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INTRODUCTION
The study of cancer immunology and immune therapy has been 
a significant focus of basic and clinical research since early dis-
coveries of tumor antigens and adoptive immunity.1–3 As various 
lymphocyte subsets have been identified, more specific strategies 
for cancer immunotherapy began to develop, most of which con-
tinue to focus on natural killer (NK) cells or cytotoxic T lympho-
cytes (CTL) as the primary mediators of antitumor immunity.4–11 
In addition, these cell types can easily be isolated, expanded, and 
activated ex vivo leading to manufacturing strategies that have 
shown promise in effecting durable remissions for a growing 
number of cancers. The contribution of γδ T cells, a minor T cell 
subset with distinct innate recognition properties, has not been 
explored until recently.

Most mature T cells express the αβ T cell receptor (TCR), 
reside in the secondary lymphoid organs, and function primarily 
in adaptive immune responses. CD3+γδ+ T cells are a relatively 
rare immune effector population in peripheral blood (4–10% 
of T cells) but are substantially enriched in epithelial tissues,12 
where they function as primary responders by recognizing intact 
structures such as stress-associated proteins, heat shock proteins, 
and lipids12,13 in a classical MHC-unrestricted manner.12,14 Here, 
they also manifest lytic activity and proinflammatory cytokine 
 secretion. These cells are now known to play a critical role in 

tumor immunosurveillance15–18 and in the immune response to 
cancer.19–24 In many instances, γδ T cells that are cytotoxic to a 
specific tumor type will cross react with other tumors but not with 
the tumor’s nontransformed counterpart.22,23,25

Activating ligands for γδ T cells as well as the process by which 
they recognize stressed or malignant cells are complex and incom-
pletely understood, but are fundamentally different from both γδ  
T cells and NK cells.13,26–28 The most prevalent circulating popu-
lation of γδ T cells expresses the Vγ9Vδ2 TCR that uniquely 
responds to nonpeptide alkylphosphates, such as isopentenyl 
pyrophosphate (IPP), a product of the mevalonate pathway of 
isoprenoid biosynthesis29 that is dysregulated in tumor cells and 
upregulated in individuals exposed to bone-strengthening ami-
nobisphosphonate (N-BP) compounds, such as Zoledronate and 
Pamidronate. Vδ2+ T cells have antitumor effector function, are 
relatively simple to manufacture in large numbers, and have been 
employed in early phase autologous cell therapy trials against solid 
tumors with mixed results.30,31 Wider implementation of Vγ9Vδ2+ 
T cell therapy protocols has been hampered by uneven responses 
to ex vivo stimulation and the strong propensity of this population 
to undergo activation-induced cell death (AICD), severely limit-
ing the persistence of effector function.25,32,33

Increasing evidence supports a critical role for a particu-
lar subset of γδ T cells that bears the Vδ1+ TCR in tumor 
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Exploration of cancer immunotherapy strategies that incorporate γδ T cells as primary mediators of anti-
tumor immunity are just beginning to be explored and with a primary focus on the use of manufactured 
phosphoantigen-stimulated Vγ9Vδ2 T cells. Increasing evidence, however, supports a critical role for Vδ1+ γδ 
T cells, a minor subset in peripheral blood with distinct innate recognition properties that possess powerful 
tumoricidal activity. They are activated by a host of ligands including stress-induced self-antigens, glycolipids 
presented by CD1c/d, and potentially many others that currently remain unidentified. In contrast to Vγ9Vδ2 
T cells, tumor-reactive Vδ1+ T cells are not as susceptible to activation-induced cell death and can persist in 
the circulation for many years, potentially offering durable immunity to some cancers. In addition, specific 
populations of Vδ1+ T cells can also exhibit immunosuppressive and regulatory properties, a function that can 
also be exploited for therapeutic purposes. This review explores the biology, function, manufacturing strate-
gies, and potential therapeutic role of Vδ1+ T cells. We also discuss clinical experience with Vδ1+ T cells in the 
setting of cancer, as well as the potential of and barriers to the development of Vδ1+ T cell-based adoptive 
cell therapy strategies.
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immunosurveillance. Vδ1+ T cells are a minor subset with the 
distinct innate recognition and regulatory properties that pos-
sess powerful tumoricidal activity. Unlike Vδ2+ cells, they do not 
preferentially pair with a specific Vγ chain, and are not activated 
by IPP or N-BP.34–36 Vδ1+ T cells are activated by a host of ligands 
including stress-induced self-antigens, glycolipids presented by 
CD1c, and others as discussed in detail below.37–39 In contrast to 
Vδ2+ T cells, the Vδ1+ T cell population is not as susceptible to 
AICD, and tumor-reactive Vδ1+ T cells can persist in the circula-
tion for many years.40,41 The cytotoxic function of Vδ1+ T cells has 
been described for lymphoid and myeloid malignancies,42–47 neu-
roblastoma,48 and cancers of the lungs, colon, and pancreas.49–51 
Primary myeloid and lymphoid leukemias directly activate Vδ1+ 
T cells43–45 and generate effector function against both primary 
leukemia and cultured leukemia cell lines. Specific populations of 
Vδ1+ T cells can also exhibit immunosuppressive and regulatory 
properties, a function which is discussed at greater length below.

This review explores the biology, function, manufacturing 
strategies, and potential therapeutic role of blood-derived/circu-
lating Vδ1+ T cells. For a discussion of general aspects of γδ T cell 
biology, the reader is directed to several excellent contemporane-
ous reviews.52–55 We also discuss clinical experience with Vδ1+ 
T cells in the setting of cancer, and the potential of and barriers 
to the development of Vδ1+ T cell-based adoptive cell therapy 
strategies.

LIGAND RECOGNITION BY Vδ1 T CELLS
Ligand recognition by Vδ1+ T cells constitutes largely uncharted 
territory for those exploring options to bring these cells into 
the clinical arena. While some methods have been developed to 
expand these cells in vitro (discussed below), further identifica-
tion of ligands recognized by circulating Vδ1 would greatly aid 
in the generation of Vδ1+ T cell cultures to the scale and desired 
immunophenotype required for therapeutic use.

Although rare instances of CD4 or CD8 coexpression have 
been reported for Vδ1+ T cells,56,57 their developmental pro-
gram generally does not include the expression of CD4 or CD8 
nor require the extensive proliferation or multiple TCR recom-
bination events that are characteristic of αβ T cells. The diversity 
of the γδ TCR CDR3 region length suggests a broad pattern of 
ligand recognition not constrained to specific presentation, set-
ting it apart from the αβTCR. The γδ T cell repertoire is shaped 
throughout the life; while the TCR J region is diverse in infants, 
it is significantly restricted as we age.58 Germline-derived ele-
ments and combinations of the TCR V, D, and J segment of both 
γ and δ chains encode innate recognition of both proteins and 
nonproteins that include endogenous and synthetic phospho-
antigens,13,29,59–62 heat-shock proteins,63–65 and stress-associated 
 antigens.42,66 Most γδ T cells (as well as NK cells and αβCD8+ 
T cells) also express NKG2D, a C-type, lectin-like homodimeric 
activating receptor that functions as a ligand for MHC class-I 
like proteins, such as MIC-A/B and the UL-16 binding proteins 
that are often upregulated on malignant cells.67–69 Vδ1+ T cells 
are activated by these stress-induced self-antigens that are often 
constitutively expressed by solid tumors as well as some leuke-
mias and lymphomas.42,46,47,66,70–72 In particular, Vδ1+ T cells rec-
ognize MIC-A/B66,73 induced by oxidative stress,74 thus explaining 

the increased prevalence of Vδ1+ tumor-infiltrating lymphocytes 
(TIL) in MICA/B expressing tumors.42 Recent elucidation of the 
crystal structure of a MIC-reactive Vδ1 TCR suggests sequential 
recognition of MIC by TCR and NKG2D.75 Indeed, the presence of 
the NKG2D receptor on Vδ1+ and Vδ2+ (and most other known) 
γδ T cell subsets is critical for their role in cytotoxicity against 
various cancers.67 Upon target recognition, Vδ1+ T cell-mediated 
killing is via perforin and granzymes via similar mechanisms to 
those of Vδ2+ T cells.

Interestingly, some Vδ1+ T cell lines recognize CD1c.37,76,77 
Furthermore, upon sensing glycolipids presented by CD1c on the 
surface of immature dendritic cells, Vδ1+ T cells could induce DC 
to mature and produce IL-12.38 While there have also been some 
past reports of blood-derived Vδ1 cell recognition of lipid-based 
antigens presented by CD1d,78–80 two groups recently took this one 
step farther by elucidating crystal structures of Vδ1 TCR bound 
to CD1d presenting two different ligands.81,82 Uldrich et al.81 inves-
tigated the molecular basis for the interaction of Vδ1 TCR with 
CD1d bound to α-GalCer, reporting that CD1d binds TCR mainly 
through the CDR1δ loop, with antigen specificity dictated by the 
CDR3γ loop. While there was substantial interdonor variability in 
the extent of lipid antigen reactivity, this finding is nonetheless of 
great interest. The therapeutic potential of α-GalCer as the classi-
cal ligand for Type I NKT cells has been recently tested in clinical 
trials to treat patients with advanced nonsmall cell lung cancer,83 
diverse head and neck cancers84 and asymptomatic myeloma (for 
the latter in combination with lenalidomide).85 Treatments were 
well tolerated and responses promising thus may translate to Vδ1 
therapies incorporating α-GalCer. Luoma et al.82 investigated Vδ1 
TCR interaction with the self-ligand sulfatide and CD1d using 
blood-derived Vδ1 T cell clones; CD1d binding was mediated via 
the CDR loops of the δ-chain.

While Vδ2 ligands are fairly well defined and can thus be used 
to manipulate Vδ2 both in vitro and in vivo (see introduction), 
specific Vδ1+ TCR ligands are still largely unknown, yet some 
interesting leads have been uncovered. The abovementioned stud-
ies suggest the distinct possibility of lipid-based antigens.82 Also, 
there is an intriguing Vδ1+ T cell predominance in the blood of 
African adults86; while the evolutionary significance thereof has 
yet to be explained, further exploration could unlock ways to pref-
erentially expand and manipulate Vδ1+ T cells. Qi et al.87 took 
steps in this direction, capitalizing on the identification of MICA 
as a Vδ1 ligand and selectively expanding cytotoxic Vδ1+ T cells 
in vitro via immobilized recombinant MICA. To augment Vδ1+ 
T cell targeting of lymphoid leukemia, Correia et al used IL-2 or 
IL-15 in conjunction with TCR stimulation to induce expression 
of natural cytotoxicity receptors NKp30, NKp44 and NKp46.88 
Also, upregulation of known ligands on targets can also be used to 
enhance Vδ1+ T cell cytotoxicity.47

Migration of Vδ1 cells into tumors has been described, yet 
only a few studies have focused on chemokine receptors respon-
sible for these homing abilities. While chemokine (CXC) receptor 
(CXCR)-1 was found to be strongly and chemokine C-C motif 
receptor (CCR)-5 weakly expressed on peripheral Vδ1 cells, Vδ2 
cells expressed comparatively less CXCR1 and more CCR5.89 CCR5 
expression is associated with Th1 polarization and IFNγ produc-
tion and, on primary CD4+ T cells, decreases in the absence of 
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IL-2 or when cells are activated via CD3 and CD28 stimulation,90 
whereas it may increase in pathological contexts such as HIV.91 
Expression of CXCR1 suggests IL-8 responsiveness; since IL-8 
is present in the tumor microenvironment and associated with 
advanced disease (reviewed in ref. 92), this could be a mechanism 
by which Vδ1+ T cells home to tumors. In another study, Vδ1+ 
T cells expanded from peripheral blood via antibody stimulation 
expressed more CCR4 and CCR8 than their Vδ2 counterparts93; 
moreover, these cells migrated preferentially toward CCL17 and 
CCL22, chemokines that serve as ligands for CCR4 (both) and 
CCR8 (CCL17) and are expressed by lymphoma cell lines as well 
as other tumor types.93 Devaud et al.94 found that CMV-reactive 
Vδ2-negative T cell clones (not necessarily Vδ1) expanded in 
vitro expressed CCR3, which was necessary for migration into 
and antitumor activity against xenograft HT29 colon carcinoma 
tumors that express factors such as IL-8, MIP-1δ, MIP-3α, and 
monocyte chemoattractant protein 4. Notably, CCR3 levels were 
maintained throughout activation and expansion of the clones.94 
More recently, Lança et al.95 identified CCR2 on Vδ1 but not Vδ2 
cells; CCR2 expression enabled migration to CCL2, a cytokine 
upregulated in oral squamous cell carcinoma, breast cancer, and 
prostate cancer. While these studies have provided a crucial first 
glimpse into how chemokines and chemokine receptor expres-
sion influence the migration of Vδ1 cells in the context of cancer, 
there is much room for further exploration. It will be important 
to document the impact of various ex vivo culturing methods on 
the expression of chemokine receptors critical for homing to the 
tumor types targeted by Vδ1 immunotherapy.

Vδ1+ T CELLS ARE POTENT ANTICANCER CELLS
The earliest indication of leukemia surveillance by γδ T cells 
was reported by Lamb40 and Godder,41 who showed a signifi-
cant improvement in risk-adjusted 5–10 year disease-free sur-
vival (DFS) in patients with acute lymphoblastic leukemia (ALL) 
or acute myeloid leukemia (AML) who had received αβ T-cell 
depleted (TCD) allogeneic bone marrow grafts. Following bone 
marrow transplant (BMT), ~28% of these patients subsequently 
showed early homeostatic reconstitution of donor-derived Vδ1+ 
T cells up to 100× normally seen in the circulation40 that persisted 
for several years, a finding that was also shown to be significantly 
associated with the receipt of αβ T cell depleted marrow.96

Fujishima97 also reported peripheral expansion of Vδ1+ T cells 
in BMT patients. These cells, which show a clonally restricted δ1 
CDR3, recognize EBV-transformed B cells, expand both in vitro 
and in vivo, and are also long-lived.97 Dominant populations of 
circulating clonally-restricted Vδ1+ γδ T cells have also been 
described in children presenting with a new diagnosis of ALL.98 
Coculture of third party αβTCD mononuclear cells (MNC) with 
leukemic blasts from these patients grew a dominant population 
of Vδ1+ T cells that were cytotoxic to both the patients’ primary 
blasts, ALL cell lines, and third-party ALL but not to normal 
lymphocytes.

Knight99 described a series of BMT patients that developed 
a significant long-term expansion of a circulating and clonally 
restricted Vδ1+ T cell population associated with cytomegalo-
virus (CMV) reactivation during posttransplant recovery. CMV 
infection has also been shown to stimulate Vδ1+ T cells in solid 

organ transplant patients with Vδ1+ T cell proliferation increas-
ing and decreasing in response to viral load. CMV-responsive 
Vδ1+ T cells cross-react with tumor cell lines that show no 
CMV infection or residues.100–102 Although the mechanism of 
the observed cross-reactivity has not been elucidated for Vδ1+ 
T cells, Wilcox has described a Vγ4Vδ5 T cell clone that binds the 
endothelial protein C receptor expressed on epithelial tumors and 
endothelial cells targeted by CMV.103 Conversely, CMV infection 
can also sequester NKG2D ligands resulting in decreased tumor 
 immunogenicity.104–107 Taken together, these findings suggest a 
multifaceted association between CMV recognition and antitu-
mor immunity that warrants further study.

Circulating Vδ1+ T cells have been associated with nonpro-
gression in low risk B-CLL patients and could kill autologous tar-
gets in vitro, with killing linked to ULBP3 expression on leukemia 
cells.47 In addition, the same group showed that low-grade non-
Hodgkin lymphoma (NHL) patients with high Vδ1+ T cell counts 
and elevated serum IL-4 experienced stable disease at 1 year 
follow-up, compared to those with lower IL-4 and Vδ1+ T cell 
levels.46 Presumably, these Vδ1+ T cells expanded in response to 
UL-16 binding proteins (ULBPs) 2 and/or 3 expressed by NHL.46 
Vδ1+ T cells, but not Vδ2+ T cells, infiltrated ULBP-positive 
lymph nodes of NHL patients.46

In addition to hematopoietic malignancies, Vδ1+ T cells are 
exquisitely responsive and cytotoxic to neuroblastoma. After ini-
tial findings of significant cytotoxic activity of peripheral blood 
γδ T cells against human neuroblastoma cell lines, Schilbach48,108 
showed that TH1 cytokines are downregulated and tumor 
growth-promoting factors (ANG, VEGF, EGF, and IGF-I) upregu-
lated in Vδ2+ T cells cultured in the presence of neuroblastoma. 
In contrast, Vδ1+ T cells cultured with the same tumor showed 
decreased production of tumor-promoting cytokines and TGF-β  
while concurrently upregulating TNF-α, TNF-β, MCP-1 and 
MCP-2 and maintaining IL-2 production.48

Examination of TIL from other solid tumors also sup-
ports Vδ1+ T cell response to malignancy, especially in epithe-
lial tumors. Vδ1+ T cells isolated from the TIL of colon tumors 
were cytotoxic against both autologous and allogeneic epithelial 
tumor cells.51 Both Vδ1+ and Vδ2+ T cell subsets are components 
of TIL isolated from melanoma109; when cultured, these cells do 
not appear to be functionally impaired as assessed by cytotoxic 
activity and production of IFNγ and TNFα. Interestingly, all cul-
tured melanoma TIL-derived Vδ1+ T cell lines killed A375 cells, 
whereas only two of eight Vδ2+ T cell lines showed significant 
cytotoxicity.109 In addition, Vδ2+ T cell-mediated cytotoxicity also 
required Zoledronic acid treatment of tumor targets to kill effec-
tively, a finding separately reported by Nishio.110

Vδ1+ T CELLS ALSO EXHIBIT REGULATORY 
FUNCTIONS
While Vδ1+ T cells clearly exhibit potent antitumor activity, 
paradoxically, recent reports describe their potential regulatory 
function in the tumor microenvironment. Peng111 observed Vδ1+ 
T  cells with regulatory properties after culturing TIL obtained 
from breast tumors. A follow-up study that examined relationships 
between breast cancer TIL phenotypes and patient survival sug-
gested that the frequency of infiltrating γδ T cells was a significant 
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predictor of negative outcome.112 Cultured γδ TIL-derived regula-
tory cells did not express classical regulatory markers CD25 and 
FoxP3 nor was suppressive activity mediated by IL-10 or TGFβ. 
Interestingly, regulatory activity could be reversed via TLR8 
 signaling.111,113 While these studies show regulatory capacity of 
Vδ1+ T cell cultures derived from TIL, a direct role for γδ T cell 
TIL in disease pathogenesis was not determined. Furthermore, 
specific Vδ subset phenotypes were not assessed in the primary 
tumor. These findings are also complicated by a more recent study 
describing regulatory properties for Vδ2+ TIL,114 cells that may be 
lost due to AICD and therefore escape isolation and further study. 
Indeed, TIL cultures can be driven to Vδ1+ or Vδ2+ predomi-
nance depending on the conditions applied in the culture.48,115

Hua116 showed that a classical regulatory phenotype could be 
induced in blood-derived Vδ1+ T cells by stimulation via plate-
bound anti-Vδ1 antibody, promoting expression of regulatory 
markers FoxP3, CD25, CTLA-4, and corresponding suppression 
of CD4+ T cell proliferation. Moreover, TGFβ1 production by 
Vδ1+ T cells fed into a positive feedback loop, sustaining FoxP3 
expression; these cells also produced the anti-inflammatory cyto-
kine IL-10.116

In contrast, Vδ1+ T cells with an effector phenotype have 
been derived from melanoma. Cordova109 cultured polyclonal 
Vδ1 TIL lines that secrete TNFα, IFNγ, and kill melanoma cell 
lines. Similar findings for cultured Vδ1+ TIL from metastatic 
melanoma were reported by Donia.117 These inconsistencies might 
result from the differential infiltration of clones with various Vγ 
pairings that become activated in the context of different cancers. 
This calls into question the degree to which in vitro culture con-
ditions can convincingly replicate the tumor microenvironment. 
Furthermore, naturally occurring Vδ1+ T cell migration to epi-
thelial tissues may also influence TIL composition and function 
in the tumor microenvironment of melanoma compared to that 
observed in carcinomas.

CLINICAL-SCALE MANUFACTURING OF Vδ1+ 
T CELLS FOR THERAPEUTIC APPLICATIONS: 
A WORK IN PROGRESS
As discussed above, several investigators have developed proce-
dures and trials for culturing γδ T cells for therapeutic use based 
on their responsiveness to bisphosphonate drugs, many of which 
are approved in the United States and Europe for osteoporosis 
and prevention of bone metastases in cancer patients. Strategies 
that employ good manufacturing practice (GMP)-approvable cell 
culture methods and pharmaceutical-grade reagents have been 
recently reviewed by Fournie,118 and are easily translated for use in 
both allogeneic and autologous therapies. At issue, however, is the 
finding that both N-BP and phosphoantigen-mediated γδ T cell 
stimulation expands only the Vγ9Vδ2 γδ T cell subset, and thus 
does not deliver the potential therapeutic benefit of an expanded 
Vδ1+ population; furthermore, long-term persistence is minimal 
and difficult to achieve.16,48

To date, there has not been a single clinical study in which 
Vδ1+ γδ T cells have been specifically introduced as autolo-
gous or allogeneic cell therapy. Expansion techniques for Vδ1+ 
T cells remain small scale and laboratory-based although, with 
modification of reagents and purification techniques, some 

may be adaptable to clinical-scale cell manufacturing strategies. 
Lopez119,120 was the first to develop a pan-γδ T cell expansion strat-
egy, taking the advantage of a CD2-initiated signaling pathway 
that induces a coordinated down-regulation of the IL-2Rα chain 
and a corresponding upregulation of the IL-15Rα chain. The γδ 
T cells stimulated in this manner express 10-fold higher levels of 
message for bcl-2 resulting in an inhibition of apoptosis, thereby 
overcoming γδ T cell sensitivity to AICD while retaining potent 
innate antitumor activity against a wide variety of human hemato-
poietic and solid primary tumors and cell lines.119,120 This method 
expands peripheral blood γδ T cells regardless of phenotype and 
is adaptable to clinical scale use.

Several investigators have taken the advantage of Vδ2 sensi-
tivity to AICD, exposing γδ T cells to powerful plant mitogens 
and thereby generating a predominant Vδ1+ T cell population 
in  culture. Schilbach et al. purified blood-derived γδ T cells by 
immunomagnetic selection followed by stimulation of purified 
cells with PHA and IL-2 in culture. Addition of pamidronate 
stimulated the Vδ2 population, which was subsequently lost from 
culture and resulted in outgrowth of Vδ1+ T cells with significant 
activity against neuroblastoma.48 Knight121 generated Vδ1+ T cells 
with antimyeloma activity from peripheral blood mononuclear 
cells (PBMNC) using a combination of PHA, IL-2, and allogeneic 
irradiated feeder cells. Siegers showed similar results using pro-
longed exposure of positively selected Concanavalin A-stimulated 
γδ T cells to IL-2 and IL-4 without the use of feeder cells.115 Gamma 
delta T cells expanded using this protocol were still viable in a 
xenograft leukemia model 5 weeks postinfusion after having been 
injected on day 16–21 of in vitro culture.122 In subsequent studies, 
enhanced Vδ1+ T cell expansion (up to 24,000-fold) was seen in 
PBMNC cultures initially stimulated with Concanavalin A, and 
then depleted of αβ T cells after 6–8 days.123 Average culture dura-
tion was approximately 21 days and did not require feeders.123 
Finally, Lamb45 was able to generate up to 1,200-fold expansion of 
Vδ1 T cells from PBMNC after depletion of αβ T cells and culture 
with irradiated leukemia feeder cells and low-level IL-2.45

At present, none of these protocols have direct clinical adapt-
ability, and future methods derived thereof will require substantial 
modification to move forward into human trials. Such modifica-
tions should include steps to facilitate ease of handling, prefer-
ably by eliminating feeders and reducing the number of required 
reagents since these must be GMP/pharmaceutical grade to obtain 
clinical approval for therapeutic cell manufacturing.

FUTURE DIRECTIONS
It is likely that γδ T cells will have an increasing role to play in the 
prevention and management of malignant disease and posttrans-
plant relapse. Our ability to harness the unique innate recogni-
tion properties of Vδ1+ T cells for therapeutic application could 
contribute substantially to the efficacy and duration of innate 
lymphocyte therapy. Initial therapeutic studies must address the 
distribution and function of Vδ1+ T cells following infusion, par-
ticularly with respect to the cytotoxic or regulatory phenotype and 
functional activity of cells that ultimately infiltrate the tumor and/
or remain in the circulation.

Although not specific to Vδ1+ T cells, it has been shown in 
both animal models and human in vitro and clinical studies that 
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γδ T cells do not exhibit classical alloreactivity. Therefore, while 
γδ T cells would not be expected to recognize normal allogeneic 
determinants on tumor cells, they would also not pose a significant 
risk for initiation of graft-versus-host disease. Indeed, Drobyski124 
showed that large doses of IL-2–expanded γδ T cells could be 
infused into lethally irradiated MHC-disparate mice without 
causing graft-versus-host disease. In human studies, Schilbach108 
and Lamb45 also found that allogeneic γδ T cells were not substan-
tially activated in in vitro allogeneic mixed lymphocyte culture. 
Since γδ T cells can be infused with minimal risk in the alloge-
neic setting even after ex vivo activation, they offer the potential 
for use in settings where tumor contamination of autologous cell 
products may be a concern or T-cell exhaustion prevents ex vivo 
activation and expansion of autologous γδ T cells.

The recent introduction of an immunomagnetic system for 
depletion of αβ T cells from bone marrow or peripheral blood 
apheresis products will allow investigators to infuse grafts 
enriched for γδ T cells in lymphodepleted patients as primary 
grafts or donor leukocyte infusion, thereby providing a plat-
form for homeostatic Vδ1+ T cell expansion. As noted above, 
however, clinical manufacturing strategies for Vδ1+ T cells have 
not yet matured sufficiently to permit clinical trials. The CD2/
OKT3 γδ T cell expansion method described by Lopez and dis-
cussed above provides the most clinically adaptable system, as 
the components either currently exist in pharmaceutical grade or 
have been manufactured to cGMP standards in the recent past. 
This method would allow large numbers of Vδ1+ T cells to be 
manufactured, but in the absence of a specific Vδ2+ T cell deple-
tion/Vδ1+ selection system, the product would be a composite of 
Vδ1+ and Vδ2+ T cells with other minor subtypes. Nevertheless, 
this method would produce a heterogeneous product that would 
incorporate the broad range of antitumor functions of each sub-
type over currently available methods that expand only Vγ9Vδ2 
T cells. Laboratory-based methods that expand Vδ1+ T cells with 
greater efficiency but incorporate nonstandardized components, 
such as plant mitogens and/or feeder cells could potentially be 
moved to clinical scale. Regulatory agencies have approved trials 
that require feeder cells for the manufacture of cytotoxic lympho-
cytes when the methods could be justified by the lack of availabil-
ity of similarly effective nonbiologic components and adherence 
to strict validation protocols.125 As with any translation from the 
laboratory to the clinic, this process will likely encounter unan-
ticipated obstacles and evolve with improvements. However, the 
available data strongly suggest that our ability to rapidly select 
and culture Vδ1+ T cells specific for a broad range of common 
disease- and stress-associated ligands will ensure that the advan-
tages of this approach as part of the current therapeutic arsenal of 
refractory cancer therapies.

CONCLUDING REMARKS
It has been well established that γδ T cells are important mediators 
of cancer surveillance and could ultimately play an important role 
in cancer therapy. Indeed, several centers are beginning to inves-
tigate small clinical trials of Vγ9Vδ2 T cells as therapy for solid 
tumors. We are, however, just beginning to explore the potential 
therapeutic role of Vδ1+ T cells. These cells can be highly cyto-
toxic to epithelial and hematopoietic malignancies and have the 

added advantage of persistence over time, a function that has been 
well documented after hematopoietic stem cell  transplantation. As 
we attain greater understanding of how Vδ1+ T cells acquire effec-
tor and immunoregulatory function, define yet-to-be described 
ligands for Vδ1+ T cells and appreciate the interactions of activat-
ing and inhibitory receptors with their ligands, we will be able to 
exploit these properties in the design of innate cell therapy strate-
gies. Taking into consideration that the number of studies is small, 
it is clear nonetheless that Vδ1+ T cells play a role in the prevention 
of both ALL and AML relapse. The renewed interest in haploiden-
tical stem cell transplantation and the incorporation of αβ T cell 
depletion into clinical graft engineering should provide oppor-
tunities to strengthen correlations between Vδ1+ T cell recovery 
and transplant outcomes. Vδ1+ T cells also have anti-viral proper-
ties, particularly against CMV and EBV infection, both of which 
have been associated with malignant  transformation. How best 
to bring these findings into the clinic will require further study. 
Lastly, we urgently need to develop manufacturing strategies that 
will translate into the clinic if the therapeutic potential for Vδ1+ 
T cell-based therapies is to be realized.
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