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Abstract: The need for computer vision-based human detection has increased in fields,  

such as security, intelligent surveillance and monitoring systems. However, performance 

enhancement of human detection based on visible light cameras is limited, because of 

factors, such as nonuniform illumination, shadows and low external light in the evening 

and night. Consequently, human detection based on thermal (far-infrared light) cameras 

has been considered as an alternative. However, its performance is influenced by the 

factors, such as low image resolution, low contrast and the large noises of thermal images. 

It is also affected by the high temperature of backgrounds during the day. To solve these 

problems, we propose a new method for detecting human areas in thermal camera images. 

Compared to previous works, the proposed research is novel in the following four aspects. 

One background image is generated by median and average filtering. Additional filtering 

procedures based on maximum gray level, size filtering and region erasing are applied to 

remove the human areas from the background image. Secondly, candidate human regions in 

the input image are located by combining the pixel and edge difference images between the 

input and background images. The thresholds for the difference images are adaptively 

determined based on the brightness of the generated background image. Noise components 

are removed by component labeling, a morphological operation and size filtering. Third, 

detected areas that may have more than two human regions are merged or separated based 
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on the information in the horizontal and vertical histograms of the detected area. This 

procedure is adaptively operated based on the brightness of the generated background 

image. Fourth, a further procedure for the separation and removal of the candidate human 

regions is performed based on the size and ratio of the height to width information of the 

candidate regions considering the camera viewing direction and perspective projection. 

Experimental results with two types of databases confirm that the proposed method 

outperforms other methods. 

Keywords: human detection; thermal camera image; generation of background image; 

background subtraction; adaptive threshold 

 

1. Introduction 

The need for computer vision-based human detection has increased in fields, such as security, 

intelligent surveillance and monitoring systems [1–5]. However, performance enhancement of human 

detection based on visible light cameras is limited because of factors, such as nonuniform illumination, 

shadows and low external light in the evening and night. Consequently, thermal cameras have been 

widely used for tasks, such as security and outdoor surveillance. In general, the infra-red (IR) spectrum can 

be classified into four sub-bands, such as near-IR (NIR), whose wavelength ranges from 0.75 to 1.4 μm, 

short-wave IR (SWIR), whose wavelength ranges from 1.4 to 3 μm, medium-wave IR (MWIR), whose 

wavelength ranges from 3 to 8 μm, and long-wave IR (LWIR), whose wavelength ranges from 8 to  

15 μm [6]. Because significant heat energy is reported to be emitted in MWIR and LWIR sub-bands, 

both of these sub-bands are usually used for sensing the human body, including the face, without an 

additional light source, and they are referred to as the thermal sub-band [6]. We call the image 

acquired in this sub-band the thermal image in this paper. 

The gray level of an object in a thermal image depends on the temperature of the object. If the 

object is hotter than the surrounding environment, it is represented as a brighter region. Typically, the 

gray level of human areas in a thermal image appears differently from the background, allowing thermal 

images to be applied to the detection of human areas in an image. However, under different conditions, the 

characteristics of the human areas and background can change. This can influence the accuracy of 

detecting the precise locations and shapes of the human areas in the thermal image [7–15]. 

Recently, significant work has focused on detecting human areas in thermal camera images, 

because the performance of the detection influences the accuracy of the human tracking and behavioral 

recognition. Previous research into human detection in thermal camera images can be classified into two 

categories: without background generation [2,15–20] and with background generation [21–29]. For the 

former category, Martin et al. proposed a detector and tracker of objects based on motion and  

scale-invariant feature transform (SIFT) methods [2]. In addition, the former used the methods for 

feature extraction based on the histogram of the oriented gradient (HOG) [7–9,15–17] and geometric 

characteristics [15] with a classifier based on support vector machine (SVM) [7,15,17,18], the adaptive 

boosting (Adaboost) method [19] and the soft-label boosting algorithm [20]. The advantage of these 

methods is that they can detect an object without a background image. However, they have the 
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disadvantage that they require a pre-defined template or classifier for human areas; this must be 

obtained through training. Moreover, their performance is influenced by environmental factors, such as 

rain, snow and the amount of sunlight, and they require an excessive processing time to detect the 

human areas in the entire image by scanning. 

Therefore, techniques for detecting human areas using background generation can be employed as  

an alternative. These are based on a Gaussian background-subtraction approach [21,22,24,25], texture 

change [23], expectation minimization (EM) [26,27] and image averaging [28]. 

To detect an object, methods, such as a contour saliency map (CSM) [21,24,25], CSM template 

matching [22], shape and appearance-based detection [26,27], spatiotemporal texture vectors [23] and 

a boosting framework [28], can be applied. In some research [26,27], shape descriptors, such as 

compactness and leanness, are obtained from the skeleton of the object, and they are used as the input 

values of SVM for shape-based detection. In addition, the features obtained by principal component 

analysis (PCA) with the pixel values from a window of fixed size [26] and varying size [27] are used 

for appearance-based detection. Using both shape and appearance-based detection is one of the main 

novelties of their research. In previous research [29], a particle filter framework and histogram based on 

the intensity-distance projection space were used. The advantage of these methods is that they are 

applicable to multiple environmental conditions and can detect objects of varying scale. However, the 

disadvantage is that performance degradation can occur if the intensity of the object is similar to the 

background. Further, if there exist motionless humans (at the same positions) in all of the image 

frames, these approaches can produce an erroneous background, which has the areas of the image 

occupied by motionless humans, although the accurate background should not include the areas of the 

image occupied by humans. Moreover, they do not consider the parameters of the detector, which are 

adaptively determined by the background information. The pixel brightness of the background is 

usually affected by environmental temperature. That is, the pixel brightness of the background is 

higher in the daytime than that that at dawn or night. If the pixel brightness is too high or too low, the 

difference of the pixel brightness between the background and human usually decreases. Therefore, the 

thresholds used for obtaining the binarization image from background subtraction should be reduced in 

these cases. This scheme means that the parameters of the detector of the human by background 

subtraction are adaptively determined by the background information (the pixel brightness of the 

background). Other research proposed the usage of stereo thermal cameras [10] and a dual system of 

visible light and thermal cameras [11]. However, these systems are expensive and oversized, owing to 

the use of two cameras. 
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Table 1. Comparison of previous and the proposed methods. HOG, histogram of the oriented gradient; EM, expectation minimization; CSM, 

contour saliency map. 

Category Without Background Generation [7–9,15–20] 

With Background Generation 

Not Adjusting the Parameters for Detection Based on 

Background Information [21–29] 

Adjusting the Parameters for Detection Based on 

Background Information (Proposed Method) 

Examples 

- Motion + SIFT-based [2], HOG-based [7–9,15–17], 

geometric characteristics-based [15,17,18],  

Adaboost-based [19] and soft-label boosting-based [20] 

detection of object. 

- Gaussian model-based [21–23,25], texture  

change-based [23], EM-based [26,27] and image  

averaging-based [28] background modeling and subtraction. 
- The correct background image can be generated 

by image averaging, various filtering and erasing 

of the human area with adaptive determination of 

thresholds and parameters for the human detector. 

- CSM-based [21,24,25], CSM template matching-based [22], 

shape and appearance-based [26,27], spatiotemporal texture 

vectors-based [23], boosting framework-based [28] and 

particle filter and histogram-based [29] detection of object. 

Advantages - Can detect object without a background image. 
- Can be applicable to various environmental conditions and 

can detect objects of various scales. 

- Robust detection of the human area can be 

obtained by adaptively determining the thresholds 

and parameters for detection considering  

background information.  

- Does not require a training procedure to obtain 

the classifier of human detection. 

Disadvantages 

- Requires a pre-defined template or classifier for the 

human area that must be obtained through training. 

- Performance degradation can occur if the intensity of the 

object is similar to the background. 

- Additional procedure is required for obtaining 

correct background image. 

- Performance is influenced by various environmental 

factors, such as rain, snow and the amount of sunlight. 

- The approach can produce erroneous background, including 

the image areas occupied by humans, if the image frames 

include the image areas occupied by motionless humans. 

- Requires significant processing time to detect the 

human area in the entire image by scanning. 

- Parameters for the detector of the image areas occupied by 

humans are not adaptively determined based on  

background information. 
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To address these problems, we present a new method of detecting human areas in a thermal image  

in varying environmental conditions. The proposed approach is based on the method of background 

subtraction. One background image is generated using median and average filtering. Additional 

filtering procedures based on maximum gray level, size filtering and region erasing are applied to 

remove human areas from the background image. Candidate human regions in the input image are 

located by combining the pixel and edge difference images between the input and background images. 

The thresholds for the difference images are adaptively determined based on the brightness of the 

generated background image. Noise components are removed by component labeling, a morphological 

operation and size filtering. The contiguous foreground area may be occupied by more than a single 

human. In addition, the size of this area can be too small to be accepted as the foreground area, which is 

caused by the incorrect detection of the foreground area. Therefore, these detected areas are merged or 

separated by the further procedure based on the information in the horizontal and vertical histograms of the 

detected area. This procedure is adaptively operated based on the brightness of the generated background 

image. Finally, a further procedure for the separation and removal of the candidate human regions is 

performed based on the information of the size and the ratio of the height to width of the candidate 

regions considering the camera viewing direction and perspective projection.  

Table 1 presents a summarized comparison of the previous research of human detection in thermal 

camera images and the proposed method. 

This paper is organized as follows. We provide an overview of the proposed algorithm in Section 2. We 

present experimental results and analysis in Section 3. Finally, conclusions are presented in Section 4. 

2. Proposed Method 

2.1. Proposed Method 

An overview of the proposed method is presented in Figure 1. 

Our approach for detecting humans in a thermal image can be divided into three steps: generating a 

background image, obtaining a difference image with the background and input image and detecting 

humans in the difference image. As explained in Section 1, we call the image acquired in the sub-bands 

of MWIR and LWIR the thermal image [6] in this paper. 

To begin, a background image is generated. In this step, a correct background image is obtained by 

various filtering and erasing of human areas (see the details in Section 2.2). Then, two (pixel and edge) 

difference images are obtained from the background and input images. These two binary difference images 

are combined using pixel-wise conjunction. The thresholds for the difference images are adaptively 

determined based on the brightness information of the generated background image (see the details in 

Section 2.3). 

The third step addresses human detection in the combined difference image. After applying size 

filtering and a morphology operation based on the size of the candidate areas, noise is removed. The 

remaining areas are separated by a vertical and horizontal histogram of the detected regions using the 

intensity of the background. Detected regions that may have more than two human areas are merged. 

Therefore, further procedures are performed to separate the candidate regions and to remove noise 

regions. These are based on the information of the size and ratio (of the height to width) of the 
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candidate regions considering the camera-viewing angle and perspective projection (see the details in 

Section 2.4). Finally, we obtain the correct human areas. 

 

Figure 1. Overall procedure of the proposed method. 

2.2. Generating a Background Image 

Research into detecting humans has focused on creating background models to detect candidate 

regions of human areas [21–29]. Generating a robust background image is essential to extract 

candidate regions of human areas based on background subtraction. However, the methods of creating a 

background image from a sequence containing motionless humans in all frames have a problem in that 

an incorrect background is generated with a human included. This influences the performance of 

detecting a human based on the background-subtraction method. To solve this problem, two images 

from different sequences are averaged to obtain a background image [26]. This, however, has the 

problem that the brightness of the generated background image is changed compared to the input 

image, causing a human area detection error. For example, if the first image is from the sequence 

captured in the daytime and the second one is from the sequence captured at night, the pixel values, 



Sensors 2015, 15 6769 

 

 

even in the same position, are different from each other in these two images. That is because the  

pixel value in the thermal image is usually higher in the daytime than that at night. Therefore, if a 

temporal-averaged image is obtained from these two images as a background image, the pixel value in 

each position of the background image is different from that of the first or second image. Therefore, 

although a current input image is obtained in the daytime or at night, the pixel value in each position of 

the current input image is different from that of the background image, even at the same position 

without humans. Consequently, these pixel differences produce a lot of erroneous regions as the 

human area by background subtraction. 

Therefore, we propose an approach for generating a correct background image under these 

conditions. A flow chart of the proposed method is presented in Figure 2. 

In the proposed research, one background image is generated with training before testing. In detail, 

one background image is generated using training images, whereas the performance of our method is 

measured using the testing images that are not used for generating the background image. Although the 

training images include both background and humans, an accurate background image (excluding the 

image areas occupied by humans) is obtained by our method in Figure 2. The sequence of training 

images is processed by a median filter of 3 × 3 pixels to reduce noise; pixels with the same positions as 

the training images are temporally averaged as illustrated in Figure 3a. In previous research [28],  

Calafut et al. obtained the background image using the simple operation of temporal averaging. 

However, an incorrect background is generated when areas of motionless humans are included in the 

image sequence. Therefore, we propose a method for obtaining the correct background image by 

including an additional procedure to remove human areas in the background image as follows. 

Normally, a human area has the characteristics that its gray level is higher than the background area in 

thermal image. In detail, the pixel of higher temperature usually has a larger value than that of lower 

temperature in the thermal image. Therefore, because humans actively emit heat, the corresponding 

pixel values usually have a larger one in the thermal image compared to those of the background. 

 

Figure 2. Flow chart of generating a background image. 
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(a) (b) 

(c) 

Figure 3. Examples of obtaining the background image from an open database:  

(a) preliminary background image obtained by temporal averaging; (b) extracted human 

areas by the binarization, labeling, size filtering and a morphological operation of Figure 2; 

and (c) the generated final background image. 

Based on this, to force the human area to be more distinctive compared to the background region, 

we apply a 3 × 3 local max filter (that selects a pixel if it has the maximum value in the window) to the 

background image. Then, the processed image is converted to a binarized version based on the 

threshold method of Equation (3) [30]: μ = ∑ ∑ ,݅)ܫ ݆)ேୀଵெୀଵܯ × ܰ  (1)

σ = 	ඨ∑ ∑ ,݅)ܫ) ݆) − μ)ଶேୀଵெୀଵ ܯ × ܰ − 1  (2)

,݅)ܤ ݆) = ቄ 0 ݂݅ ,݅)ܫ ݆) > μ + ܶℎ ∙ σ1 ݁ݏ݅ݓݎℎ݁ݐ  (3)

where Ik(i, j) is the gray value of the pixel at the position (i, j). M and N are the width and height of the 

image, respectively. μk and σk are the average value and standard deviation of the image pixel, respectively. 

Bk(i, j) is a binary image, and k is the number of the input image in the sequence. Th is the optimal 

parameter, which is experimentally determined.  

Then, the candidates of human areas are detected as shown in Figure 3b. As shown in Figure 3b, 

most of the detected candidate areas represent the humans, and these areas should not be included in 

the generated background image. Therefore, our method removes them by the procedure of erasing the 

areas. A detailed explanation of the erasing algorithm follows. By horizontal scanning, the left- and 

right-most positions of each candidate area per each row are located. Then, the pixels whose X 

positions are smaller and larger than the left- and right-most positions are determined as the pixels of 
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the nonhuman region, respectively. Finally, the candidate area per each row is erased by linear 

interpolation with these pixels. This procedure is iterated within the entire image. 

For example, we assume that the left-upper-most position of the image is (0, 0) at the (x, y) 

coordinate, and one candidate area is composed of seven pixels, such as (50, 1), (51, 1), (52, 1),  

(49, 2), (50, 2), (51, 2) and (52, 2), respectively. Then, there is no detected left- and right-most position 

by the horizontal scanning of the 1st row. By the horizontal scanning of the 2nd row, the left- and  

right-most positions are detected as (50, 1) and (52, 1), respectively. Then, (48, 1) (the pixel whose X 

position is smaller than the left-most position) and (54, 1) (the pixel whose X position is larger than the 

right-most position) can be determined as the pixels of the nonhuman region, respectively. If the gray 

levels at the positions (48, 1) and (54, 1) are 10 and 70, respectively, the candidate area of the 2nd row is 

erased by linear interpolation with 10 and 70. That is, the gray values of 10, 20, 30, 40, 50, 60 and 70 are 

newly assigned to the pixels of (48, 1), (49, 1), (50, 1), (51, 1), (52, 1), (53, 1) and (54, 1), respectively. 

This procedure is iterated from the 3rd row to the last row. Through this procedure, the discontinuous 

boundary between the human candidate area and its neighboring background can disappear, and the 

consequent candidate area can be removed. 

From these methods, a correct background image is generated, even though motionless humans 

exist in all of the images at the same location. In the proposed research, we used two kinds of 

databases, an open database and our own database. Detailed descriptions of these databases are 

provided in Section 3.1. An example of the final background image with the open database is 

displayed in Figure 3c. We can observe that the background image does not include the human areas. 

In Figures 4 and 5, we present additional examples for obtaining the background images using the 

proposed method with our database. We can confirm that the proposed method can generate correct 

backgrounds that do not include human areas. 

 
(a) (b) 

(c) 

Figure 4. The first example for obtaining a background image from our database:  

(a) preliminary background image obtained by temporal averaging; (b) extracted human 

areas; and (c) the generated final background image. 
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(a) (b) 

(c) 

Figure 5. The second example for obtaining a background image from our database:  

(a) preliminary background image obtained by temporal averaging; (b) extracted human 

areas; and (c) the generated final background image. 

2.3. Generating a Difference Image with the Background and Input Image 

To identify the regions-of-interest (ROI) that contain humans, we use a background-subtraction 

technique, as illustrated in Figure 1. First, we apply median and average filters of 3 × 3 pixels to an 

input image to reduce noise. A pixel difference image is created with the pixels between the 

background and input images using optimal thresholds based on the intensity of the background image. 

The operator is presented in Equations (4) and (5). 

ܤ(݅, ݆)ே
ୀଵ > ܶெ

ୀଵ ܽ݊݀ {ܫ(݅, ݆) − ,݅)ܤ ݆)}ே
ୀଵ

ெ
ୀଵ > ܷ (4)

where Bk(i, j) and Ik(i, j) are the pixel gray levels of a generated background and an input image at the 

position (i, j), respectively. M and N are the width and height of the image, respectively. k is number of 

the input image in the sequence. T and U are the optimal thresholds, which were experimentally 

determined. If Equation (4) with pixel Ik(i, j) is satisfied, a binarized image (Dk(i, j)) is obtained using 

Equation (5). ܦ(݅, ݆) = ቄ 1 ݂݅ ,݅)ܫ| ݆) − ,݅)ܤ ݆)| > ܺ0 ݁ݏ݅ݓݎℎ݁ݐ  (5)

where X is an optimal threshold that is adaptively determined based on the brightness of the 

background image. In detail, with too large or small of a value of the brightness of the background 

image, the proposed system assigns a smaller value to X, because the pixel difference between the input 

and background image usually decreases in these cases. This adaptive scheme enables the detection of a 

human area by background subtraction to be robust to various environmental conditions of the background.  
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As indicated in Figure 6c, the difference image is created by the pixel difference between the input 

and background image. We can determine the rough regions of the human candidates using these 

procedures. However, using the pixel difference only is ineffective for detecting the shape of the 

objects. If only the pixel difference is used, it is difficult to detect regions of human areas whose 

intensities are similar to those of the background image. Furthermore, some regions of human areas 

can be removed or separated as small parts (as indicated in the two small areas within the red-dotted 

circle in the middle portion of Figure 6c) that may be removed by the subsequent filtering procedures, 

even though these regions contain humans. 

To overcome these problems, we also create an edge difference image with edges between the 

background and input image. Using a standard Sobel mask of 3 × 3 pixels, the edge of the background 

and input image can be extracted. Based on the same methods of Equations (4) and (5), an edge image 

is obtained by background subtraction with the input and background edge images considering the 

brightness of the background image (Figure 6d). 

The pixel and edge (binary) difference images are then combined (Figure 6e) using pixel-wise 

conjunction. This means that if either pixel of the pixel or edge difference image represents a human 

area, it is determined to be a human region. 

 
(a) (b) 

 
(c) (d) 

(e) 

Figure 6. Example of the fusion of two difference images: (a) input image; (b) background 

image; (c) pixel difference image; (d) edge difference image; and (e) fusion of the pixel 

and edge difference images. 
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2.4. Human Detection 

With the combined image of pixel and edge differences (as explained in Section 2.3 and Figure 6e), 

human detection is performed as shown in Figure 1. Many noises of a small size exist in the combined 

image. In order to eliminate noises and figure out the candidate region of the human, component 

labeling, morphological operation (erosion and dilation) and size filtering are applied to the image. 

Then, we can get the regions of human candidates. However, it is often the case that more than two 

people can be detected as one candidate region. Therefore, the proposed method determines whether the 

candidate region is separated or not based on the histogram information of the region (see the details in 

Section 2.4.1). 

2.4.1. Division of Candidate Region Based on Histogram Information 

Horizontal and vertical histograms of each candidate region are obtained to determine whether the 

candidate region should be separated. In Figure 7, we present an example where a candidate region is 

divided into two parts using the horizontal histogram based on the size, the ratio of height to width and 

the intensity of the background. In detail, if the size of a detected region is greater than a threshold or 

the ratio of the height to width is not satisfied with the condition, the region is separated into two parts 

based on the histogram information. This procedure is executed only if the brightness of the 

background is less than the threshold. This is because, in this case, the pixel and edge differences 

between the human area and background image become large, and consequently, the credibility of the 

detected candidate region is high. The horizontal histogram is obtained by Equation (6): 

ݔܨ = ܲ(ݔ)ܫ, ூ((ݕ
௬ୀ  (6)

where I(x, y) is the pixel intensity at a location (x, y) within the candidate region and P(·) is equal to 

one if I(x, y) is true, otherwise zero. Iy is the height of the candidate region. In Figure 7b, Bx is the 

horizontal index of the candidate region within the image. As indicated in Figure 7b, if the minimum 

value of Fx, which represents the position of separation, is lower than the threshold, the candidate 

region is separated into two parts based on the position, as illustrated in Figure 7c. 

 
(a) 

Figure 7. Cont.  
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(b) (c) 

Figure 7. Division of the candidate region within an input image based on the horizontal 

histogram: (a) input image; (b) detected candidate region and its horizontal histogram; and 

(c) the division result of the candidate region. 

Then, the proposed method determines whether the candidate region should be separated based on 

the vertical histogram information of the region. In Figure 8, a candidate region is divided into two 

parts by the vertical histogram based on the size, the ratio of the height to width and the intensity of the 

background. In detail, if either the size or the ratio of the height to width of the detected box is larger 

than the threshold considering the prior knowledge of the image area occupied by the human, the 

detected box is separated into two parts based on the histogram information. This procedure is executed 

only if the brightness of the background is less than the threshold. This is because, in this case, the pixel 

and edge differences between the human area and background image become large, and consequently, 

the credibility of the detected candidate region is high. The vertical histogram is obtained by Equation (7): 

ݕܨ =ܲ(ݔ)ܫ, ூೣ((ݕ
௫ୀ  (7)

where I(x, y) is the pixel intensity at location (x, y) within the candidate region and P(·) is equal to one 

if I(x, y) is true, otherwise zero. Ix is the width of the candidate region. In Figure 8b, By is the vertical 

index of the candidate region within the image. As indicated in Figure 8b, if the minimum value of Fy, 

which represents the position of separation, is lower than the threshold, the candidate region is 

separated into two parts based on the position, as illustrated in Figure 8c. 
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(a) 

 

(b) (c) 

Figure 8. Division of the candidate region within an input image based on the vertical 

histogram: (a) input image; (b) detected candidate region and its vertical histogram; and  

(c) the division result of the candidate region. 

2.4.2. Division of the Candidate Region Based on Camera Viewing Direction with Perspective Projection 

To separate the candidate regions more accurately, additional procedures are performed. In Figure 9, 

the sizes of the candidates are considerably different from each other. This is caused by the camera 

viewing direction and perspective projection. Because the position of the thermal camera is near the 

bottom of the image and the camera captures the scene in a slanted direction, the Z distance between the 

camera and object in the bottom area of the image is closer than that in the upper area. Therefore, if the 

position of an object is located in the upper area of the image, the size of the object inevitably becomes 

smaller, owing to the greater Z distance based on the principle of perspective projection. Therefore, the 

proposed system determines whether the detected candidate is separated. In detail, a larger candidate 

region is allowed when it is detected in the bottom area of the image, whereas a smaller candidate region 

is permitted if it is detected in the upper area of the image. Candidates whose size exceeds a threshold are 

separated into multiple parts. 
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(a) 

(b) 

Figure 9. Example of different sizes of human areas resulting from camera viewing 

direction and perspective projection: (a) input image, including three detected areas of 

humans; and (b) information of the width, height and size of the three detected human 

areas, respectively. 

In our research, we do not actually perform the method of camera perspective projection. However, 

we consider only the concept of camera perspective projection (the size of the object in the camera 

image becomes larger with a smaller Z distance, whereas it becomes smaller with a larger Z distance) 

for determining whether the detected candidate should be separated or not. Therefore, actual camera 

calibration is not performed in our method. 

Then, the correct areas of the human are detected by using size filtering based on the size and the 

ratio of the height to width of the region. From that, we can obtain the final human areas, excluding 

other objects, such as vehicles, as shown in Figure 10c. 

 
(a) (b) 

Figure 10. Cont.  
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(c) 

Figure 10. Result of obtaining the final region of the human area: (a) result after the process 

based on the separation of histogram information; (b) result after the process based on 

camera viewing direction and perspective projection; and (c) result of the final detected 

region of the human area. 

3. Experimental Results 

3.1. Dataset Description 

In this research, we used two thermal databases for the experiments. As explained in Section 1,  

we call the image acquired in the sub-bands of MWIR and LWIR the thermal image [6] in this paper. The 

first database was object tracking and classification beyond visible spectrum (OTCBVS) benchmark 

dataset [31]. This has been widely used as an open database for the performance evaluation of object 

detection in thermal imaging. It contains ten categorized sequences of thermal images obtained at different 

times and in different weather conditions. The dataset covers various environmental conditions, such as 

morning, afternoon and rainy and sunny days. Each sequence contains from 18 to 73 frames, captured 

within one minute, such that the environmental factors, such as precipitation and temperature, remain 

unchanged [27]. There are 284 images. They are from 30-Hz video from an IR camera. The size of each 

image is 360 × 240 pixels. They were captured from the same location. Motionless humans are presented in 

Sequence 8. We tested all of the database images in the ten sequences. 

To validate the applicability of the proposed method irrespective of the kind of database, we also 

created a second database with our thermal camera. For convenience, we call this “our database”. This 

dataset has seven categorized sequences of thermal images that were captured with different behaviors, 

such as walking, running, standing and sitting. Each sequence contains from 64 to 144 frames. The 

total number of images is 768. They were captured using an ICI 7320 thermal camera [32]. The size of 

each image is 320 × 240 pixels of 14 bits. Humans in the images are approximately 20 to 68 pixels in 

width and 34 to 103 pixels in height. Motionless humans are presented in Sequences 4, 5, 6 and 7. 

We present the results of generating the background image in Section 3.2 and detection results with 

comparisons with other methods in Section 3.3. 

3.2. Results of Generating Background 

To demonstrate the performance of the proposed method in generating a background, the 

background image from the proposed method is compared with those of other methods, as presented in 
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Figure 11. In the previous method [28], they obtained a background image using a simple averaging 

operation. In [26], they obtained a background image by averaging the frames in two different sequences. 

 

 

Figure 11. Comparisons of generated background images with the OTCBVS benchmark 

dataset. The left-upper [28], right-upper [26], left-lower [24,25,33], and right-lower figures 

are generated by previous methods and the proposed one, respectively.  

Because there exist motionless people in all of the images of Figure 11, the human areas are not 

completely removed from background images by the previous methods [26,28], as illustrated in the left 

and middle images of Figure 11, respectively. The brightness of the entire image is also changed by 

averaging the frames in two different sequences in [26]. This brightness change of some parts, such as trees 

and vehicles, causes the incorrect detection of human areas in an input image by background 

subtraction, because there is a difference between the brightness of the parts of background and the 

input images. However, all of these human areas are removed using the proposed method while 

maintaining the brightness of the entire image, including trees and vehicles, as displayed in the right 

image of Figure 11. From that, we can confirm that the correct background can be obtained using the 

proposed method. 

Most previous research used the simple temporal averaging [26,28,34–36] and temporal median 

filtering [37] for background generation, which cannot solve the problems of motionless humans. We 

additionally compared other methods (not using simple temporal averaging and temporal median 

filtering, however; explicitly trying to solve the problems of motionless humans) [24,25,33] to our 

method for background generation. In the research by [24,25,33], they generated the statistical 

background model by calculating weighted means and variances of the sampled values. As shown in 

Figure 11, the human areas are not completely removed from background images by the previous 

methods [24,25,33], whereas all of these human areas are removed using the proposed method, which 

shows that our method of background generation outperforms the previous method [24,25,33]. 

In Figure 12, the background images from our database (second database) generated by the 

proposed method in various environmental conditions are presented. The human areas are not 

completely removed from the background images by the previous methods [26,28], as indicated in the 
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left and middle images of Figure 12, respectively. Comparing the images from [26,28], the 

distinctiveness of the human areas is reduced significantly more by [26,28]. The brightness of the entire 

image is changed by averaging the frames in the two different sequences in [26]. This brightness change of 

the entire image causes the incorrect detection of human areas in the input image by background 

subtraction, because there is a difference between the brightness of the background and the input 

images. However, human areas are not contained in the background images from the proposed method, 

and we can confirm that a correct background can be obtained using the proposed method. 

 
(a) 

 
(b) 

Figure 12. Comparisons of generated background images with our database (second database). 

The left, middle and right figures of (a,b) are by simple temporal averaging operation [28], 

averaging the frames in two difference sequences [26] and the proposed method, respectively: 

(a) with Sequence 4 of [28] (left figure) and the proposed method (right figure) and with 

Sequences 4 and 1 of [26] (middle figure); (b) with Sequence 5 of [28] (left figure) and the 

proposed method (right figure) and with Sequences 5 and 2 of [26] (middle figure). 

3.3. Detection Results 

In this subsection, we present the detection results of the next experiment using the proposed 

method. In Figure 13, the detection results of various frames are presented. The images were captured 

at different times and in different weather conditions. Each detected region of a human is surrounded 

by a white box. In all cases, the human areas were detected successfully, in spite of the overlapping of 

humans (Figure 13a,d–f), darker human areas than the background (Figure 13b), vehicles, which have 

a similar intensity as humans (Figure 13c,d), a human using an umbrella (Figure 13a) and various 

kinds of human behavior, such as walking, running, sitting and standing (Figure 13g–j). 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 13. Cont. 
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(i) (j) 

Figure 13. Detection results with the OTCBVS benchmark dataset (a–f) and our  

database (g–j). Results of images in: (a) Sequence 1; (b) Sequence 3; (c) Sequence 4;  

(d) Sequence 5; (e) Sequence 6; (f) Sequence 7; (g) Sequence 2; (h) Sequence 3;  

(i) Sequence 4; and (j) Sequence 6. 

In the next experiments, we quantitatively compared the detection accuracies using the proposed 

method to those of other methods. For this, we manually depicted bounding boxes on the human areas 

in the images as ground truth regions. The detection results were evaluated using the Pascal criteria [38] 

to judge true/false positives by measuring the overlap of the bounding box and a ground truth box. If 

the area of overlap ܽ	between the detected bounding box Bd and ground truth box Bgt of Figure 14 

exceeded 0.5 (50%) using Equation (8) [19,38,39], we counted the result as a correct detection [39]. ܽ = ௗܤ)ܽ݁ݎܽ ௗܤ)ܽ݁ݎܽ(௧ܤ⋂ ௧) (8)ܤ⋃

where Bd ⋂ Bgt denotes the intersection of the detected and ground truth bounding boxes. Bd ⋃ Bgt is 

their union [39]. 

 

Figure 14. Overlapping area of ground truth and detected boxes. 

Based on Equation (8), we can count the number of true positive (TP) and false positive (FP) 

detection cases. Positive and negative samples mean the human area and background area, respectively. 

That is, the TP case is that the human area is correctly detected as a human, whereas the FP case is that 

the background area is incorrectly detected as a human. Based on this, we measured the accuracies of the 

human detection in terms of positive predictive value (PPV) (precision) and sensitivity (recall), as 
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indicated in Equations (9) and (10) [15,40]. In these equations, #TP, #FP and #human areas in all of the 

images represent the number of TP cases, FP cases and human areas in all of the images, respectively. 

As indicated in Equations (9) and (10), a higher value of PPV and sensitivity means a higher accuracy 

of human detection. PPV = #TP#TP + #FP (9)Sensitivity = #TP#human areas in all the images (10)

As indicated in Table 2, the detection accuracy of the proposed method with the OTCBVS 

benchmark dataset is compared with other methods [15,22,26]. Experimental results confirm that the 

proposed method outperformed the other methods [15,22,26] in terms of both PPV and sensitivity. 

Table 2. Comparison of the detection results for the proposed method and other methods 

with the OTCBVS benchmark dataset. PPV, positive predictive value. 

Sequence No. 1 2 3 4 5 6 7 8 9 10 Total 

#Frames 31 28 23 18 23 18 22 24 73 24 284 

#People 91 100 101 109 101 97 94 99 95 97 984 

#TP 

[15] 78 95 70 109 91 88 64 82 91 77 845 

[22] 88 94 101 107 90 93 92 75 95 95 930 

[26] 91 99 100 109 101 97 94 99 95 94 979 

Proposed method 91 100 99 109 101 95 94 99 95 97 980 

#FP 

[15] 2 3 13 10 6 2 2 0 9 0 41 

[22] 0 0 1 1 0 0 0 1 0 3 6 

[26] 0 0 2 0 0 0 0 1 0 3 6 

Proposed method 0 0 1 3 0 0 0 0 0 0 4 

PPV 

[15] 0.98 0.97 0.84 0.92 0.94 0.98 0.94 1 0.91 1 0.95 

[22] 1 1 0.99 0.99 1 1 1 0.99 1 0.97 0.9936 

[26] 1 1 0.98 1 1 1 1 0.99 1 0.97 0.9939 

Proposed method 1 1 0.99 0.97 1 1 1 1 1 1 0.9959 

Sensitivity 

[15] 0.86 0.95 0.69 1 0.83 0.91 0.68 0.83 0.96 0.79 0.86 

[22] 0.97 0.94 1 0.98 0.89 0.96 0.98 0.76 1 0.98 0.9459 

[26] 1 0.99 0.99 1 1 1 1 1 1 0.97 0.9949 

Proposed method 1 1 0.98 1 1 0.98 1 1 1 1 0.9959 

In Table 3, the detection accuracy of the proposed method with our database (second database) is 

presented. In Table 3, the PPV and sensitivity are 98.05% and 97.35%, respectively. From Tables 2 and 3, 

we can conclude that the proposed method can be applied to thermal images irrespective of the kind  

of database. 
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Table 3. Comparison of the detection results for the proposed method and other methods 

with “our database” (second database). 

Sequence No. 1 2 3 4 5 6 7 Total 

#Frames 137 144 64 85 127 127 84 768 

#People 203 327 116 238 292 467 168 1,811 

#TP 

[22] 174 285 105 219 289 350 167 1,589 

[26] 203 319 98 238 292 412 168 1,730 

Proposed method 203 314 114 235 292 437 168 1,763 

#FP 

[22] 47 21 21 1 3 20 2 115 

[26] 1 17 0 6 0 16 52 92 

Proposed method 0 13 5 6 0 11 0 35 

PPV 

[22] 0.7873 0.9314 0.8333 0.9955 0.9897 0.9459 0.9882 0.9325 

[26] 0.9951 0.9494 1 0.9754 1 0.9626 0.7636 0.9495 

Proposed method 1 0.9602 0.9580 0.9751 1 0.9754 1 0.9805 

Sensitivity 

[22] 0.8571 0.8716 0.9052 0.9202 0.9897 0.7495 0.994 0.8774 

[26] 1 0.9755 0.8448 1 1 0.8822 1 0.9553 

Proposed method 1 0.9602 0.9828 0.9874 1 0.9358 1 0.9735 

In Figure 15, we show the detection error cases by the proposed method with the open database. There 

are five people in the upper-left area of an image. However, four people are detected by the proposed 

algorithm. This is because of erroneous separation caused by the close positions of five people  

with occlusion. 

(a)  (b) 

Figure 15. Detection error cases with the OTCBVS benchmark dataset: (a) original image; 

(b) result of the proposed method. 

In Figure 16, we show the detection error cases by the proposed method with our database. In Figure 16, 

one candidate region including two people is incorrectly detected in the upper area of an image. This is 

because the two people are overlapped. As shown in Figures 15 and 16, most of the errors are caused by 

the occlusion of people, and we would research the method for solving this problem based on more 

accurate segmentation of human areas as future work. 
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(a)  (b) 

Figure 16. Detection error cases with our database: (a) original image; (b) result of the 

proposed method. 

4. Conclusions 

In this study, we presented a new approach to detect humans in thermal images based on the 

generation of a background image in various environmental conditions. A correct background image 

was generated by image averaging and detection and erasing methods of human areas. A difference 

image was obtained by combining pixel and edge difference images. Human candidate regions, 

detected in the difference image, were divided and redefined based on histogram information, 

perspective projection and intensity of the background image. Based on the redefined candidate region, 

correct human areas were detected. The optimal thresholds for generating difference images and 

defining the candidate region were adaptively determined based on the brightness of the generated 

background. The experimental results confirmed that the detection accuracies of the proposed method 

were higher than other methods. 

In future work, we plan to apply the proposed method to images captured by a visible light camera. 

Additionally, we will research the method for solving the problem of the inaccurate detection of 

human areas caused by occlusion. Furthermore, we will expand the proposed research into human  

activity recognition. 
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