38 7497 6896 51,649 601 807 97.65% 89.52% 98.85% 91.98% 90.74%
Up 160 113 51 34 6943 298 21 19 7639 6943 51,272 696 1042 97.10% 86.95% 98.66% 90.89% 88.88%

Down 187 18 15 53 427 6917 43 36 7696 6917 51,600 779 657 97.60% 91.33% 98.51% 89.88% 90.60%
Cycle 64 79 54 66 96 74 6716 154 7303 6716 52,241 587 409 98.34% 94.26% 98.89% 91.96% 93.10%
Drive 219 216 187 68 38 43 56 6571 7398 6571 51,643 827 912 97.10% 87.81% 98.42% 88.82% 88.31%

Accumulated 7066 7745 7272 7703 7985 7574 7125 7483 59,953 53,975 413,693 5978 5978 97.51% 90.08% 98.58% 90.04% 90.03%
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Table B4. Confusion matrix and performance values for the Bayesian-based classification system.

Test/Real Walk Jump Immobile Run Up Down Cycle Drive Instances TP TN FP FN Accuracy Recall Specificity Precision F1-measure

Walk 5067 187 218 573 421 329 198 534 7527 5067 49,701 2460 2725 91.35% 65.03% 95.28% 67.32% 66.15%
Jump 741 5180 113 1023 57 124 216 41 7495 5180 49,239 2315 3219 90.77% 61.67% 95.51% 69.11% 65.18%

Immobile 115 87 5014 288 356 298 243 997 7398 5014 51,473 2384 1082 94.22% 82.25% 95.57% 67.78% 74.31%
Run 78 1520 46 5290 155 96 245 67 7497 5290 50,047 2207 2409 92.30% 68.71% 95.78% 70.56% 69.62%
Up 613 509 79 77 5521 708 56 76 7639 5521 49,478 2118 2836 91.74% 66.06% 95.90% 72.27% 69.03%

Down 470 27 43 76 1309 5641 76 54 7696 5641 50,323 2055 1934 93.35% 74.47% 96.08% 73.30% 73.88%
Cycle 105 127 145 227 451 300 5216 732 7303 5216 51,511 2087 1139 94.62% 82.08% 96.11% 71.42% 76.38%
Drive 603 762 438 145 87 79 105 5179 7398 5179 50,054 2219 2501 92.13% 67.43% 95.75% 70.01% 68.70%

Accumulated 7792 8399 6096 7699 8357 7575 6355 7680 59,953 42,108 401,826 17,845 17,845 92.56% 70.96% 95.75% 70.22% 70.41%

Table B5. Confusion matrix and performance values for the SVM-based classification system.

Test/Real Walk Jump Immobile Run Up Down Cycle Drive Instances TP TN FP FN Accuracy Recall Specificity Precision F1-Measure

Walk 4562 210 289 658 513 401 201 693 7527 4562 48,751 2965 3675 88.92% 55.38% 94.27% 60.61% 57.88%
Jump 819 4716 214 1142 64 176 275 89 7495 4716 48,621 2779 3837 88.96% 55.14% 94.59% 62.92% 58.77%

Immobile 156 115 4663 342 398 341 296 1087 7398 4663 51,018 2735 1537 92.87% 75.21% 94.91% 63.03% 68.58%
Run 89 1598 85 4982 174 158 335 76 7497 4982 49,516 2515 2940 90.90% 62.89% 95.17% 66.45% 64.62%
Up 769 654 97 85 4728 1127 82 97 7639 4728 48,875 2911 3439 89.41% 57.89% 94.38% 61.89% 59.83%

Down 636 53 68 84 1614 5092 87 62 7696 5092 49,504 2604 2753 91.06% 64.91% 95.00% 66.16% 65.53%
Cycle 354 297 241 361 580 467 4189 814 7303 4189 51,120 3114 1530 92.25% 73.25% 94.26% 57.36% 64.34%
Drive 852 910 543 268 96 83 254 4392 7398 4392 49,637 3006 2918 90.12% 60.08% 94.29% 59.37% 59.72%

Accumulated 8237 8553 6200 7922 8167 7845 5719 7310 59,953 37,324 397,042 22,629 22,629 90.56% 63.09% 94.61% 62.22% 62.41%

Table B6. Confusion matrix and performance values for the KNN-based classification system.

Test/Real Walk Jump Immobile Run Up Down Cycle Drive Instances TP TN FP FN Accuracy Recall Specificity Precision F1-Measure

Walk 6726 65 52 143 137 87 121 196 7527 6726 51,490 801 936 97.10% 87.78% 98.47% 89.36% 88.56%
Jump 161 6879 26 265 36 27 62 39 7495 6879 51,768 616 690 97.82% 90.88% 98.82% 91.78% 91.33%

Immobile 65 26 6719 21 95 64 26 382 7398 6719 52,193 679 362 98.26% 94.89% 98.72% 90.82% 92.81%
Run 86 244 36 6854 65 79 84 49 7497 6854 51,834 643 622 97.89% 91.68% 98.77% 91.42% 91.55%
Up 149 98 32 41 6881 375 36 27 7639 6881 51,317 758 997 97.07% 87.34% 98.54% 90.08% 88.69%

Down 187 21 16 31 504 6870 26 41 7696 6870 51,522 826 735 97.40% 90.34% 98.42% 89.27% 89.80%
Cycle 65 51 58 47 124 78 6748 132 7303 6748 52,254 555 396 98.41% 94.46% 98.95% 92.40% 93.42%
Drive 223 185 142 74 36 25 41 6672 7398 6672 51,689 726 866 97.34% 88.51% 98.61% 90.19% 89.34%

Accumulated 7662 7569 7081 7476 7878 7605 7144 7538 59,953 54,349 414,067 5604 5604 97.66% 90.74% 98.66% 90.66% 90.69%
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