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Abstract

Researchers seeking to improve the efficiency and cost effectiveness of the bioactive small-

molecule discovery process have recently embraced selection-based approaches, which in 

principle offer much higher throughput and simpler infrastructure requirements compared with 

traditional small-molecule screening methods. Since selection methods benefit greatly from an 

information-encoding molecule that can be readily amplified and decoded, several academic and 

industrial groups have turned to DNA as the basis for library encoding and, in some cases, library 

synthesis. The resulting DNA-encoded synthetic small-molecule libraries, integrated with the high 

sensitivity of PCR and the recent development of ultra high-throughput DNA sequencing 

technology, can be evaluated very rapidly for binding or bond formation with a target of interest 

while consuming minimal quantities of material and requiring only modest investments of time 

and equipment. In this review we describe the development of two classes of approaches for 

encoding chemical structures and reactivity with DNA: DNA-recorded library synthesis, in which 

encoding and library synthesis take place separately, and DNA-directed library synthesis, in which 

DNA both encodes and templates library synthesis. We also describe in vitro selection methods 

used to evaluate DNA-encoded libraries and summarize successful applications of these 

approaches to the discovery of bioactive small molecules and novel chemical reactivity.

Introduction

The discovery of bioactive small molecules remains a major focus of both academic and 

industrial chemists. The global pharmaceutical industry spends ~$100 billion annually on 

research and development, reflecting the continued need for new therapies for the treatment 

of human disease.1 Bioactive molecules that do not meet all safety, efficacy, and 

marketability requirements of drugs have nonetheless proven valuable as probes to study a 

wide range of biological processes in the life sciences.2

The development of highly efficient methods to study the complete DNA, RNA, protein, or 

small-molecule content of cells has provided researchers with an enormous wealth of 

information on cellular targets implicated in human disease.3, 4 In order to find modulators 
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of these disease-associated targets, researchers frequently use a drug discovery approach 

based on combinatorial or diversity-oriented synthesis5 coupled with high-throughput 

screening. This approach seeks to create libraries of hundreds or thousands of compounds 

using reactions capable of tolerating chemically and structurally diverse building blocks. 

Once a library has been synthesized, a variety of screening methods are used to interrogate 

the activity of each library member in a discrete biochemical or cell-based phenotypic assay. 

Hits that emerge from high-throughput screens then serve as lead compounds for further 

development towards probes or therapeutic agents.

While high-throughput screening has become widely adopted in the drug discovery industry, 

it can be time consuming and typically requires substantial investment in costly 

infrastructure such as liquid-handling robots and in consumable reagents such as pipette tips 

and multi-well plates. Moreover, due to the discrete nature of screening assays, screening 

time and cost scale approximately linearly with library size.

In contrast, selection-based approaches, in which all library members are simultaneously 

tested for their ability to interact with a target of interest in a single one-pot experiment, can 

be much more efficient than screening. Since the time and effort required to perform a 

selection are independent of library size, researchers have selected large (“high-complexity”, 

in evolution terminology) libraries containing up to 1015 members,6 while screening-based 

methods have not been applied to libraries with complexity greater than 108,7 and are 

typically applied to libraries in the range of 103–106 members. Moreover, selection methods 

regardless of the target typically require only modest, widely available infrastructure such as 

disposable vessels and filters or magnetic separators, in contrast with the more specialized 

and target-specific equipment used to perform screens on biological targets.

The ability to deconvolute and decode a complex mixture of chemical entities before and 

after selection is a critical requirement for the application of selections to small-molecule 

discovery. Since directed analysis based upon the physicochemical properties of the library 

members (such as mass or retention time) may not offer the sensitivity and resolution 

required to uniquely identify the components of a highly complex mixture, researchers have 

developed the use of molecular barcodes directly associated with each library member that 

can be decoded with high fidelity.8–11 The in vitro or in vivo selection of proteins and 

nucleic acids is made possible by their genetic encoding and by biosynthetic machinery that 

uniquely translates DNA sequences into corresponding RNA or protein molecules. Due to 

the association of genotype and phenotype, the identity of library members surviving 

selection can be analyzed by PCR amplification and DNA sequencing of their associated 

genes.

Nature does not provide corresponding encoding and translation machinery for synthetic 

molecules. In 1992, Brenner and Lerner12 described a theoretical framework for using DNA 

to encode synthetic peptides. In 2001, Liu and co-workers implemented the use of DNA-

templated synthesis to generate DNA-encoded small molecules with arbitrary chemical 

structures.13 Additional methods for preparing and subjecting DNA-encoded small-molecule 

libraries to in vitro selection have been reported by several academic and industrial groups. 
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This review summarizes the development of these approaches and their recent application to 

discover bioactive synthetic small molecules.

DNA as a Barcode for Library Synthesis

DNA offers several key features as a molecular barcode for synthetic libraries. Its 

information density is very high, such that a 20-mer can encode millions of library members 

with error-avoiding redundancy. Moreover, the ability of minute quantities (sub-fmol) of 

DNA to be routinely amplified by PCR enables library evaluation to take place with a 

sensitivity not achievable by most screening methods. Finally, the advent of highly efficient 

methods for the separation and comprehensive, statistical sequencing of complex mixtures 

of DNA offers crucial advantages for library evaluation. Because of these advances in ultra-

high throughput DNA sequencing technologies, even small changes in the abundance of 

each member of a large DNA-encoded library upon exposure to a target-binding selection 

can be revealed in a single, cost-effective experiment. These features collectively explain the 

growing popularity of DNA as the basis for synthetic library encoding.

The theory of using DNA to encode a combinatorial chemistry library was first described in 

the literature by Brenner and Lerner in 1992.12 Their scheme used oligonucleotide synthesis 

to record the chemical steps of split-and-pool library synthesis performed on a common 

solid-phase substrate. Multiple rounds of small-molecule and DNA co-synthesis would 

result in a combinatorial library in which each library member is linked to a DNA sequence 

that encodes its identity.

Brenner and Lerner’s strategy was visionary but posed significant synthetic challenges since 

the co-synthesis of library members and oligonucleotides requires chemical compatibility 

between two combinatorial synthesis schemes. In 1993, two groups experimentally 

implemented the synthesis of DNA-encoded peptides. Early efforts by Brenner and Janda to 

synthesize DNA-encoded peptides (synthesis of a DNA-encoded library was never reported) 

were successful upon careful selection of a suitable linker conducive to both chemistries.14 

Using a modified approach that was conceptually similar to that of Brenner and Lerner, 

Gallup and co-workers were able to construct a library of ~105 DNA-encoded peptides by 

synthesizing in parallel peptide and oligonucleotides on different sites of the same resin 

bead.15 In this strategy, the bead itself serves as the “linker” that associates genetic tag with 

its corresponding library structure. While Gallup and co-workers were able to isolate active 

peptide sequences from this library, they were forced to evaluate the library using a 

screening approach since the library was resin-bound. In vitro selections typically require 

solution-phase libraries since each library member must be able to freely access and 

compete for target binding (or for reaction with a target substrate). Notably, both of these 

early examples of DNA-encoded libraries required substantial modifications to standard 

oligonucleotide and peptide synthesis methodology such as acid-stable purine analogs that 

could survive TFA-mediated peptide side chain deprotection, methyl phosphate protecting 

groups instead of the standard 2-cyanoethyl phosphate protecting group, and careful 

optimization of reaction conditions.14, 15
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In the following decade, researchers developed and implemented several distinct approaches 

to the synthesis of DNA-encoded libraries. Two classes of strategies were pursued: what we 

refer to as “DNA-recorded chemistry,” in which the oligonucleotide is added as an 

identification tag before or after a synthesis reaction, and what we term “DNA-directed 

chemistry,” in which the oligonucleotide both identifies and directs the synthesis of each 

library member. DNA-directed approaches allow iterated rounds of selection and, in 

principle, directed evolution of synthetic libraries since the library can be re-synthesized 

after selection in a process analogous to protein translation. DNA-recorded approaches, in 

contrast, lack the ability to undergo translation en masse from DNA sequences to 

corresponding synthetic molecules and thus do not support this capability. DNA-recorded 

strategies, however, offer simpler access to library members since oligonucleotide sequences 

do not direct chemical reactions during library synthesis and therefore library synthesis steps 

can precede and be performed independent of DNA polymerization events.

Building on the original proposal of Brenner and Lerner, DNA-recorded library chemistry 

has been pioneered by Professor Dario Neri and co-workers (ETH Zurich, Switzerland) and 

commercialized by Philochem (Zurich, Switzerland) as well as researchers at Praecis 

Pharmaceuticals (Waltham, MA, USA) (now owned by GlaxoSmithKline) and NuEvolution 

(Copenhagen, Denmark).

Three distinct approaches to DNA-directed chemistry have been developed: DNA-templated 

synthesis (DTS) by Professor David Liu and co-workers (Harvard University, USA) and 

later commercialized by Ensemble Discovery (Cambridge, MA, USA), DNA-display or 

DNA-routing by Professor Pehr Harbury and co-workers (Stanford University, USA), and 

the YoctoReactor system developed by Vipergen (Copenhagen, Denmark). Professor Neri 

and coworkers have also developed an approach known as encoded self-assembling 

combinatorial (ESAC) libraries, in which DNA hybridization directly assembles each library 

member. In contrast to the DNA-directed methods described above, however, ESAC 

libraries cannot be subjected to iterated rounds of selection. These approaches will be 

described in further detail below.

Development of DNA-Directed Library Synthesis

In 2001, Gartner and Liu described DNA-templated organic synthesis (DTS), an approach to 

DNA-encoded chemistry in which a DNA oligonucleotide directs (or “templates”) bond-

forming reactions by bringing DNA-linked reagents into proximity through Watson-Crick 

base pairing.13 Liu and co-workers were not the first to use nucleic acid hybridization to 

template chemical reactions. In 1966, Naylor and Gilham16 demonstrated that a polyA 

template could catalyze chemical phosphodiester bond formation between polyT hexamers, 

and pioneering work by Leslie Orgel and others17 has demonstrated the ability of an 

oligonucleotide template to catalyze the polymerization of activated nucleotide units, 

including those of DNA, RNA, and peptide nucleic acid (PNA). Liu and co-workers 

discovered that DTS is a general approach to increase the effective molarity of chemical 

reactants, enabling access to a wide variety of products with no structural similarity to 

nucleic acids.13 Because the products of DTS reactions are linked to DNA templates that 

encode and direct their synthesis, and because Watson-Crick base pairing between many 
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oligonucleotides can take place in one solution in a highly sequence-specific manner, DTS 

can “translate” libraries of DNA into corresponding libraries of DNA-encoded synthetic 

molecules suitable for in vitro selection.

Demonstrating the versatility of the approach, Liu and co-workers have applied DTS to 

three distinct problems: 1) synthesis and selection of DNA-templated small-molecule 

libraries, 2) reaction discovery using DNA-encoded libraries of small-molecule substrates, 

and 3) a system for the in vitro translation, selection and amplification of sequence-defined 

synthetic polymers. In 2004, Gartner et al. described the first DNA-templated small-

molecule library synthesis in which a pilot 65-membered macrocycle library was generated 

by three DNA-templated amine acylations and one Wittig macrocyclization reaction.18 

Incorporation of a phenyl sulfonamide-containing building block into this library enabled a 

model selection against carbonic anhydrase to be performed successfully. Several years 

later, advances in DNA-templated library synthesis methodology enabled the rapid synthesis 

of a 13,000-membered DNA-templated macrocycle library suitable for in vitro selection and 

ligand discovery (Figure 1A).19 Bioactive macrocycles discovered from this library are 

described below.

DTS libraries have been applied to research programs beyond those seeking the discovery of 

functional DNA-encoded small-molecules. In 2004, Kanan et al. reported a DNA-encoded 

reaction discovery system20 that revealed a novel Pd(II)-catalyzed alkene-alkynamide 

coupling. In this system, two pools of DNA-linked substrates were hybridized, resulting in 

168 pairwise substrate combinations, and subjected to in vitro selection for bond formation 

under a variety of reaction conditions. PCR amplification and DNA microarray analysis 

revealed bond-forming substrate combinations. Liu and co-workers developed a 

hybridization-independent DNA-encoded reaction discovery system that resulted in the 

discovery of an Au(III)- or acid-mediated hydroarylation reaction21 and a Ru(II)-catalyzed 

azide reduction22 that is triggered by visible light and is compatible with the functional 

groups present in proteins, nucleic acids, and carbohydrates.

The principles of DTS have also been applied to synthetic polymers capable of Watson-

Crick base pairing with DNA templates. In 2009, Brudno et al.23 reported the synthesis and 

selection of a library of DNA-encoded synthetic PNA analogs. They demonstrated that PNA 

building blocks can be non-enzymatically “translated” from a DNA template sequence with 

high sequence fidelity, and that the resulting DNA-encoded synthetic polymer library could 

support iterated cycles of translation, selection, and amplification, enabling a single 

biotinylated library member to be successively enriched from a library of more than 108 

PNAs through successive in vitro selection for streptavidin binding.23

In 2009, scientists at Vipergen applied the principles of DNA-templated synthesis to 

generate a 100-membered DNA-encoded peptide library.24 Their system, termed the 

“YoctoReactor”, relies on DNA-templated reactions occurring at the center of a DNA three-

way junction (Figure 1B). Like other DTS-based systems, the YoctoReactor can support 

iterated rounds of selection, amplification, and translation. Indeed, in a model selection 

conducted over two rounds, Hansen et al. demonstrated >150,000-fold enrichment of a 

known ligand for [Leu]-enkephalin from a YoctoReactor-synthesized library.24

Kleiner et al. Page 5

Chem Soc Rev. Author manuscript; available in PMC 2015 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While synthetic small-molecule libraries made by split-and-pool synthesis typically use off-

the-shelf chemical reagents for library synthesis, the DNA-templated approaches described 

above require the separate synthesis and purification of DNA-linked reagents for use in DTS 

steps. The approach to DNA-encoded library synthesis described by Harbury and co-

workers, termed “DNA display,”25–27 circumvents this requirement by combining the ability 

of DNA to direct reactions in a sequence-specific manner with the ease of performing 

library synthesis using commercially available building blocks. In the DNA display method, 

immobilized DNA sequences complementary to individual library codons capture and 

segregate a subset of DNA-linked library members in a codon-dependent manner via 

Watson-Crick base pairing (Figure 1C). Spatial segregation of DNA sequences according to 

individual codon identity allows the small-molecule library to be generated by what is 

effectively DNA-directed split-and-pool chemical synthesis. The DNA display method, like 

other DNA-directed library synthesis approaches, allows resynthesis (“retranslation”) of 

active library members from DNA isolated after selection. One complication of the use of 

DNA to route attached small molecules during library synthesis is the apparent requirement 

for long coding sequences on the order of 300 nucleotides.25 Harbury and co-workers 

demonstrated the potential of the DNA display approach by synthesizing a 1-million-

membered DNA-encoded synthetic peptide library and performing a model selection for 

binding a [Leu]-enkephalin antibody.26

Another DNA-directed library approach was reported by Neri and co-workers in 2004.28 

Their approach, encoded self-assembling combinatorial (ESAC) libraries, uses DNA 

hybridization to combinatorially assemble independently constructed libraries of DNA-

encoded small-molecule fragments in a sequence-programmed fashion. In this approach, 

two DNA-encoded libraries containing n unique elements can combine to generate a DNA-

duplex library displaying n2 DNA-encoded non-covalent fragment combinations (Figure 

1D). Neri and co-workers used ESAC to improve known ligands to albumin and carbonic 

anhydrase. In these initial efforts, one hybridization partner with known target affinity was 

kept constant, and the second strand consisting of a DNA-encoded library was hybridized to 

the first strand. Selection of the resulting DNA duplexes displaying two small molecules led 

Melkko et al. to identify and synthesize tighter binding derivatives of dansyl amide and 4-

carboxybenzenesulfonamide.28 One inherent challenge in the ESAC approach is the lack of 

information from selection results on an appropriate structural scaffold for the selected 

bidentate ligand once combinations of fragments are identified.

Development of DNA-Recorded Library Synthesis

In contrast to DNA-directed libraries, DNA-recorded libraries cannot be generated from 

libraries of DNA and therefore cannot be subjected to iterated rounds of selection and 

translation. Nevertheless, DNA-recorded libraries offer advantages including their ease of 

synthesis and their ability to use encoding DNA sequences (codons) that do not necessarily 

support sequence-specific hybridization. These features have enabled researchers to 

construct DNA-recorded libraries containing up to 800 million individual library 

members.29 The general approach to DNA-recorded library synthesis involves alternating 

library synthesis steps with enzyme-catalyzed DNA polymerization or ligation of short DNA 

sequences used to encode each synthetic step.30 Library diversity is generated over repeated 
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cycles of division, synthesis, and pooling, a well-established method in combinatorial 

chemistry known as “split-and-pool” synthesis.31

In 2008, the Neri lab reported the synthesis of two 4,000-membered DNA-recorded libraries 

created by the above strategy. Each library contained two diversity-generating building 

blocks coupled using either the Diels-Alder cycloaddition (Figure 2A)32 or amide bond 

formation.33 Synthesis of the encoding double-stranded DNA was achieved by Klenow 

fragment DNA polymerase-catalyzed primer extension templated by partially 

complementary coding oligonucleotides. Neri and co-workers used DNA-conjugated 

desthiobiotin as a positive control in the library and selected the resulting population against 

streptavidin. They used high-throughput DNA sequencing, the first reported application of 

this technology to a DNA-encoded library, to analyze the selection results and confirm 

enrichment of the positive control as well as several novel streptavidin-binding molecules.33

At Praecis Pharmaceuticals (Waltham, MA, USA), now owned by GlaxoSmithKline, 

researchers devised an encoding method that records each library synthesis reaction by prior 

enzymatic ligation of a double-stranded DNA tag. DNA ligation and chemical synthesis on a 

triazine scaffold were cycled in a split-and-pool manner over three rounds to create a DNA-

encoded library of up to 7 million members (DEL-A) (Figure 2B), and over four rounds to 

create a library of up to 800 million members (DEL-B),29 the largest DNA-encoded small-

molecule library reported to date. As a proof-of-principle demonstration, VX-680, a known 

Aurora A kinase inhibitor, was conjugated to DNA and spiked into DEL-A at the expected 

concentration of a single library member. Three rounds of panning (binding selection 

without amplification) of this library against Aurora A resulted in 100,000-fold enrichment 

of the positive control VX-680-encoding DNA as determined by high-throughput 

sequencing.29 Praecis scientists included a known p38 MAPK inhibitor pharmacophore, 3-

amino-4-methyl-N-methoxybenzamide (AMMB), into DEL-A during a second proof-of-

principle selection experiment. Selection of DEL-A against p38 MAPK resulted in 

substantial enrichment of library members containing the AMMB moiety.

Collectively, the results from the Neri group and Praecis/GSK validated the ability of split-

and-pool synthesis to furnish large DNA-recorded libraries suitable for the discovery of 

protein-binding small molecules, and established high-throughput DNA sequencing as a 

critical component of molecular discovery from large DNA-encoded libraries.

Methods for In Vitro Selection of DNA-Encoded Libraries

In vitro selections for target affinity are a simple but very powerful tool for evaluating 

synthetic libraries.34–37 They enable the preferential enrichment of molecules with target-

binding activity relative to non-binding molecules from a high-complexity library, 

facilitating the identification of rare library members with desirable properties. During a 

selection, the properties of each molecule are evaluated on the basis of that molecule’s 

individual properties at the same time in one pot, enabling extremely high throughput.6 In 

contrast, a screening approach by definition interrogates the properties of each library 

member discretely, a process that requires time, effort, and expense roughly proportional to 
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library size, and that also typically requires the physical separation of each library member, 

or synthesis of each library member in a spatially segregated format.38

Binding selections are often performed using an immobilized target that 

chromatographically separates active library members bound to the target from non-binding 

library members still in solution (Fig. 3A). Washing removes inactive library members, and 

target-bound library members are then eluted by cleaving the target from solid support, by 

disrupting ligand-target interactions, or by treating with an excess of a competitive ligand. In 

the case of DNA-encoded libraries, the DNA encoding selection survivors can then be 

amplified by PCR and subjected to subsequent rounds of in vitro selection (perhaps under 

more stringent conditions) to further enrich the most active library members. Phage display 

first popularized this in vitro selection method,39 termed ‘panning’ in analogy to the process 

for removing contaminants from samples containing gold. Panning has been extensively 

used for the in vitro selection and evolution of nucleic acid aptamers long before its 

application to synthetic library evaluation.6

In 2003, Doyon et al.40 demonstrated the use of in vitro selection methodology with 

immobilized protein targets to enrich DNA-linked small-molecule ligands from mixtures 

containing predominantly non-binding small molecules. This approach has been widely used 

to process DNA-encoded chemical libraries. While target immobilization is the most 

straightforward approach to in vitro binding selection, it is not an absolute requirement and 

methods such as capillary electrophoresis enable the solution-phase separation of library 

member-target complexes from free non-binding library members.41

An in vitro binding selection can be adapted into a selection for bond formation or bond 

cleavage by linking changes in covalency among library members with the transfer of an 

affinity handle such as biotin, thereby enabling physical separation of reactive library 

members from unreactive ones (Fig. 3B). Researchers in the ribozyme and DNAzyme 

evolution field have used such in vitro bond-forming and bond-breaking selections to evolve 

RNA and DNA catalysts.6

While the traditional approaches to in vitro selection described above have proven extremely 

successful for the discovery of ligands and catalysts, they are subject to two fundamental 

limitations: the inability to select a library against multiple targets in one solution and the 

general reliance on physical separation of active and inactive library members (usually by 

target or ligand immobilization) to enable enrichment.42, 43 Since researchers are often 

interested in interrogating multiple targets to increase the likelihood of finding a potent and 

selective ligand, the first constraint restricts the throughput of the method. The second 

limitation requires purification of library member-target complexes from inactive library 

members and, when immobilized targets are used, introduces artifacts arising from matrix 

binding, imprecise control of target concentration, or loss of native target structure.44 In 

principle, a solution-phase in vitro selection approach capable of evaluating the covalent or 

non-covalent interactions between a library of ligands and a library of targets should be able 

to overcome the restrictions discussed above.
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Towards this goal, Gorin et al. recently developed reaction-dependent PCR (RDPCR)45 as 

an in vitro selection method for interrogating solution-phase reactions between pairs of 

DNA-encoded small molecules (Fig. 3C). RDPCR relies on the difference in melting 

temperature between an intermolecular versus an intramolecular (known as a “hairpin”) 

DNA duplex. By linking a single-stranded oligonucleotide capable of initiating primer 

extension to one small molecule, covalent-bond formation between a DNA-encoded library 

member and oligo-linked small molecule results in an intramolecular duplex which can be 

selectively extended by a DNA polymerase and subsequently PCR amplified preferentially 

over the intermolecular duplex formed by non-reacting DNA-encoded library members (Fig. 

3C). McGregor et al.46 expanded the principles of RDPCR to solution-phase non-covalent 

binding between a DNA-encoded library and an oligonucleotide-tagged protein or nucleic 

acid target in a method termed interaction-dependent PCR (IDPCR). IDPCR enables 

multiple selections to be performed in one solution by adding a DNA barcode to each target, 

thereby allowing all possible combinations of a library of small molecules and a library of 

macromolecular targets to be evaluated simultaneously in a single experiment (Fig. 3D). 

McGregor et al. used IDPCR to selectively enrich the DNA sequences encoding biotin

+streptavidin, desthiobiotin+streptavidin, carboxybenzenesulfonamide+carbonic anhydrase, 

Gly-Leu-carboxybenzene sulfonamide+carbonic anhydrase, and antipain+trypsin small 

molecule-target pairs out of ~68,000 possible small molecule-target DNA barcode 

combinations in a single solution. The application of IDPCR and related methods could 

significantly facilitate multiplexed selection experiments that simultaneously identify 

ligand-receptor pairs, reveal ligand selectivity across multiple receptors, and profile receptor 

selectivity across many ligands.

Decoding Selection Outcomes

Every member of a DNA-encoded chemical library is linked to “genes” that encode their 

structures. Assuming the method to synthesize the library rigorously preserves the 

correspondence between gene sequence and library member structure (or, minimally, library 

member reaction history), the outcomes of in vitro selections can be revealed by comparing 

DNA sequences before and after selection. DNA sequences enriched upon selection suggest 

that the corresponding library members possess target affinity or reactivity. Rapid advances 

in DNA sequencing technologies over the past decade47, 48 have dramatically increased the 

resulting information content that results from decoding DNA-encoded chemical libraries 

while decreasing the cost by several orders of magnitude. As a result, it is currently possible 

to obtain detailed structure-activity relationships across large DNA-encoded libraries 

subjected to in vitro selection in less than a few weeks of time and at a cost of less than $100 

per selection. Future next-generation DNA sequencing technologies will likely drive these 

time and cost requirements down by at least an additional order of magnitude within the next 

few years, such that the cost of evaluating many selections of DNA-encoded libraries 

containing thousands or millions of library members may become trivial.

During the initial growth of DNA-encoded library technology in the early 90s and the 

beginning of the millennium, automated Sanger “dideoxy” sequencing was the method of 

choice for determining DNA sequence identity and thus it saw application in many of the 

pilot studies mentioned above.18, 28, 49 While Sanger sequencing offers relatively long and 
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accurate read lengths (a property that is not critical for decoding synthetic DNA tag 

sequences which are often short and designed to be maximally distinguishable), it is not a 

high-throughput technique, and is only useful and cost-effective when sampling a small 

number of sequences (<1,000) can give an accurate picture of the distribution of sequences 

in the entire population, as is the case for small DNA-encoded libraries or for multi-round 

selection efforts that have sufficiently enriched the population to converge to a small number 

of active sequences.

DNA sequencing by hybridization to a microarray of complementary DNA oligonucleotides 

is a technique that provides a global profile of a DNA population and is not subject to the 

stochasticity present in methods that sample individual population members. Neri and co-

workers successfully used DNA microarrays to analyze the results of affinity selections 

performed with a DNA-encoded library.28 The application of microarray-based methods for 

decoding complex populations of DNA sequences is unfortunately limited by the inherent 

specificity of DNA hybridization and the physical limitation on the number of probes that 

can be arrayed on a chip; consequently, this method is not suitable for analyzing very large 

DNA libraries containing many highly-similar encoding sequences. Microarray-based 

sequencing is an efficient method for analyzing modestly-sized populations of DNA 

sequences and has been repeatedly used by Liu and co-workers for decoding selection 

results from DNA-encoded reaction discovery experiments.20–22

Over the past six years, “next-generation” DNA sequencing technology has become readily 

available to the scientific community. One of the first such technologies to be 

commercialized, “454 sequencing”50 (454 Life Sciences,Branford, CT, USA, now owned by 

Roche), was initially able to provide on the order of ~10,000–100,000 sequence reads per 

sample, and was quickly adopted by the DNA-encoded library community, seeing 

application in selection analysis performed by Praecis Pharmaceuticals29 and by Neri and 

co-workers.33 More recently, Illumina’s (San Diego, CA, USA) Solexa sequencing 

technology51 has become the industry standard for providing very large numbers of 

sequences from a single experiment (~1–10 million reads per sample) with read lengths 

(~30–100 bases) that are sufficient to decode most types of DNA-encoded libraries. Kleiner 

et al.52 used Solexa sequencing to interrogate the selection of a DNA-templated macrocycle 

library against 36 protein targets. To maximize the capabilities of the technology, PCR 

barcoding was used to facilitate the parallel sequencing of all 36 selections as one sample. 

Similarly, Neri and co-workers have reported the use of Illumina technology to interrogate 

DNA-encoded libraries.53, 54

As DNA-encoded libraries have increased in size, the unprecedented sample coverage 

provided by high-throughput sequencing technology has become a crucial tool for the 

analysis of DNA-encoded library selections since it is the only method capable of detecting 

very rare library members or modest enrichments in a library member’s abundance upon 

selection. Continued advances in these rapidly developing technologies will make selection-

based approaches increasingly efficient and cost-effective.
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Bioactive Synthetic Small Molecules Discovered from DNA-Encoded 

Libraries

Researchers have recently integrated the developments summarized above to discover 

dozens of de novo synthetic small molecules with the ability to bind, inhibit, or activate 

biomedically relevant targets. The first example of such a discovery was reported by 

Harbury and colleagues in 2007.49 They generated a 100-million-membered peptoid library 

using the DNA display method and subjected this library to affinity selection against the 

SH3 domain of the proto-oncogene Crk. To favor the selection of Crk-SH3 ligands, the 

building blocks of the library were chosen based on a Crk-SH3-peptide co-crystal structure. 

After five rounds of selection, Sanger sequencing of 960 library clones revealed that the 

library sequences converged on ten families of structurally related compounds. Synthesis of 

one molecule per family gave rise to six Crk-SH3-binding poly-peptoids with dissociation 

constants ranging from 16 – 97 µM. These affinities are consistent with those observed for 

natural Crk-SH3 ligands, and the 16 µM peptoid binder (Table 1) was the highest affinity 

wholly unnatural SH3 ligand known at the time.

Several molecules discovered from DNA-encoded chemical libraries have shown activity in 

biological settings. One well-characterized bioactive molecule used for in vivo applications 

was reported by Neri and co-workers. They isolated a novel class of structurally-related 

human serum albumin-binding small molecules from a 619-membered DNA-encoded 

chemical library with affinities ranging from 3.2 µM to 55 µM.55 The highest-affinity ligand 

was applied as an albumin affinity tag by replacing the encoding DNA with other molecules 

of interest (Table 1).56, 57 In mouse studies, conjugates of the albumin binder and the 

commonly used blood pool contrast agents, fluorescein and Gd-DTPA, displayed increased 

circulatory half-lives and consequently improved performance as imaging agents over their 

unmodified counterpart. Further studies in mice demonstrated the benefits of endowing 

acetazolamide,56 a general carbonic anhydrase inhibitor routinely used for the treatment of a 

number of diseases including glaucoma, and a tumor-targeting antibody fragment57 with 

albumin-binding properties using the albumin affinity tag. In the first example, conjugation 

of the albumin binder to acetazolamide restricted the low molecular weight drug to the 

extracellular space and allowed specific inhibition of extracellular tumor-associated 

enzymes carbonic anhydrase IX and XII, resulting in tumor growth inhibition in a 

combination therapy with sunitinib in mice.56 In the second example, conjugation of the 

albumin binder to the antibody fragment increased the delivery of the protein to the tumor 

and resulted in superior tumor-to-organ ratios in comparison to the unmodified antibody 

fragment.57

ESAC libraries led to the discovery of matrix metalloproteinase 3 (MMP3) inhibitors, 

representing the first enzyme inhibitors isolated from a DNA-encoded chemical library.58 

Initially, panning a 550-membered DNA-encoded library against MMP3 identified a starting 

compound which was then used as a lead structure for the assembly of an ESAC library. 

Selection of the dual fragment library against MMP3 resulted in several combinations of 

synergistically binding molecules. Suitable conjugation of these binding moieties resulted in 
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an MMP3 inhibitor with an IC50 of 9.9 µM (Table 1). In contrast to most MMP inhibitors, 

the discovered molecule lacks common Zn-chelating groups.

The emergence of high-throughput DNA sequencing technology has facilitated the isolation 

of active molecules from increasingly larger libraries. In a collaboration between Philochem 

and Cambridge Antibody Technology (Cambridge, UK) (now MedImmune), a 4,000-

membered amide-bond synthesized library was deployed for the identification of molecules 

binding to the anti-apoptotic protein Bcl-xL.59 High-throughput sequencing after affinity 

selection identified 34 molecules, of which 31 bound to the target with dissociation 

constants of 60 µM or better. The highest affinity binder (Kd = 930 nM) bound 

competitively with the Bak peptide, a natural ligand of Bcl-xL (Table 1), and induced cell 

death in Raji cells with an EC50 value of 77 µM. Interestingly, the molecule is a conjugate 

between indomethacin and a β-amino acid derivative. Indomethacin was originally 

discovered as an anti-inflammatory drug but has also been reported to be cytotoxic and to 

induce apoptosis in several cancer cell lines. In another example from the Neri lab, three 

binders of tumor necrosis factor (TNF) were isolated from a 4,000-membered Diels-Alder 

based library. Among these compounds, the most potent molecule displayed a dissociation 

constant of 20 µM.60 Further modification resulted in a small molecule capable of 

completely inhibiting TNF-induced apoptosis in cells, when applied at high concentrations 

(Table 1).

Neri and co-workers recently reported the discovery of inhibitors towards carbonic 

anhydrase IX (CA IX).54 Six inhibitors were isolated from a 1-millon-membered DNA-

recorded library with inhibition activities as potent as IC50 = 240 nM (Table 1). All 

inhibitors included one or two sulfonamide-containing building blocks, functional groups 

known to bind enzymes containing zinc in their active site. A fluorescently labeled 

derivative of one of the bis(sulfonamide) compounds was shown to specifically localize at 

tumors overexpressing CA IX in two mouse models.54

Two groups have reported inhibitors for several disease-related kinases discovered using 

DNA-encoded libraries. Researchers at Praecis Pharmaceuticals/GSK discovered two 

families of Aurora A inhibitors from a 7-million-membered DNA-recorded library 

synthesized with a triazine chemical scaffold as described above.29 The most potent of these 

compounds inhibited Aurora A with an IC50 of 270 nM (Table 1). While the compounds 

were unrelated to previously described Aurora A inhibitors, they contained structural 

features common to kinase inhibitors. A co-crystal structure of one of the inhibitors showed 

the molecule binding in the ATP-binding pocket of the kinase and the former point of 

attachment to DNA exposed to solvent. Encouraged by these results, a DNA-recorded 

library of up to 800 million compounds was synthesized using the same triazine scaffold and 

was used to isolate molecules that bind p38 MAP kinase.29 In vitro selection revealed a 

family of enriched molecules sharing three out of the four library building blocks. Since the 

selection profile did not indicate any structural preference at the fourth building block, 

compounds corresponding to hydrolysis products of that synthetic step were included in the 

evaluation of hits. Indeed, one of these molecules lacking a fourth building block proved to 

be the most potent p38 MAP kinase inhibitor with an IC50 of 7 nM (Table 1). Crystallization 
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experiments demonstrated binding of this molecule in the ATP pocket with the DNA 

attachment site pointing towards solvent.

Liu and co-workers described the first de novo discovery of active molecules from a DNA-

templated library. Parallel selections of a 13,824-membered macrocycle library against 36 

proteins resulted in the discovery of several novel classes of kinase inhibitors and 

activators.52 The most potent compounds isolated inhibited Src kinase with IC50 values of 

680 and 960 nM (Table 1). Even though the identified inhibitors contained no building 

blocks strongly resembling ATP, they bound to Src in an ATP-competitive manner and with 

unusually high target specificity. The second family of kinase-binding macrocycles inhibited 

the kinases Akt3, MAPKAPK2, and Pim1 with low micromolar IC50 values (Table 1). 

Interestingly, one of the macrocycles in this family enhanced VEGFR2 activity significantly, 

suggesting that these macrocycles can also bind kinases in a manner that increases their 

activity. A third family of macrocycles inhibited their target kinases with modest activity, 

the best IC50value being 11 µM for the p38α-MAPKAP2 cascade.

Although industrial drug-discovery activities are often not immediately reported in the 

literature, the number of companies successfully harnessing the power of DNA-encoded 

chemical libraries and in vitro selection for drug discovery is further suggestive of the recent 

significant impact of these technologies. Indeed, interest in DNA-encoded chemical libraries 

has grown continuously since their initial reports (Table 2). This interest is reflected both by 

the growing number of new companies entering the field, and by the recent establishment of 

collaborative efforts (or acquisitions) involving large pharmaceutical companies and 

companies with expertise in DNA-encoded library synthesis and selection.

Conclusion/Discussion

Over the past decade, DNA-encoded chemical libraries have offered a valuable and versatile 

alternative to labor- and cost-intensive high-throughput screening campaigns. Several 

independent groups in academia and industry have reported the synthesis of many diverse 

DNA-encoded libraries using the methods summarized in this article. Selection of these 

libraries has yielded dozens of novel ligands for biomedically relevant targets. Although the 

chemistry that can be performed in the presence of DNA represents only a subset of known 

chemical reactions, the variety of synthetic schemes used to create DNA-encoded libraries to 

date have resulted in large, diverse collections of small molecules including libraries based 

on triazines, bicyclic Diels-Alder products, macrocycles, oxazolidines, peptoids, and PNA. 

The ligands, inhibitors, and activators isolated from DNA-encoded chemical libraries are 

likewise chemically diverse (Table 1). Moreover, the nature of the technology readily allows 

independently synthesized libraries to be combined so long as their template sequences are 

distinguishable, thereby increasing the complexity of libraries that can still be 

simultaneously assayed in each selection.

Selection methods require minimal infrastructure, have enormous throughput, and are 

versatile in target scope. While target-binding selections do not explicitly require binding to 

a specific site on the target, the majority of compounds surviving selection generally bind at 

predisposed locations, including enzyme active sites, enabling the isolation of novel 
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inhibitors. Since minimal assay optimization is required for each individual target, selections 

against multiple targets are easily performed in parallel. This concept of rapidly assaying 

members of a large library for interaction with many targets has been extended by the 

development of IDPCR, in which all members of a library of DNA-encoded small molecules 

are simultaneously evaluated for binding to all members of a library of DNA-tagged 

macromolecules in a single experiment.46

The selection-based methods enabled by DNA-encoded chemical libraries can be tailored to 

yield more sophisticated insights beyond simple target affinity. For example, Wrenn et al.49 

incorporated an elution step using an excess of the natural ligand to favor the selection of 

active-site binders. Alternatively, selections can be designed for the opposite outcome. 

Performing selections for kinase binding in the presence of high ATP or substrate peptide 

concentrations, for example, should preferentially enrich allosteric ligands. A target can 

likewise be locked in a catalytically inactive state to facilitate the selection of binders that 

stabilize the inactive conformation. Finally, free off-target macromolecules, such as related 

enzymes for which inhibition is undesirable, can be added to selections to remove library 

members with undesired specificities. Therefore, in vitro selections can be performed in 

replicates under slightly varied conditions to isolate multifunctional library members and to 

gain insights into corresponding complex structure-activity relationships.

DNA-encoded chemical libraries have benefitted greatly from advances in high-throughput 

sequencing technology. Although developed for rapid and cost-effective genome 

sequencing, next-generation DNA sequencing technologies have been highly enabling in the 

evaluation of selections on DNA-encoded chemical libraries. The ability to obtain millions 

of sequence counts per selection has obviated the need for post-selection libraries to 

converge on a small number of surviving sequences since DNA-encoded libraries containing 

up to ~106 members can now be sequenced with a high-degree of coverage. DNA-encoded 

library evaluation will continue to benefit from the ongoing development of DNA 

sequencing methods that offer longer read lengths and even greater throughput.

The fact that most DNA-encoded libraries contain thousands to millions of molecules, rather 

than billions or trillions, reflects a tradeoff between library size (complexity) and the degree 

to which library size and quality have been rigorously characterized. Larger libraries are 

typically achieved by adding additional steps to library synthesis, increasing the frequency 

among library members that an unplanned reaction has taken place or an anticipated reaction 

has failed to occur, potentially complicating the interpretation and recapitulation of selection 

data. As the success of the Praecis/GSK efforts demonstrate, however, even libraries 

containing non-productive reactions can yield the discovery of potent and selective ligands 

when coupled with sufficient downstream characterization and deconvolution. Collectively, 

the rapid development and successful application of DNA-encoded library synthesis and 

evaluation methods over the past ten years suggests that these platforms will continue to 

reshape academic and industrial small molecule-discovery efforts.
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macromolecules that precisely manipulate information flow in human cells; (ii) the 

discovery of new structures and functions among cellular nucleic acids; and (iii) the 

discovery of bioactive synthetic small molecules, functional synthetic polymers, and new 

chemical reactions through DNA-templated synthesis and in vitro selection.
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Figure 1. 
Approaches to DNA-directed library synthesis. A) Synthesis of a library of 13,824 

macrocycles using DNA-templated synthesis. B) Synthesis of a DNA-encoded library using 

the “YoctoReactor” system. C) Synthesis of a library of 100 million peptoids using DNA-

display. D) Library synthesis through the encoded self-assembling combinatorial (ESAC) 

approach.
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Figure 2. 
Approaches to DNA-recorded library synthesis. A) Neri and co-workers synthesized a 

4,000-membered DNA-encoded library using a bicyclic Diels-Alder-formed scaffold and 

DNA-tag synthesis using primer extension. A similar 4,000-membered DNA-encoded 

library was also synthesized using amide-bond-formation chemistry. B) Researchers at 

Praecis Pharmaceuticals assembled a 7-million-membered DNA-encoded library using 

alternating cycles of enzymatic DNA ligation and chemical synthesis on a triazine scaffold.
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Figure 3. 
Methods to perform in vitro selections on DNA-encoded libraries. A) Traditional in vitro 

selection for target affinity. B) Traditional in vitro selection for bond formation. C) Selection 

for bond formation using reaction-dependent PCR (RDPCR). D) Selection for target binding 

using interaction-dependent PCR (IDPCR).
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Table 1

Bioactive synthetic small molecules discovered from DNA-encoded chemical libraries and in vitro selection.

Target Structure Kd / IC50

Crk-SH3 16 µM

HSA 3.2 µM

MMP3 9.9 µM

Bcl-xL 930 nM

TNF 15 µM

CA IX 260 nM

Aurora A 270 nM

p38 MAPK 7 nM
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Target Structure Kd / IC50

Src 680 nM / 960 nM

p38α-MK2 3.4 µM
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Table 2

Companies and industrial collaborations engaged in small-molecule discovery using DNA-encoded libraries.

Biotech Founded Collaboration/Acquisition Initiation

Ensemble Therapeutics 2004 Bristol-Myers Squibb
Pfizer

2009
2010

NuEvolution 2001 Merck
Lexicon Pharmaceuticals

Novartis

2008
2008
2009

Philochem 2006 Cambridge Antibody Technology 2007

Praecis Pharmaceuticals 1993 GlaxoSmithKline (acquisition) 2007

Vipergen 2005
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