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ABSTRACT

Mono-(2-ethylhexyl) phthalate (MEHP) is the active metabo-
lite of the most commonly used plasticizer, di-(2-ethylhexyl)
phthalate, and is considered to be a reproductive toxicant.
However, little is known about the effects of MEHP on ovarian
antral follicles. Thus, the present study tested the hypothesis that
MEHP inhibits follicle growth via oxidative stress pathways. The
data indicate that MEHP increases reactive oxygen species (ROS)
levels and inhibits follicle growth in antral follicles, whereas N-
acetylcysteine (NAC; an antioxidant) restores ROS levels to
control levels and rescues follicles from MEHP-induced inhibi-
tion of follicle growth. To further analyze the mechanism by
which MEHP induces oxidative stress and inhibits follicle
growth, the expression and activities of various key antioxidant
enzymes (copper/zinc superoxide dismutase [SOD1], glutathi-
one peroxidase [GPX], and catalase [CAT]) and the expression of
key cell-cycle regulators (Ccnd2, Ccne1, and Cdk4) and
apoptotic regulators (Bcl-2 and Bax) were compared in control
and MEHP-treated follicles. The data indicate that MEHP inhibits
the expression and activities of SOD1 and GPX; does not inhibit
Cat expression; inhibits the expression of Ccnd2, Ccne1, Cdk4,
and Bcl-2; but increases the expression of Bax compared to
controls. Furthermore, NAC blocks these toxic effects of MEHP.
Collectively, these data suggest that MEHP induces oxidative
stress by disrupting the activities of antioxidant enzymes. This
may lead to decreased expression of cell-cycle regulators and
antiapoptotic regulators and increased expression of proapop-
totic factors, which then may lead to inhibition of follicle
growth.

ovary, oxidative stress, toxicology

INTRODUCTION

Phthalates are synthetic plasticizers widely used in plastics
and other common consumer products, such as food packaging,
toys, cosmetics, clothing, and biomedical devices [1]. Di-(2-
ethylhexyl) phthalate (DEHP), one of the most common
phthalates, is not covalently bound to polymers in plastic.
Thus, it leaches out of products and gets into the environment,

making it a widespread environmental contaminant [2].
Humans are exposed to DEHP predominantly via contaminated
food or beverages. Studies have shown that the exposure level
of DEHP in the general population is close to the tolerable
daily intake (2 mg/day); however, individuals undergoing
certain medical procedures may be exposed to even higher
levels (more than 100 fold) via plastic medical devices [1, 3].
Numerous human epidemiologic studies have reported an
association between increased plasma levels of DEHP and
various adverse reproductive outcomes in women, including
endometriosis, uterine leiomyoma, increased risk of premature
labor, and various pregnancy complications [4–7]. Although no
clear conclusions about the effects of DEHP on human
reproduction have been made due to small sample sizes and
study design limitations, the published studies have raised a
public health concern.

Numerous animal studies indicate that DEHP is an
endocrine-disrupting chemical and reproductive toxicant. In
male rats, perinatal DEHP exposure (10 mg/kg/day) disrupts
the development of androgen-dependent structures, mainly by
inhibiting testicular testosterone biosynthesis [6]. DEHP
exposure (1 g/kg) induces germ cell apoptosis in the rat
pubertal testis [8]. In female adult rats, high doses of DEHP (2
g/kg/day) result in prolonged estrous cycles, reduced serum
estradiol levels, and absence of ovulation [9]. In rats, neonatal
DEHP exposure (15 mg/kg/day) results in delayed onset of
puberty, and higher neonatal DEHP exposure (405 mg/kg/day)
increases the number of ovarian atretic tertiary follicles [10].

These previous in vivo studies provide important informa-
tion, but they cannot be used to determine whether the parent
compound, DEHP, or metabolites of DEHP cause toxicity.
This is because once DEHP gets into the body, it is hydrolyzed
into an active metabolite, mono-(2-ethylhexyl) phthalate
(MEHP), by lipases and esterases in the intestine and liver
[11]. Like DEHP, MEHP is thought to be an endocrine
disruptor and reproductive toxicant because several in vitro
studies indicate that MEHP adversely affects the structure and
function of reproductive tissues. For example, in vitro studies
indicate that MEHP (1 lM) reduces steroid production and
increases reactive oxygen species (ROS) generation in MA-10
Leydig cells [12]. Further, studies by Muzcynski et al. [13]
show that MEHP exposure (10 lM) significantly increases the
rate of apoptosis in cultured human and mouse fetal testes [13].
MEHP exposure (100 lM) lowers estradiol production by
reducing the expression of aromatase via peroxisome prolifer-
ator-activated receptor (PPAR)-dependent signaling pathways
in granulosa cells [14]. Both DEHP and MEHP reduce
estradiol production in antral follicles and inhibit follicle
growth in mice [15, 16]. Thus, MEHP, like DEHP, is thought
to be a reproductive toxicant.

Although previous studies suggest that DEHP and MEHP
have similar activities in terms of endocrine-disrupting ability
and reproductive toxicity, some studies indicate the chemicals
may act differently depending on dose and tissue type. For
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example, studies indicate that MEHP causes toxic effects at
lower doses than DEHP in Leydig cells and liver macrophages,
suggesting that MEHP may be more potent than its parent
compound [17–19]. Further, several in vitro studies indicate
that MEHP has different effects than DEHP. For example,
although MEHP inhibits rat follicle development, induces
testicular cell apoptosis, and disrupts fetal testis morphology
and functions, DEHP does not have these same effects [20–22].
Similarly, Thomas et al. [17] have reported that DEHP, but not
MEHP, decreases rat gonadal zinc levels.

Collectively, these studies suggest that the parent com-
pound, DEHP, and its major metabolite, MEHP, might affect
biological systems via different mechanisms. However,
whether DEHP and MEHP have similar or different effects
on the ovary is not known. Our previous study [15] showed
that DEHP induces oxidative stress in isolated antral follicles
by suppressing the expression and activity of copper/zinc
superoxide dismutase (SOD1) and that this inhibits follicle
growth, but it is not known whether MEHP induces oxidative
stress in antral follicles and, if so, whether it does this via
mechanisms similar to those of DEHP. It is important to
determine whether MEHP causes oxidative stress via similar
mechanisms as DEHP; for animals normally exposed to the
parent compound, DEHP, some of the compound may reach
the ovary as DEHP, but some will likely be metabolized to
MEHP. This raises the question of whether the oxidative stress
and follicle growth inhibition observed with DEHP is due to
DEHP or, after conversion by lipase and esterases in tissues
such as the intestine and liver, to MEHP. One way to determine
if MEHP is capable of damaging ovarian follicles is by directly
treating follicles with MEHP. Thus, the goals of the present
study were to test whether MEHP 1) inhibits follicle growth by
inducing oxidative stress in mouse antral follicles, 2) alters
similar enzymatic antioxidants as DEHP, and 3) is more toxic
than DEHP. If studies indicate that DEHP causes toxicity, it
may be important to limit exposure to the parent compound. If
studies indicate that MEHP also causes damage and/or is more
potent than DEHP, it may be important to develop ways to
inhibit the ability of the body to convert DEHP to MEHP.

Because our data indicated that MEHP inhibits follicle
growth, another goal of the present study was to expand our
knowledge about the mechanisms by which phthalates such as
MEHP affect follicle growth. Follicle growth depends on the
proliferation of follicular cells [23]. Like other cells in the
body, follicular cell proliferation is primarily regulated by
different phase-specific cell-cycle regulators, cyclin:cyclin-
dependent kinase (CDK) complexes. Any disruption of these
regulators will cause cell-cycle arrest and induce apoptosis,
therefore inhibiting follicle growth [24–26]. In the cell, cyclin
D2/cyclin-dependent kinase 4 complex is activated at the early
G1 phase, which can induce the expression of cyclin E1 and
push the cell into the S phase [27]. Studies have shown that
estrogenic endocrine-disrupting chemicals, such as methoxy-
chlor and bisphenol A, inhibit antral follicle growth by altering
the expression of G1/S-phase cell-cycle regulators [25, 26].
Studies have also shown that oxidative stress induces cell-cycle
arrest at the G1/S transition in breast cancer cells and Chinese
hamster ovary cells [28, 29] and that it is a common mediator
of apoptosis [30]. Thus, another goal of the present study was
to test whether MEHP-induced inhibition of follicle growth is
due to disruption of the expression of G1/S-phase cell-cycle
regulators, such as cyclin D2 (Ccnd2), cyclin E1 (Ccne1), and
cyclin-dependent kinase 4 (Cdk4), and apoptotic factors, such
as B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein
(Bax).

MATERIALS AND METHODS

Chemicals

The MEHP was purchased from AccuStandard (New Haven, CT). Stock
solutions of MEHP were prepared using dimethyl sulfoxide (DMSO; Sigma) as
a solvent and in various concentrations (0.133, 1.33, 13.3, and 133 mg/ml).
Stock solutions were used to make final working concentrations in culture of
0.1, 1, 10, and 100 lg/ml of MEHP, which are equivalent to approximately
0.359, 3.59, 35.9, and 359 lM. N-acetylcysteine (NAC) was purchased from
Sigma. A stock solution of NAC (100 mM) was prepared using alpha-minimum
essential medium (a-MEM; Invitrogen), and the final concentrations of NAC in
each well of the culture were 0.5 and 1 mM.

The MEHP concentrations were chosen based on studies showing that
micromolar concentrations of MEHP impair rat follicle development in vitro
[20] and inhibit hormone production via nuclear PPAR pathways in mouse
antral follicles as well as in rat and human granulosa cells [16, 31–33]. The
selected MEHP concentrations also are environmentally relevant levels. MEHP
plasma concentrations in healthy women have been reported to be
approximately 0.6 lg/ml, and peritoneal fluid concentrations have been
reported to be 0.4 lg/ml [34]. These concentrations are in the range of the lower
doses (0.1 and 1 lg/ml) used in the current experiments. In addition, patients
undergoing intensive medical care usually have markedly higher MEHP levels
than healthy people [35, 36]. MEHP plasma levels in blood transfusion patients
can reach as high as 50 lM, and MEHP levels of 15.1 lg/ml have been
detected in infants in neonatal intensive care units [37]. These concentrations
are encompassed by the two higher doses (10 and 100 lg/ml) used in current
experiments.

Animals

CD-1 mice were maintained at the University of Illinois at Urbana-
Champaign, Veterinary Medicine Animal Facility, under a 12L:12D photope-
riod. Mice were given food and water ad libitum. Animals were euthanized at
32–35 days of age. The ovaries were removed and the antral follicles isolated as
described below. All animal procedures were approved by the University of
Illinois Institutional Animal Care and Use Committee.

Follicle Culture

Based on appearance and relative size (diameter, 250–400 lm), antral
follicles were isolated mechanically from ovaries of cycling, young CD-1 mice,
and interstitial tissue was removed using fine watchmaker forceps and
individually placed in wells of 96-well culture plates [38]. At least three mice
were used per experiment, providing approximately 25–40 follicles per mouse.
The isolated follicles were randomly divided into different treatment groups (n
¼ 10–32 follicles/group).

Doses of vehicle control (DMSO) or MEHP (0.1, 1, 10, and 100 lg/ml)
with or without NAC (0.5 or 1 mM) were individually prepared in
supplemented a-MEM as described previously [15, 33]. Supplemented a-
MEM was prepared with 1% ITS (10 ng/ml of insulin, 5.5 ng/ml of transferrin,
and 5.5 ng/ml of selenium), 100 mg/ml of streptomycin, 100 IU/ml of
penicillin, 5% fetal calf serum (Atlanta Biologicals), and 5 IU/ml of human
recombinant follicle-stimulating hormone (Dr. A. F. Parlow, National Hormone
and Peptide Program, Harbor-UCLA Medical Center, Torrance, CA). An equal
volume of chemical was added to each treatment group to control for the
amount of vehicle in each preparation. Nontreated controls (supplemented
medium only) were used in each experiment as a control for culture conditions.
All follicles were cultured in 150 ll of medium for 24–96 h in an incubator at
378C supplying 5% CO

2
. At the end of culture, follicles were collected, snap-

frozen, and stored at �808C for later use.

Analysis of Follicle Growth

Follicle growth was examined every 24 h by measuring follicle diameter on
perpendicular axes with an inverted microscope equipped with a calibrated
ocular micrometer. Follicle diameter measurements were averaged and plotted
to compare the effects of chemical treatments on growth. All measurements
were done without knowledge of the treatment group. Data are presented as the
percentage change over time. At least three separate experiments were
performed for each treatment to obtain enough power for statistical analysis.

Gene Expression Analysis

Antral follicles were collected and snap-frozen at the end of culture for
quantitative real-time PCR (qPCR) analysis. Total RNA was extracted from
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follicles using the RNeasy Micro Kit (Qiagen, Inc.) according to the
manufacturer’s protocol. Total RNA (200 ng) was reverse transcribed to
cDNA using an iScript RT kit (Bio-Rad) following the manufacturer’s
instructions. The qPCR analysis was performed using CFX96 Real-Time PCR
Detection System (Bio-Rad) and accompanying software (CFX Manager
Software) according to the manufacturer’s instructions. Specific qPCR primers
for Sod1, glutathione peroxidase (Gpx), catalase (Cat), Ccnd2, Ccne1, Cdk4,
Bcl-2, Bax, and b-actin (Actb) were used in each reaction (see Table 1 for
sequences). An initial incubation of 958C for 10 min was followed by 45 cycles
of denaturing at 948C for 10 sec, annealing at 608C for 10 sec, and extension at
728C for 10 sec, with a final extension at 728C for 10 min. A melting curve was
generated at 55–908C to monitor the generation of a single product. Actb was
used as a reference gene for each sample because preliminary experiments
indicated that expression of this gene did not change in response to DMSO and
MEHP treatments (data not shown). Relative fold-changes were calculated as
the ratio to the DMSO treatment group level, which was set as 1.0. All samples
were measured in triplicate from at least three separate experiments.

Enzyme Activity Assays

Antral follicles were collected and snap-frozen at the end of culture for
enzyme activity assays. Protein was extracted, and the activities of SOD1,
GPX, and CAT were measured using specific enzyme activity kits (Cayman)
according to the manufacturer’s instructions. For each sample, enzyme activity
was normalized to its own protein concentration (measured by BCA Protein
Assay Kit; Thermo Scientific), and then the relative fold-changes were
determined by setting that of DMSO (vehicle control) at 1.0. All samples were
run in duplicate from at least three separate experiments.

In Vitro ROS Assays

Antral follicles were collected and snap-frozen at the end of culture and
then homogenized on ice and spun at 14 000 rpm for 15 min. The supernatant
was subjected to in vitro assays for measurement of the levels of ROS,
predominantly superoxide (O

2

�) and hydrogen peroxide (H
2
O

2
), using an

OxiSelect In Vitro ROS Assay Kit (Cell Biolabs, Inc.) according to the
manufacturer’s instructions. Data were first normalized to protein level
(measured by BCA Protein Assay Kit), and then relative fold-changes were
determined after setting that of DMSO (vehicle control) at 1.0. All samples
were run in duplicate from at least three separate experiments.

Statistical analysis

Data are expressed as the mean 6 SEM from at least three separate
experiments. One-way ANOVA followed by Tukey post hoc comparisons were
used to make multiple comparisons between treatment groups. Student t-tests
were used to make comparisons between two groups. Statistical significance
was assigned at P � 0.05 for all comparison.

RESULTS

Effect of MEHP and NAC Cotreatment on ROS Levels in
Antral Follicles In Vitro

Elevated ROS levels are a direct indicator of oxidative stress
in biological systems [39]. To examine whether MEHP induces
oxidative stress in antral follicles, we compared the levels of
ROS in cultured follicles in the presence of vehicle or MEHP.
Compared to DMSO controls, MEHP (1–100 lg/ml) signifi-
cantly increased the level of ROS in follicles at 96 h (Fig. 1).

Next, we determined if antioxidant NAC (0.5–1 mM)
cotreatment protects follicles against MEHP-induced ROS
production. The concentrations of NAC were based on the
results of previous studies showing that they inhibit DEHP-
induced oxidative stress [15]. NAC (0.5–1 mM) cotreatment
with MEHP (0.1, 1, and 10 lg/ml) completely reduced the
levels of ROS to control levels, whereas NAC (1 mM)
cotreatment with MEHP (100 lg/ml) partially restored the
levels of ROS to control levels (Fig. 1).

Effect of MEHP Treatment on Follicle Growth

To determine whether MEHP affects antral follicle growth,
we treated antral follicles with medium (nontreated controls),
DMSO (vehicle controls), or MEHP (0.1–100 lg/ml) for 96 h.
The growth of DMSO-treated follicles was similar to that of
nontreated controls (data not shown). By 72 h, the three highest
doses of MEHP (1, 10, and 100 lg/ml) significantly decreased
antral follicle growth compared to that of DMSO controls. This
MEHP-inhibited follicle growth remained throughout the 96-h
culture. By 96 h, the lowest dose of MEHP (0.1 lg/ml) also
inhibited growth compared to that of DMSO controls (Fig. 2).

Effect of MEHP on Expression of Cell-Cycle Regulators and
Apoptotic Genes

Studies indicate that cell-cycle regulators control follicular
cell proliferation and, therefore, control follicle growth [26,
40]. Thus, we compared the expression profiles of several cell-

TABLE 1. Sequences of primer sets used for gene expression analysis.

Gene name Symbol Forward primer Reverse primer

Superoxide dismutase 1 Sod1 50-AAAGCGGTGTGCGTGCTGAA-3 0 50-CAGGTCTCCAACATGCCTCT-30

Glutathione peroxidase Gpx 50-CCTCAAGTACGTCCGACCTG-3 0 50-CAATGTCGTTGCGGCACACC-30

Catalase Cat 50-GCAGATACCTGTGAACTGTC-3 0 50-GTAGAATGTCCGCACCTGAG-30

Cyclin D2 Ccnd2 50-AGCTGTCCCTGATCCGCAAG-3 0 50-GTCAACATCCCGCACGTCTG-30

Cyclin E1 Ccne1 50-GGTGTCCTCGCTGCTTCTGCTT-30 50-CCGGATAACCATGGCGAACGGA-30

Cyclin-dependent kinase 4 Cdk4 50-TGGCTGCCACTCGATATGAAC-30 50-CCTCAGGTCCTGGTCTATATG-30

B-cell lymphoma 2 Bcl-2 50-ATGCCTTTGTGGAACTATATGGC-30 50-GGTATGCACCCAGAGTGATGC-30

Bcl-2-associated X protein Bax 50-TGAAGACAGGGGCCTTTTTG-3 0 50-AATTCGCCGGAGACACTCG-30

Actin, beta Actb 50-GGGCACAGTGTGGGTGAC-30 50-CTGGCACCACACCTTCTAC-30

FIG. 1. Effect of MEHP and NAC on ROS levels in antral follicles. Antral
follicles were exposed to DMSO or MEHP (0.1–100 lg/ml) with or
without NAC (0.5–1 mM) for 96 h in vitro and subjected to in vitro ROS
assays to measure ROS levels. The levels of ROS were normalized to
protein level in each sample and reported as relative fold-change
compared to DMSO controls. All data represent the mean 6 SEM from
three independent experiments (n ¼ 35 follicles/treatment/experiment).
Bars with different letters are significantly different from each other (P �
0.05).
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cycle regulators (Ccnd2, Ccne1, and Cdk4) in DMSO- and
MEHP-treated follicles. Compared to DMSO controls, MEHP
(1 lg/ml, which is the lowest dose of MEHP that inhibited
follicle growth by 72 h) significantly inhibited the expression
of cell-cycle genes. Specifically, MEHP significantly decreased
the expression of Ccnd2 at 48 h, decreased the expression of

Ccne1 at 72 and 96 h, and decreased the expression of Cdk4
starting at 48 h and continuing through 96 h (Fig. 3A).

Another possible reason for follicle growth inhibition could
be apoptosis of follicular cells. Thus, we determined if MEHP
alters the expression of selected apoptotic regulators (Bcl-2 and
Bax). Exposure to MEHP (1 lg/ml) significantly reduced the
expression of the antiapoptotic factor, Bcl-2, starting at 24 h
and continuing through 72 h. MEHP significantly enhanced the
expression of the proapoptotic factor, Bax, starting at 48 h and
continuing through 96 h (Fig. 3B).

Effect of NAC Cotreatment on MEHP-Induced Follicle
Growth Inhibition

Because our data indicated that MEHP causes oxidative
stress and NAC reduces oxidative stress in follicles (Fig. 1),
and that MEHP inhibits follicle growth (Fig. 2), we determined
if NAC treatment protects against MEHP-induced inhibition of
follicle growth. At 96 h, MEHP (0.1–100 lg/ml) inhibited
follicle growth compared to that of DMSO controls (Fig. 4).
NAC (0.5–1 mM) cotreatment, however, blocked the ability of
MEHP to inhibit follicle growth. Specifically, compared to
MEHP alone (0.1–10 lg/ml), NAC (0.5–1 mM) cotreatment
with MEHP (0.1–10 lg/ml) significantly increased follicle
growth compared to that observed in DMSO controls (Fig. 4).
The highest dose of MEHP (100 lg/ml) further inhibited
follicle growth compared to lower doses of MEHP (0.1–10 lg/
ml), and NAC (1 mM) cotreatment partially blocked the ability
of MEHP (100 lg/ml) to inhibit follicle growth (Fig. 4).

FIG. 2. Effect of MEHP exposure on antral follicle growth. Antral follicles
were cultured in the presence of DMSO or MEHP (0.1–100 lg/ml) for 96
h. Growth of follicles was monitored during culture and reported as
percentage change over time. The graph represents the mean 6 SEM from
at least three separate experiments. Lines with an asterisk (*) are
significantly different from DMSO controls at selected time points (n ¼
10–16 follicles/treatment/experiment; P � 0.05).

FIG. 3. Effect of MEHP exposure on the expression of cell-cycle regulators and apoptotic genes. After exposure of antral follicles to DMSO controls or
MEHP (1 lg/ml) for 24–96 h in vitro, the follicles were collected and subjected to qPCR analysis for the expression profiles of Ccnd2, Ccne1, and Cdk4 (A)
and the expression profiles of Bcl-2 and Bax (B). All values were normalized to Actb as loading control and reported as relative fold-change compared to
DMSO levels. The graph represents the mean 6 SEM from at least three separate experiments. Lines with an asterisk (*) are significantly different from
DMSO controls at selected time points (n ¼ 10–16 follicles/treatment/experiment; P � 0.05).
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Effect of MEHP and NAC Cotreatment on Cell-Cycle
Regulators and Apoptotic Genes in Antral Follicles

Because NAC rescues follicle growth from MEHP treatment
(Fig. 4), we examined the effects of NAC cotreatment on the
expression of selected cell-cycle and apoptotic regulators. At
96 h, MEHP (10 and 100 lg/ml) significantly reduced the
expression of Ccnd2 and Ccne1, and MEHP (100 lg/ml)
significantly decreased Cdk4 levels (Fig. 5A). Further, NAC
cotreatment restored the expression of these genes to control
levels (Fig. 5A). Similarly, exposure to MEHP (10 and 100 lg/
ml) significantly reduced the expression of Bcl-2 but enhanced
the expression of Bax (Fig. 5B). NAC cotreatment (1 mM),
however, counteracted the effects of MEHP on the expression
of these genes and restored the levels of Bcl-2 and Bax to
control levels (Fig. 5B).

Effect of MEHP Treatment on Gene Expression of
Antioxidant Enzymes

Because MEHP induced oxidative stress in cultured antral
follicles (Fig. 1), experiments were conducted to determine if it
did so by altering the expression of antioxidant enzymes
required to detoxify the ROS in the system. Specifically, the
expression levels of the endogenous antioxidant enzymes Sod1,
Gpx, and Cat were compared in DMSO- and MEHP-treated
follicles. At 96 h, only MEHP (100 lg/ml) significantly
decreased the expression of Sod1 and Gpx compared to DMSO
controls. Other MEHP doses (0.1–10 lg/ml) did not signifi-
cantly affect Sod1 and Gpx expression compared to controls
(Fig. 6, A and B). MEHP did not significantly affect Cat
expression compared to DMSO controls at any of the tested
doses (Fig. 6C). NAC cotreatment significantly increased the
expression of Sod1 and Gpx compared to DMSO controls and
MEHP alone (Fig. 6D).

Effect of MEHP Treatment on Activities of Antioxidant
Enzymes

To assess the effects of MEHP on the activities of
antioxidant enzymes, we measured the activities of SOD1,

GPX, and CAT at 72 and 96 h, which are the time points when
we observed MEHP-induced growth inhibition. At 72 h,
MEHP (10 and 100 lg/ml) significantly inhibited GPX
activity, whereas MEHP (10 lg/ml) significantly increased
SOD1 activity compared to DMSO (Fig. 7A). By 96 h, all
doses of MEHP significantly inhibited the activity of GPX
(Fig. 7B). MEHP (10 lg/ml) increased SOD1 activity, whereas
100 lg/ml MEHP inhibited SOD1 activity. Only certain doses
of MEHP (0.1 and 10 lg/ml) significantly increased CAT
activity compared to DMSO (Fig. 7B).

Effect of NAC Cotreatment on Activities of SOD1 and GPX

Because addition of NAC protects follicle growth from
MEHP-induced inhibition by reducing the oxidative stress in
the system (Figs. 1 and 4), we conducted experiments to
investigate whether NAC cotreatment protects the follicle from
MEHP-induced oxidative stress by restoring the activity of
SOD1 and GPX to control levels. Compared to DMSO
controls, MEHP (10 lg/ml) significantly increased SOD1
activity, whereas MEHP (100 lg/ml) inhibited SOD1 activity
at 96 h (Fig. 7B). Addition of NAC (1 mM) did not change the
effect of MEHP on SOD1 activity at 10 lg/ml but restored
SOD1 activity to control levels at 100 lg/ml (Fig. 7C). MEHP
(10 and 100 lg/ml) significantly inhibited GPX activity, and
NAC (1 mM) cotreatment prevented the inhibitory effects of
MEHP on GPX activity (Fig. 7C).

DISCUSSION

Numerous studies have shown that endocrine-disrupting
chemicals induce oxidative stress in reproductive tissues by
disrupting internal antioxidant protective mechanisms [18, 38,
41–43]. Our previous study [15] indicated that DEHP inhibits
growth of mouse antral follicles, increases ROS levels, and
decreases the expression and activity of SOD1 in vitro.
However, studies have suggested that MEHP is more potent
than DEHP and that it causes different effects than DEHP on
rat follicle development, testicular cell survival, and fetal testis
morphology and function [18–22]. Thus, the present study was
designed to test whether MEHP, the active metabolite of
DEHP, also induces oxidative stress in antral follicles and, if
so, to elucidate the mechanisms by which it does.

In the present study, we found that MEHP induces ROS
levels, disrupts the expression and activities of SOD1 and
GPX, and inhibits follicle growth. We also found that MEHP
reduces the expression of cell-cycle regulators (Ccnd2, Ccne1
and Cdk4) and the antiapoptotic factor (Bcl-2) but increases the
expression of the proapoptotic factor (Bax). In addition, our
data indicate that cotreatment with NAC, a known antioxidant
[44], rescues the toxic effects of MEHP in antral follicles by
restoring the expression and activity of antioxidant enzymes
and by restoring the expression of proliferation and apoptotic
factors to control levels.

Oxidative stress is caused by an imbalance of pro- and
antioxidants in the system, which raises the physiological level
of ROS, including free oxygen species and peroxides, and
leads to oxidative DNA, lipid, and protein damage [45].
Antioxidant enzymes, such as SOD1, GPX, and CAT,
compose the most important intracellular antioxidant defense
system to prevent cellular damage caused oxidative stress.
SODs (SOD1 and SOD2) are responsible for dismutation of
O

2

� to H
2
O

2
and oxygen. Further, CAT and GPX, coupled

with the glutathione cycle, reduce H
2
O

2
to water and oxygen.

Any disruption of this defense system will cause accumulation
of ROS and lead to oxidative damage [46]. ROS and
antioxidants have been implicated in the regulation of follicle

FIG. 4. Effect of MEHP and NAC cotreatment on antral follicle growth.
Antral follicles were cultured in the presence of DMSO or MEHP (0.1–100
lg/ml) with or without NAC (0.5–1 mM) for 96 h. Growth of follicles was
reported as percentage change at 96 h. Bars with different letters are
significantly different from each other (n ¼ 10–16 follicles/treatment/
experiment; P � 0.05). Data on the graph represent the mean 6 SEM from
at least three separate experiments.
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development, oocyte maturation, fertilization, implantation,
embryo development, and pregnancy in human and animal
models [47–51]. Several studies have shown that extra
accumulation of ROS is directly associated with the age-
related decline in follicle quality [52], endometriosis [48],
unexplained infertility, and low success rates in assisted
reproductive techniques [46, 53] and that it may play an
important role in the initiation of apoptosis in antral follicles
[54]. Oxidative stress is also suggested as a common
mechanism in endocrine disruptor-mediated dysfunction in
reproduction, and it is thought that ROS may serve as an early
marker for toxicity evaluation [38, 55–57].

Our data suggest that the ability of MEHP to inhibit GPX
activity is one of the main mechanisms by which it exerts its
toxic effects. Our findings are consistent with other studies of
MEHP, which show that MEHP induces oxidative stress by
decreasing the expression and activity of GPX in kidney and
prostate cancer cells [58, 59], and studies of GPX, which show
that dysregulation of GPX leads to apoptosis in endothelial
cells and luteal cells in the ovary [60, 61].

Inhibition of GPX induced by MEHP can lead to
accumulation of H

2
O

2
in antral follicles, which then could

activate other antioxidant enzymes to try to protect follicles
from oxidative damage. This may explain why MEHP (10 lg/
ml) increased SOD1 activity and MEHP (0.1 and 10 lg/ml)
increased CAT activity (Fig. 7B). However, the highest dose of
MEHP (100 lg/ml) likely overwhelmed the antioxidant system
and inhibited the activity of SOD1 by 96 h, which then led to a

further increase ROS levels and resulted in blockage of follicle
growth. These data are consistent with previous studies
showing that H

2
O

2
induces oxidative stress and serves as a

signal to elevate the activity of antioxidant enzymes to help
eliminate the toxic effects of H

2
O

2
in testicular germ cells [62,

63].
One of the important findings of present study is that MEHP

induces oxidative stress via different mechanisms than its
parent compound, DEHP. Specifically, MEHP affects different
antioxidant enzymes compared to DEHP. In turn, this may
cause different ROS accumulation in MEHP- and DEHP-
treated antral follicles. Our previous study [15] showed that
DEHP predominantly affects the expression and activity of
SOD1 but not GPX and CAT. The present data indicate that
MEHP induces oxidative stress mainly by suppressing the
expression and activity of GPX. We speculate that DEHP
decreases in SOD1 activity would lead to accumulation of
superoxide (O

2

�) and then cause damage in antral follicles.
MEHP-induced decreases in both SOD1 and GPX activity
would lead to accumulation of H

2
O

2
and cause more damage in

antral follicles than observed with DEHP. This could be why
lower doses of MEHP (0.1 lg/ml) cause damage to follicles
compared to DEHP (1 lg/ml) [15]. The different antioxidant
enzymes affected by DEHP and MEHP might cause different
ROS accumulation in follicles. Further, it is possible that
follicles are more sensitive to H

2
O

2
than O

2

� and that this leads
to MEHP being more toxic than DEHP in antral follicles.

FIG. 5. Effect of MEHP and NAC cotreatment on cell-cycle regulators and apoptotic genes. Antral follicles were exposed to DMSO or MEHP (10 and 100
lg/ml) with or without NAC (1 mM) for 96 h and then subjected to qPCR analysis for Ccnd2, Ccne1, and Cdk4 (A) or Bcl-2 and Bax (B) mRNA expression
levels. All values were normalized to Actb as loading control and reported as relative fold-change compared to DMSO levels. Data on the graph represent
the mean 6 SEM from at least three separate experiments. Bars with an asterisk (*) are significantly different from DMSO controls (n¼ 10–16 follicles/
treatment/experiment; P � 0.05).
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The mechanisms by which MEHP affects antioxidant
enzyme expression and activity remain unclear. It is known,
however, that two classes of transcription factors, nuclear
factor jB (NF-jB) and activator protein 1 (AP-1), are involved
in the oxidative stress response in mammalian systems [64].
Studies have shown that antioxidant response elements (AREs)
and motifs for NF-jB and AP-1 are present in the promoter
regions of most of the antioxidant enzymes, including SOD1,
SOD2, GPX, and CAT [64, 65]. Elevated ROS levels regulate
the expression and activity of these antioxidant enzymes by
activating different signaling pathways in different biological
systems, which include extracellular signal-regulated kinases
(ERKs) and p38 mitogen-activated protein kinases (MAPKs)
[66], tyrosine kinase [67], phosphotidylinositol-3-kinase
(PI3K)/Akt [68], and protein kinase C [69]. DEHP induces
oxidative stress and causes apoptosis in hepatocytes by
activating ERK/MAPK and p38/MAPK [70, 71]. MEHP
activates PI3K/Akt and NF-jB signaling in the testis and
induces oxidative stress and germ cell apoptosis [72]. We
speculate that the structural differences between DEHP and
MEHP lead to their distinct effects on antioxidant enzymes in
antral follicles. DEHP has two 2-ethylhexanol branched chains,
which cause DEHP to be lipophilic and allow it to easily cross
the lipid membrane to activate intracellular signal cascades.

MEHP, with only one 2-ethylhexanol branched chain, is less
lipophilic than DEHP. This could cause MEHP to activate or
inhibit the signaling molecules located on membrane instead of
activating intracellular molecules. Thus, it is possible that
DEHP and MEHP affect different signaling pathways and
transcription factors in antral follicles and that this leads to
distinct effects on the expressions and activities of SOD1 and
GPX.

Studies have shown that oxidative stress is one of the risk
factors for disruption of normal cell proliferation and apoptosis
[73, 74]. Follicle growth depends largely on follicular cell
proliferation and health. Thus, we tested the possibility that
MEHP-induced follicle growth inhibition is due to its effects
on cell-cycle regulators and apoptotic factors via an oxidative
stress pathway. We found that MEHP exposure suppresses the
expression of key cell-cycle regulators at the G1/S transition
and increases the expression of proapoptotic factor, Bax, but
decreases the expression of the antiapoptotic factor, Bcl-2.
Further, our data show that NAC cotreatment can rescue the
effects of MEHP on the expression of G1/S-phase cell-cycle
regulators, apoptotic factors, and follicle growth, indicating
that these toxic effects are due to MEHP-induced oxidative
stress. These findings are consistent with studies showing that
oxidative stress interrupts cell proliferation and induces

FIG. 6. Effect of MEHP and NAC cotreatment on Sod1, Gpx, and Cat mRNA expression levels. After exposure of antral follicles to DMSO or MEHP (0.1–
100 lg/ml) for 96 h in vitro, the follicles were collected and subjected to qPCR analysis for Sod1 (A), Gpx (B), and Cat (C) mRNA expression levels. In
addition, antral follicles were exposed to DMSO or MEHP (100 lg/ml) with or without NAC (1 mM) for 96 h and subjected to qPCR to measure the mRNA
expression levels of Sod1 and Gpx (D). All values were normalized to Actb as a loading control and reported as relative fold-change compared to DMSO
controls. Data on the graph represent the mean 6 SEM from at least three separate experiments. An asterisk (*) indicates a significant difference from the
DMSO controls (n ¼ 10–16 follicles/treatment/experiment; P � 0.05).
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apoptosis in different biological systems [62, 75, 76] and that
NAC acts as a free radical scavenger and glutathione precursor
in reproductive tissues and protects them from oxidative stress-
induced apoptosis [38, 76–78]. Interestingly, studies have
shown that overexpressing GPX1 in endothelial cells reduces
the Bax:Bcl-2 ratio and protects cells against oxidative stress-
induced apoptosis [60] and that down-regulation of GPX leads
to bovine luteal cell apoptosis [61]. These studies further
support our hypothesis that the MEHP-induced disruption of
cell-cycle regulators and apoptotic factors is due to MEHP-
induced oxidative stress caused by inhibition of GPX.

In conclusion, the present study shows that MEHP exposure
induces oxidative stress and inhibits growth in antral follicles.
It also raises the question of why MEHP and DEHP induce
oxidative stress via different mechanisms. Further studies
should focus on distinguishing the effects and mechanisms by
which MEHP and DEHP affect ovarian functions by
comparing MEHP and DEHP treatment in knockout mouse

models with deletions in antioxidant enzymes or by using
models in which antioxidant enzymes are overexpressed. A
comparison of the effects of MEHP and DEHP in vivo would
also further expand our understanding on how phthalates affect
female reproduction.
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