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Abstract

Since their discovery in the late 1970’s, protein kinase C (PKC) isozymes represent one of the 

most extensively studied signaling kinases. PKCs signal through multiple pathways and control 

the expression of genes relevant for cell cycle progression, tumorigenesis and metastatic 

dissemination. Despite the vast amount of information concerning the mechanisms that control 

PKC activation and function in cellular models, the relevance of individual PKC isozymes in the 

progression of human cancer is still a matter of controversy. Although the expression of PKC 

isozymes is altered in multiple cancer types, the causal relationship between such changes and the 

initiation and progression of the disease remains poorly defined. Animal models developed in the 

last years helped to better understand the involvement of individual PKCs in various cancer types 

and in the context of specific oncogenic alterations. Unraveling the enormous complexity in the 

mechanisms by which PKC isozymes impact on tumorigenesis and metastasis is key for 

reassessing their potential as pharmacological targets for cancer treatment.

Keywords

Protein kinase C (PKC); mitogenesis; apoptosis; survival; tumorigenesis; metastasis; animal 
models

Introduction

Protein kinase C (PKC), a prototypical class of serine/threonine kinases, exemplifies specific 

signaling molecules that link multiple cellular processes to cancer. Originally identified as a 

cellular receptor for the phorbol ester tumor promoters more than 30 years ago [1–2], PKC 

became the subject of intense studies by academic laboratories and pharmaceutical 

companies (>50,000 citations in PubMed, which is even more than other ABC kinases such 

as PKA or PKB/Akt). Extensive work established these kinases as pleiotropic regulators of 

cell function, including proliferation, differentiation, survival and motility [3]. To date, it is 
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clear that PKCs are associated with a number of diseases, including cancer, cardiovascular 

dysfunctions and metabolic disorders. The complexity in PKC signaling arises from the fact 

that PKC is a multifamily of structurally related kinases with diverse biological functions. 

Indeed, mammalian PKCs encompass 10 members that represent the products of 9 different 

genes located in different chromosomes. PKC isozymes have been classified into three 

groups: “conventional” or “classical” PKCs (cPKCs) that are composed of PKCα, two splice 

variants of PKCβ (PKCβI and PKCβII) and PKCγ; “novel” PKCs (nPKCs), a group that 

includes PKCδ, PKCε, PKCη, and PKCθ; and “atypical” PKCs (aPKCs) ζ and ι (λ). cPKCs 

and nPKCs are activated by diacylglycerol (DAG), a lipid second messenger transiently 

generated upon stimulation of membrane receptors such as tyrosine-kinase and G-protein-

coupled receptors. DAG mimics the action of phorbol esters, as they bind to the C1 domains 

in the regulatory region. Only the cPKCs are calcium-sensitive, as they have a calcium-

binding C2 domain (the C2 domain in nPKCs is calcium-insensitive). aPKCs display unique 

regulatory properties: they are unable to bind DAG or calcium and rather depend on protein-

protein interactions and phosphorylation for their activation [3] (Fig. 1).

In the last years we have witnessed major advances in our understanding of the roles of 

PKCs in tumor development and progression, including in late stages of the disease and 

metastasis. This review summarizes the knowledge on PKC isozymes in cancer progression 

and highlights the most recent advances in the field, particularly using genetically modified 

mouse models in the context of specific oncogenic alterations.

PKC isozyme expression in cancer: chance or causality?

Expression levels of PKC isozymes change in neoplastic diseases. The overall picture is 

however confusing, partly due to potential issues of antibody specificity in 

immunohistochemical studies and lack of appropriate validation controls in many reports. 

The standing question is whether those changes in expression have any causal relationship 

with disease progression. An additional complication is that, in an era when microarray 

mRNA databases are routinely used, there are significant discrepancies between the 

available information on PKC expression at the mRNA and protein levels. This can be 

epitomized for PKCε, an isozyme that is markedly up-regulated in most epithelial cancers at 

the protein level [4–7], but shows only marginal or no changes in mRNA databases (Fig. 2). 

Whereas high expression of PKCε in tumors may involve changes at a transcriptional level, 

expression underestimation by databases may relate to post-translational events that 

ultimately modify protein stability. Modeling expression patterns from mRNA expression 

databases, which in most cases have not been generated from microdissected tissues, can 

distort the actual profile of PKC protein expression in tumors and ultimately mislead our 

efforts to correlate those changes with clinicopathological outcomes.

Another important issue that received little attention is the activation status of PKC 

isozymes in cancer. There is little experimental evidence supporting either hyperactivation 

or hypoactivation of PKCs in human tumors. Unlike other important kinases implicated in 

cancer progression, such as Erk, JNK, or Akt, phosphorylation of PKCs does not necessarily 

correlate with activation status. One impediment to address this important matter is the lack 

of reliable readouts associated with the activated status of individual PKCs, in particular 
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PKC isozyme-specific substrates that could be detected in human tumors. Genetically 

encoded reporters for PKC isozymes reliably detect enzyme activation and substrate 

phosphorylation in cellular models in culture [8–12]; however, we still lack tools to detect 

activated PKCs or their specific substrates in tumors by immunohistochemistry. The 

association of PKCs to membranes is a requisite for the activation of DAG/phorbol ester-

regulated PKCs [3]. Whereas some exceptions have been reported, such as the activation by 

proteolytic cleavage [13], cPKCs and nPKCs translocate to the plasma membrane in 

response to stimuli such as growth factor receptor activation. Although less understood at a 

mechanistic level, cPKCs and nPKCs can also redistribute to a number of intracellular 

compartments, including the translocation to mitochondria, Golgi, endoplasmic reticulum 

and nuclear membrane. Constitutive association of PKCs to internal membranes has also 

been reported [14–17]. At present, we do not understand well the significance of such 

compartmentalization and whether PKCs are fully activated in discrete intracellular 

locations due to differential membrane compositions, DAG availability, and/or the presence 

of isozyme-specific protein partners that cooperate for the transition to an activated status. 

All these factors conspire against a full appreciation on how PKC activation contributes to 

disease progression.

PKCα: tumor promoter or tumor suppressor?

PKCα has been long recognized as a regulator of multiple aspects of tumor growth, 

including proliferation, survival, differentiation and motility. As several studies linked 

PKCα to enhanced proliferation and anti-apoptotic signals [18–22], there has been 

significant interest in this kinase as a potential target for cancer therapy. However, PKCα 

had limited success as a drug target for cancer. Indeed, due to its very complex and highly 

tissue-specific functions, PKCα acts as a tumor promoter or a tumor suppressor depending 

on the context. To add another level of complexity, PKCα is up-regulated in some cancers 

(such as bladder, endometrial, and breast cancer) and down-regulated in others (such as 

colorectal tumors and malignant renal cell carcinomas [23–24]). There is little information 

on substrates specifically phosphorylated by PKCα or genetic programs controlled by 

PKCα, thus rendering our comprehension of the molecular basis of this functional diversity 

incomplete.

Early studies in glioma cellular models established that PKCα is up-regulated relative to 

astrocytes. Antisense oligonucleotides against PKCα inhibit the proliferation of glioma cells 

[25]. Consistent with these results, overexpression of PKCα in U87 glioblastoma cells 

enhances proliferation. Although overexpression of PKCα did not protect U87 cells from 

apoptosis by etoposide, other studies documented that PKCα renders enhanced resistance to 

apoptosis in response to radiation and chemotherapy [18, 26–27]. In U1242 glioblastoma 

cells, PKCα regulates the activation of NF-κB, which results in a pro-survival phenotype 

[28]. Aprinocarsen (Ly900003, ISIS 3521), an antisense oligonucleotide directed against the 

3′-untranslated region of PKCα, arrests A172 glioma cells and induces p53. Aprinocarsen 

also impairs tumor growth in xenograft models. In combination with other chemotherapeutic 

agents, aprinocarsen was shown to have additive or super-additive antitumor effects [29–

31]. Despite encouraging responses in early clinical trials, this anti-PKCα agent failed to 

make it into phase III clinical trials either alone or in combination with other agents [29]. 
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Another PKCα inhibitor, the staurosporine analogue UCN-01 [32] proved to be a potent 

anti-tumor agent in preclinical models, but its effect cannot be explained simply by PKCα 

inhibition [33]. It is also intriguing that PKCα RNAi depletion but not PKCα inhibition 

impairs the growth of glioma cell lines, suggesting that the effect is independent of the 

catalytic phosphotransferase activity of the enzyme [34].

Another interesting link between PKCα and cancer progression has been established in 

breast. Ways et al. showed that ectopic overexpression PKCα in MCF-7 breast cancer cells 

(which express low levels of PKCα) enhances proliferative rate, confers anchorage-

independent growth and tumorigenic potential in nude mice, and drastically alters cell shape 

by inducing loss of an epithelioid morphology. PKCα overexpressing MCF-7 cells have 

reduced estrogen receptor (ER) levels, suggesting that PKCα contributes to the switch from 

ER-positive to ER-negative status [35]. Likewise, Tonetti et al. found that stable 

overexpression of PKCα in T47-D breast cancer cells is accompanied by down-regulation of 

ER function [36] and confers hormone-independent tumor growth that cannot be inhibited 

by tamoxifen [37]. A recent study suggests that this effect may be mediated by Notch-4 [38]. 

Elevated PKCα expression was suggested to be a predictor of tamoxifen treatment failure, 

which fits with the observation that patient tumor samples with elevated PKCα levels are 

generally negative for estrogen receptor (ER) expression, and these patients respond less to 

endocrine therapy [39–40]. A recent study by Larsson and coworkers demonstrated that 

PKCα levels correlates with estrogen receptor (ER) and progesterone receptor negativity, 

proliferative activity, and tumor grade [41]. Thus, altogether it seems that PKCα is a 

biomarker for poor prognosis and endocrine therapy resistance in breast cancer. PKCα is 

also an effector of ErbB2 in breast cancer cells, and ErbB2 siRNA depletion decreases 

PKCα protein levels. Moreover, ErbB2 overexpression correlates with membrane-associated 

staining of PKCα in human breast cancer specimens, suggesting that ErbB2 drives the 

constitutive activation of PKCα [42]. Gö6976, a pharmacological inhibitor of cPKCs [43], 

abrogates ErbB2-mediated up-regulation of urokinase-type plasminogen activator (uPA) and 

cell invasion [44]. Whereas PKCα expression is higher in triple-negative breast cancers than 

to other subtypes [45], we still need to underscore meaningful associations of this PKC with 

genetic alterations specific for each breast cancer subtype.

In a very recent study by the Weinberg laboratory, PKCα was found to be enriched in 

epithelial-to-mesenchymal (EMT)-induced mammary cells [46]. Interestingly, inhibitors 

targeting PKCα preferentially kill mesenchymal cells relative to epithelial cell lines, and 

likewise, depletion of PKCα using shRNA results in a substantial loss of mesenchymal cells. 

A PKCα signaling network is activated preferentially in cancer stem cells by PDGF and 

involves the transcription factor FRA1. The activation of the PDGFR-PKCα-FRA1 pathway 

in breast cancer stem cells makes them particularly susceptible to pharmacological inhibition 

of PKCα. Whereas the relevance of this pathway has to be established in other cancer types, 

this study certainly shed light into the potential therapeutic value of targeting PKCα in 

epithelial cancers.

Despite the reported pro-tumorigenic effects of PKCα, it has been also described as a 

growth inhibitory kinase in several cell types. For example, activation of PKCα in non-small 

cell lung cancer (NSCLC) cells leads to p21Cip1 up-regulation, inhibition of cell growth and 
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senescence [47]. Not surprisingly, aprinocarsen showed no significant benefit for NSCLC 

patients, either alone or in combination with other chemotherapeutic agents [29].

Years ago, Black and coworkers reported that PKCα activation triggers a program of cell 

cycle exit-specific events in intestinal crypts through the repression of cyclin D1 translation 

[48–49]. This effect implicates the activation of the translational repressor 4E-BP1 through a 

phosphatase 2A-dependent mechanism and in a PI3K/Akt-independent manner [50]. PKCα 

also inhibits the Wnt/β-catenin pathway in colon cancer cells and represses the expression of 

β-catenin target genes such as c-Myc [51], a mechanism that may involve receptor-related 

orphan receptor alpha RORα [52]. Interestingly, a small molecule screening identified a 

compound (CGK062) that promotes PKCα-mediated phosphorylation of β-catenin, leading 

to its proteasomal degradation. This compound has anti-tumor effects in nude mice [53]. The 

expression of PKCα in proliferating intestinal epithelial cells is repressed both in vitro and 

in vivo by the SOX9 transcription factor [54]. All neoplasm arising in APC−/+ mice, which 

develop multiple intestinal neoplasia, express low levels of PKCα. Remarkably, loss of 

PKCα directly correlates with aggressiveness of intestinal tumors. Furthermore, tumor 

formation and aggressiveness are enhanced in double transgenic APCMin/+; PKCα−/− mice 

(Fig. 3A). Interestingly, spontaneous intestinal tumors develop in PKCα−/− mice [55–56]. 

PKCα also suppresses skin tumor formation induced by DMBA. However, PKCα 

deficiency does not alter the size or malignancy of skin tumors [57].

PKCα activation by phorbol esters contributes to cell death in androgen-dependent prostate 

cancer cells. Activation of PKCα in LNCaP cells leads to a rapid and reversible 

dephosphorylation of Akt possibly via activation of a PP2A phosphatase [58]. Stable DAG 

analogues with preferred selectivity for PKCα also induce apoptosis in LNCaP cells [59]. A 

kinase-dead PKCα mutant blocks the apoptotic response elicited by a combination of PMA 

treatment and radiation, and a constitutively active PKCα mutant sensitizes cells to radiation 

treatment. While radiation alone reduces initial LNCaP tumor growth and serum PSA levels 

in mice, combinatorial treatment with PMA or a specific PKCα DAG activator eliminates 

tumor growth and drastically reduces PSA levels [60].

A very interesting recent study by the group of Alan Fields reported that PKCα plays a key 

role in K-Ras-mediated lung tumorigenesis [61]. There is an evident loss of expression of 

PKCα in primary human NSCLC tumors. Remarkably, PKCα knockout mice display 

enhanced K-Ras lung tumorigenesis (Fig. 3B) and bypass oncogene-induced senescence. 

The tumor promoting effect caused by loss of PKCα may involve the expansion of 

bronchoalveolar stem cells (BASCs). Mechanistic analysis determined that loss of PKCα 

reduces the activation of p38 MAPK in BASCs from K-Ras tumors and augments TGFβ1 

mRNA levels. Moreover, a TGFβ receptor inhibitor reversed the effect of PKCα loss in K-

Ras/PKCα-depleted tumors. This study reported the inhibitors of DNA binding (Id) Id1-3 as 

potential downstream targets of PKCα-dependent tumor suppressor activity, as also 

observed in other intestinal cells and fibroblasts [62–63]. Therefore, PKCα suppresses tumor 

initiation and progression in the K-Ras lung cancer mouse model through a p38 MAPK/

TGFβ signaling axis.
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PKCα has been implicated in invasion and metastasis, mostly as a positive regulator [64–

69]. In breast cancer cells, ErbB2-dependent activation of PKCα promotes cell invasion 

[42]. PKCα overexpressing MCF-7 breast cancer cells display enhanced motility, which was 

attributed to decreased expression of E-cadherin and β-catenin, and high expression of 

MMP-2/MMP-9 [70–71]. A specific PKCα peptide inhibitor significantly reduced 

metastasis of mouse mammary cancer cells to the lungs. Analysis of highly metastatic (4T1) 

and non-metastatic (JC) mouse mammary cells indicates that the basal activation of PKCα is 

higher in the former. Treatment with this PKCα antagonistic peptide did not affect tumor 

growth but blocked metastasis of 4T1 cells to the lungs. PKCα inhibition blocks metastasis 

by inhibiting the activation of MMPs in combination with decreased NF-κB activity and 

CXCL12 receptor levels [72].

PKCβ isozymes: spliced variants with distinct involvement in cancer

PKCβI and PKCβII, spliced variants encoded by the PRKCB gene have differential tissue 

expression and a distinct involvement in cancer. PKCβ isoforms have been implicated in the 

progression of many cancer types, including lymphoma, glioblastoma, breast, prostate, and 

colorectal cancers [73–77]. It is not fully understood why PKCβ isoforms have in some 

cases different functions. This may relate to unique lipid- and protein-interactions via their 

different C-terminal domains that confer distinctive localization properties [78–80]. 

However, many studies using pharmacological agents do not distinguish between PKCβ 

subtypes.

Early studies reported elevated PKCβII levels both during the initial stages of tumorigenesis 

and in colonic carcinomas relative to normal colonic tissue [81–83]. Spindler et al. reported 

that 18% of primary adenocarcinomas exhibit very high levels of PKCβII, which correlates 

with poor survival rates [84]. PKCβII has been implicated in colon cancer cell proliferation 

in vitro [85–86]. Murray et al. generated a transgenic mouse model overexpressing PKCβII 

in the intestinal epithelium. In addition to epithelial hyperproliferation, these mice display 

increased susceptibility to carcinogen-induced preneoplastic lesions in the colon [87]. The 

phenotype has been linked to repression of TGFβ signaling and elevated COX-2 expression 

[73]. In the proximal colon, activated K-Ras induces the expression of PKCβII, activation of 

the Mek/Erk signaling axis, and increased epithelial cell proliferation [88]. In a cellular 

model of intestinal cells, stable overexpression of PKCβII confers an invasive phenotype 

mediated by a Ras/Mek/PKCι/Rac1-dependent pathway [89]. The role of PKCβI in the 

colon is less clear. Overexpression of PKCβI suppresses the growth of HT29 and SW480 

colon cancer cell xenograft [90]. However, other report shows that expression of PKCβI 

confers resistance to apoptosis by TNFα and paclitaxel [91].

PKCβI expression positively correlates with high Gleason scores in prostate carcinomas, and 

inhibition of this kinase blocks androgen receptor-induced tumor cell proliferation in vitro 

and xenograft growth in vivo. Notably, PKCβI phosphorylates histone H3 and inhibits 

androgen-dependent transcription [92]. A study using a specific PKCβII peptide inhibitor 

showed that this isoform is involved in prostate cancer cell proliferation. PKCβII also plays 

an important role in endothelial cell proliferation, and inhibition of PKCβII reduces 

angiogenesis. These effects were linked to dysregulation of cytokinesis and microtubule 
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organization [74]. Enzastaurin, an inhibitor with some degree of specificity towards PKCβ, 

displays antiproliferative effects in PC3 cells [93].

Overexpression of either PKCβI or PKCβII in MCF-7 breast cancer cells promotes cell 

growth and enhances cyclin D1 levels, whereas dominant-negative PKCβ mutants inhibit 

growth [94]. On the other hand, another report showed that PKCβI overexpression induces a 

less aggressive biological behavior in MCF-7 cells characterized by reduced tumor 

formation [95]. In a murine mammary model, PKCβI inhibits tumorigenesis despite having a 

positive effect on growth in culture. Moreover, tumor cells that overexpress PKCβI have 

attenuated metastatic capacity to the lungs [96]. Enzastaurin has significant effects on the 

growth of breast cancer cells in vitro and in vivo [97–98]. High levels of PKCβII have been 

reported in several breast cancer cell lines and patient samples. The levels of cytoplasmic 

PKCβII expression positively correlate with ErbB2/Her2 levels, while nuclear PKCβII 

positively correlates with ER levels [99].

PKCβII is expressed in human NSCLC specimens with significant variability, both in tumor 

cells and the stroma [100]. Enzastaurin in combination with the antifolate pemetrexed causes 

G2/M checkpoint abrogation and apoptosis in lung cancer cells [101]. In cell culture, 

enzastaurin is a potent inhibitor of VEGF-stimulated proliferation of endothelial cells, and in 

vivo this inhibitor causes a significant reduction in intratumoral vessels that parallels a delay 

in lung cancer tumor growth [100]. Enzastaurin also enhances the anti-angiogenic effects of 

radiation in NSCLC models [102]. The PKCβ inhibitor, Enzastaurin, regulates proliferation 

of glioblastoma cells by supporting the activity of GSK3, S6 kinase and Akt [103]. The 

effect of the PKCβ inhibitor was also shown in U87MG human glioblastoma cells 

inoculated into nude mice. Enzastaurin proved to be efficient as an anti-angiogenic 

compound in models of glioblastoma [77], however clinical trials in patients with recurrent 

high-grade glioma show limited success when this inhibitor was used as a monotherapy 

[104].

Patients with diffuse large B-cell lymphoma that express PKCβ have reduced overall 

survival compared to those that are negative for this kinase [105–106]. Enzastaurin displays 

pro-apoptotic properties in T-cell and B-cell lymphoma cell lines [107–108]. There is 

significant interest in using this PKCβ inhibitor for the treatment of various types of 

lymphomas, both as a single agent and in combination therapies [109–110]. Taking 

advantage of a PKCβ knockout mouse model, it has been recently demonstrated that stromal 

PKCβII is indispensable for the survival of chronic lymphocytic leukemia (CLL) B cells. 

The fact that stromal PKCβII is up-regulated in biopsies from patients with CLL, and that 

CLL cells induce the expression of stromal PKCβ [111], highlights the need to better 

understand how this PKC contributes to cancer development in the context of the different 

tumor microenvironments.

PKCδ: complex roles in apoptosis, tumor growth and metastasis

PKCδ has been widely characterized as a pro-apoptotic and anti-proliferative kinase. In 

addition, PKCδ has been broadly implicated as a death mediator of chemotherapeutic agents 

and radiotherapy [112–115]. PKCδ is involved both in DNA damage and receptor-mediated 
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cell death [3, 115–116]. Initial work from the Reyland lab showed that PKCδ is cleaved by 

caspase-3 and mobilizes from the cytoplasm to the nucleus after treatment with genotoxic 

agents [13]. Other studies showed that PKCδ-mediated apoptosis involves the allosteric 

activation of the enzyme rather than proteolytic cleavage. For example, in androgen-

dependent prostate cancer cells, PKCδ activation triggers an apoptotic response without the 

generation of a constitutively active catalytic fragment [117]. This effect involves the 

activation of the p38 MAPK cascade [118] and is mediated by a RhoA/ROCK/p21Cip1-

dependent pathway [119]. PKCδ-mediated apoptosis in androgen-dependent prostate cancer 

cells occurs through the autocrine secretion of TNFα and TRAIL, which induce caspase-8 

cleavage through the JNK and p38 MAPK cascades [120–122]. The discrepancies in the 

mechanisms of PKCδ activation among the various studies may be explained by cell type 

differences and nature of the stimulus.

An inhibitory role for PKCδ in proliferation has been reported in a number of cellular 

models. The initial observations by Mischak et al. that ectopic overexpression of PKCδ 

confers growth inhibitory properties to NIH 3T3 cells [123], were later recapitulated in 

many other cell lines. Depending on the cell type, activation of PKCδ can induce cell cycle 

arrest either in G1 or G2 [49, 124]. Our laboratory showed that treatment of lung cancer 

cells with phorbol esters induces cell cycle arrest in G1 through the induction of p21cip1 and 

Rb dephosphorylation [125]. However, it has been also noted that ectopic expression of 

PKCδ stimulates quiescent cells to initiate G1 phase cell cycle progression. Notably, PKCδ 

overexpressing cells arrest in S phase rather than completing the cell cycle [126].

It is important to mention that studies ascribed pro-survival properties to PKCδ in a number 

of tumor models, including breast, lung, pancreatic, and liver cancer [116]. Moreover, 

ectopic expression of PKCδ in mammary cells confers anchorage-independent growth 

properties and enhances the resistance to apoptotic stimuli [127]. The scenario that PKCδ 

could be a tumor promoting kinase rather than a tumor suppressor began to shape new 

paradigms in PKC isozyme function, and clearly points to an exquisite cell type selectivity.

Data from patients cannot point to a clear link between PKCδ expression levels and clinical 

outcome. Loss of PKCδ expression has been reported in a few cancer types [128–130], but 

this down-regulation could not be unambiguously linked to tumorigenesis. PKCδ is up-

regulated in some cancer types [131–132]. PKCδ is barely detected in normal prostate 

epithelial cells, however high PKCδ expression could be observed in prostate pre-neoplastic 

lesions and carcinomas [133–134]. In breast cancer specimens, PKCδ mRNA levels are 

significantly higher in ER-positive tumors and a positive correlation between high PKCδ 

mRNA levels and reduced overall survival has been reported [135]. Interestingly, the 

expression of PKCθ, an isozyme related to PKCδ, is dysregulated in some cancers [132, 

136–138].

Emerging studies using genetically engineered mice began to shed light into the 

involvement of PKCδ in tumorigenesis. PKCδ skin transgenic mice are resistant to tumor 

promotion by DMBA/PMA [139]. Studies using PKCδ knockout mice revealed contrasting 

effects particularly in the context of specific genetic alterations. Reyland and coworkers 

investigated the involvement of PKCδ in K-Ras-dependent tumorigenesis and found that the 
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incidence of urethane-induced lung tumors (which display activating mutations in K-Ras) is 

reduced in a PKCδ-null background. Moreover, PKCδ RNAi depletion inhibits anchorage-

independent growth, invasion, migration, and tumorigenesis in K-Ras-dependent NSCLC 

cells [140]. The Reyland lab also described a positive role for PKCδ in mammary 

tumorigenesis in the context of ErbB2 overexpression. A meta-analysis of ErbB2-positive 

breast cancers shows increased PKCδ expression and a negative correlation between PKCδ 

expression and prognosis. Most remarkably, there is a significant delay in tumor onset in 

MMTV-ErbB2(Neu) in a PKCδ-null background [141]. A tumorigenic role for PKCδ has 

been also reported in a model of pancreatic cancer. Indeed, overexpression of PKCδ (as 

observed in human ductal carcinomas) leads to increased anchorage-independent growth and 

tumorigenesis in vivo [142]. Also, in a PC-3 xenograft model, PKCδ activation promotes 

tumor growth and increases angiogenesis through a mechanism that involves ROS, NADPH, 

and HIF-1α [143].

PKCδ generally has a positive role in migration and invasiveness [144–147]. In prostate 

cancer cellular models PKCδ has been implicated in invasiveness and the control of collagen 

secretion induced by overexpression of the oncoprotein PCPH [134]. Breast cancer models 

provided controversial evidence for the involvement of PKCδ in invasion. Whereas a study 

showed that PKCδ overexpression in highly motile BT-549 breast cancer cells reduces 

migration and PKCδ down-regulation enhances motility and MMP-9 secretion in MCF-7 

cells [148], other study reported that enhanced migration induced by forced EGFR 

overexpression in MCF-7 cells requires PKCδ [149]. PKCδ was found to inhibit the 

production of proteolytic enzymes in murine mammary cells, possibly limiting metastatic 

dissemination[127]. Down-regulation of PKCδ suppresses lung colonization in the murine 

mammary breast cancer model MTLn3 without affecting the growth of primary tumor [150]. 

Studies performed in BL6 murine melanoma cells showed that PKCδ overexpression 

increases their metastatic capacity in vivo, possibly due to an increase in the plasma levels of 

TGFβ1 [151–152]. A similar pro-metastatic effect of PKCδ has been shown in the human 

pancreatic cell line PANC1 [142].

The multiplicity of effects regulated by PKCδ and the complexity of the effects in cell cycle 

regulation, cell motility, tumorigenicity and metastasis, both in positive and negative 

manners (Fig. 4), would argue that this kinase is not a likely candidate for the therapy of 

cancer.

PKCε: an oncogenic and metastatic kinase

PKCε has been originally described as an oncogenic kinase [123, 153–154], and is known to 

signal via the Ras-Raf-1 signaling pathway [155–158] as well as other pathways. PKCε-

transformed fibroblasts secrete increased amounts of TGF-β and possibly other mitogens, an 

indication that growth autocrine loops may account for its oncogenic activity [159–160]. 

PKCε is overexpressed in a large number of cancers. For example, PKCε is overexpressed in 

~75% of primary tumors from invasive ductal breast cancer patients [7]. Increased PKCε 

staining correlates with high histologic grade, positive ErbB2/Her2 status, and negative 

estrogen and progesterone receptor status [7]. Overexpression of PKCε has been reported in 

the majority (>90%) of primary NSCLC cancers relative to normal lung epithelium [5]. 
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PKCε levels are elevated in prostate cancer relative to benign prostatic epithelia [161], and a 

correlation with aggressiveness of human prostate cancer has been found [4]. PKCη, an 

isoform related to PKCε, has also been shown to be up-regulated in some cancers [162–163] 

but down-regulated in others [164].

Not surprisingly, studies from several laboratories highlight a role for PKCε in cell cycle 

control, specifically in G1 to S progression [165–167]. In addition, PKCε promotes survival 

in many cell types [6, 168–170]. The survival activity of PKCε involves the modulation of 

caspases and Bcl-2 family members [168, 171–173]. Forced expression of PKCε in LNCaP 

prostate cancer cells confers resistance to PMA-induce apoptosis by preventing Bax 

oligomerization; moreover, it leads to accelerated proliferation of LNCaP cells due to 

constitutive activation of the Erk cascade [169]. Our laboratory recently demonstrated that 

PKCε modulates Bad phosphorylation at Ser112 to protect LNCaP prostate cancer cells 

against apoptosis induced by PMA or TNFα [172]. PKCε protects glioma and lung cancer 

cells from TRAIL-induced apoptosis [170, 174–175]. Subsequent studies by Basu and 

coworkers revealed that PKCε inhibits cell death in breast cancer cells, partly by preventing 

activation and translocation of Bax to the mitochondria [176]. PKCε inhibition/depletion 

impairs proliferation and anchorage-independent growth of human NSCLC cells [5, 177]. 

Many pro-apoptotic genes up-regulated upon PKCε RNAi depletion in lung cancer cells are 

also down-regulated in human lung adenocarcinomas [177]. RWPE-1 cells, a model of 

normal immortalized prostate epithelial cells, express very low levels of PKCε as compared 

to different human prostate cancer lines, and ectopic expression of PKCε in RWPE-1 cells 

confers growth advantage and leads to Erk and Akt activation [6]. Recently, our laboratory 

identified a key role for PKCε as a mediator of NF-κB signaling in prostate cancer [178]. 

PKCε inhibition/depletion impairs constitutive and TNFα-dependent activation of NF-κB as 

well as the induction of NF-κB responsive genes pertaining to cell survival, proliferation, 

metastasis and invasion, such as COX-2, MMP-9, VEGF, and IL-6 [178].

Overexpression of PKCε in androgen-dependent LNCaP cells initiates tumor growth in vivo 

both in intact and castrated athymic nude mice [179], thereby indicating that PKCε has the 

potential to advance the progression of prostate cancer and initiate recurrent tumor growth in 

the absence of androgens. In concordance, another study found that PKCε overexpression in 

breast cancer cells causes tumor growth in BALB/c mice with significant increase in the 

incidence and number of spontaneous experimental lung metastases [96]. In line with these 

results, depletion of PKCε from lung cancer cells using shRNA markedly inhibited 

xenograft growth in nude mice. Furthermore, the PKCε peptide translocation inhibitor 

εV1-2 blocks NSCLC tumor growth in nude mice. Moreover, both shRNA depletion and 

pharmacological inhibition of PKCε causes a strong induction of cell death in xenograft 

tumors [177].

Unfortunately, there has been little work intending to recapitulate PKCε overexpression as 

observed in human cancer. Our laboratory developed prostate-specific transgenic mice that 

overexpress PKCε in the normal prostate in vivo under the control of the androgen-

responsive probasin (PB) promoter, which leads to the formation of preneoplastic lesions 

(Fig. 5). Conversely, similar mouse models for other PKCs (PB-PKCα and PB-PKCδ mice) 

do not display any noticeable phenotypic changes in the prostate. Furthermore, elevated 
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phospho-Akt as well as hyperactivation of Akt effectors S6 and mTOR could be detected in 

hyperplasia and PIN lesions from PB-PKCε transgenic mice. Besides, PKCε overexpression 

confers resistance to apoptosis induced by androgen ablation, highlighting a pro-survival 

role of PKCε in the mouse prostate [6]. Hyperactivation of NF-κB and Stat-3 were evident 

in the PIN lesions of PB-PKCε transgenic mice relative to the normal areas or regions with 

mild hyperplasia [6, 178].

Prostates of TRAMP mice (a model that spontaneously develops progressive invasive 

prostate cancer) have very high PKCε protein levels compared to prostates of control mice 

[4]. A recent study demonstrated that genetic ablation of PKCε in TRAMP mice inhibits 

prostate cancer development and metastasis [180]. Deletion of PKCε in TRAMP mice 

decreases the phosphorylation/activation of Stat3 as well as its nuclear translocation and 

DNA-binding activity. It has been proposed that loss of PKCε in TRAMP transgenic mice 

reduces the expression of proliferation, survival and metastasis markers, including COX-2, 

Bcl-xL, cyclin D1 and VEGF, as well as it decreases serum IL-6 levels.

A growing body of evidence indicates that PKCε is implicated in tumor cell invasion and 

metastasis. Enhanced PKCε levels are associated with invasion and/or metastasis of human 

breast, glioma and renal cell carcinoma [7, 166, 181]. PKCε contains an actin-binding motif 

that positions this kinase within a cytoskeletal matrix where many PKC substrates are 

localized [182–185]. Deletion of this motif abrogates invasion and metastatic spread of 

tumors driven by PKCε overexpression [186]. In human glioma cells, the PKC-interacting 

protein RACK1 appears to link activated PKCε to the integrin β chain at focal adhesions, 

and PKCε mediates the adhesion and motility of cells via Erk phosphorylation [187]. PKCε 

also promotes the assembly of matrix adhesions containing actin filaments and β1-integrins, 

and integrin signaling links PKCε to the Akt survival pathway in recurrent prostate cancer 

cells [188]. In models of breast and head and neck cancer, PKCε regulates motility and 

invasion, at least in part due to the activation of small Rho GTPases, specifically RhoA 

and/or RhoC [7, 189]. Very recent work from our laboratory showed that targeted disruption 

of PKCε in lung cancer cells reduces motility through Rac1 inactivation. Several 

extracellular matrix proteases are down-regulated in PKCε-depleted lung cancer cells [190]. 

Consistent with a role for PKCε in metastatic dissemination, PKCε-depleted NSCLC cells 

fail to colonize lungs after tail vein injection in mice [190]. Likewise, a study from the 

Urtreger’s laboratory showed that inoculation of PKCε overexpressing breast cancer cells in 

mice enhances the incidence and number of spontaneous and experimental lung metastases 

[96].

Verma and coworkers generated skin transgenic mice expressing PKCε under the control of 

the human K14 promoter, which exhibit phenotypic abnormalities including inflammation, 

hyperkeratosis, hyperplasia, cellular hypertrophy and ulceration. Highly malignant and 

metastatic squamous cell carcinomas develop in the skin of PKCε transgenic mice [191–

192]. Additionally, PKCε overexpression has been shown to sensitize the mouse skin to 

UVR-induced carcinogenesis [193]. A subsequent study demonstrated that skin transgenic 

PKCε mice develop a myeloproliferative-like disease [194].
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Altogether, these observations establish that PKCε overexpression is linked to an aggressive 

phenotype and suggest that targeting PKCε could be an effective anticancer strategy. 

Whereas the development of PKCε inhibitors targeting the ATP-binding site may be 

challenging due to the high homology of this site among PKCs, agents directed against 

domains implicated in translocation may be valuable. In that regard, the PKCε translocation 

inhibitor εV1-2 has anti-tumorigenic activity in NSCLC cells [177], and a bifunctional 

peptide in which εV1-2 has been linked to the 12-mer cancer homing peptide HN1 impairs 

the growth of head and neck squamous cell carcinoma cells in xenografts [195]. Lastly, Ras-

driven and EMT-dependent phenotypes in breast cancer cells could be reversed by 

PF-526355, an ATP mimetic inhibitor with selectivity for PKCε and PKCθ. This inhibitor 

impairs the growth of MDA-MB-231 breast cancer xenografts in mice, thus representing a 

promising agent for cancer therapy [196].

Atypical PKCs ζ and ι: opposite roles in cancer

aPKC isozymes, which comprise PKCζ and PKCι (PKCλ), are structurally and functionally 

distinct from other PKCs in that they have a single DAG/phorbol ester unresponsive C1 

domain and lack a C2 domain [197–198]. Regardless of controversies in the literature 

largely due to the use of non-specific approaches such as inhibitory peptides and dominant-

negative mutants, many studies point to a tumor suppressor function of PKCζ, whereas 

PKCι essentially fulfills the criteria of an oncogenic kinase (Fig. 6).

Both up- and down-regulation of PKCζ has been shown in human cancer. PKCζ up-

regulation has been reported in prostate cancer, bladder cancer, and lymphomas [199–204], 

whereas down-regulated expression of PKCζ has been shown in glioblastoma, lung cancer, 

kidney, renal clear cell carcinoma, melanoma, and pancreatic cancer [205–214]. A pro-

apoptotic function for PKCζ has been described in several cancer models. For example, 

PKCζ inhibits growth and promotes differentiation and apoptosis in colon cancer cells. The 

inhibitory effect of PKCζ on the transformed phenotype of these cells suggests that down-

regulation of PKCζ may contribute to colon tumorigenesis [215]. PKCζ also exhibits a pro-

apoptotic function in ovarian cancer [216]. In murine TRAMP prostate cancer cells, 

expression of a constitutively activated PKCζ mutant enhances proliferation, whereas PKCζ 

inhibition leads to Akt activation and enhanced cell survival [217]. There are several reports, 

however, highlighting a pro-survival role for PKCζ [218–222].

PKCζ-deficient mice display increased Ras-induced lung carcinogenesis, arguing for a role 

for this aPKC as a tumor suppressor in vivo. It has been postulated that the tumor suppressor 

activity of PKCζ occurs through its ability to down-regulate Ras-induced IL-6 production. 

The enhanced secretion of IL-6 in PKCζ-deficient Ras-transformed cells is essential for 

growth under conditions of limited nutrients and mitogens [211]. Genetic inactivation of 

PKCζ in mice in a Pten-deficient background leads to invasive prostate carcinoma. A 

significant correlation between PKCζ and Pten levels exists in human prostate tumors, and 

PKCζ is significantly reduced in metastatic vs. primary tumors with low Pten. Analysis of 

gene signatures in PKCζ-deficient cells revealed a link with c-Myc. Indeed, c-Myc is a 

contributor to the more aggressive phenotype associated with PKCζ loss [223]. Loss of 

PKCζ also allows glucose-addicted human cancer cells to reprogram their metabolism in 
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response to glucose deprivation by augmenting the utilization of glutamine through the 

serine biosynthetic pathway [224].

Accumulating evidence established that PKCι is an oncogenic kinase and that it contributes 

to the transformed phenotype. Overexpression of PKCι is observed in many human cancers, 

including colon, lung, pancreas, breast, prostate and ovarian cancer. The PKCι gene 

(PRKCI) is amplified in some human cancers [225–227], although PKCι overexpression is 

not always associated with gene amplification [228–230]. This has been well summarized in 

a review by Murray et al [231].

PKCι expression is elevated in NSCLC tumors and cell lines, and is required for the 

transformed phenotype of NSCLC cells harboring oncogenic K-Ras mutation [232–235]. 

NSCLC cell lines without Ras mutation also depend on PKCι for their malignant phenotype 

if they harbor PRKCI gene amplification [235]. PKCι mediates its effects through a Rac1-

Pak-Mek-Erk dependent mechanism [89]. By means of a proteomics approach, Justilien et 

al [236] identified the Rho-GEF Ect2 as a component of the PKCι-Par6 complex that is 

required for transformed growth. The Ect2 gene co-amplifies with PRKCI suggesting a 

coordinated mechanism for tumorigenesis. Disruption of the PKCι-Par6 interaction, as 

caused with the anti-rheumatic agent aurothiomalate (ATM), potently inhibits growth of 

PKCι-overexpressing cell lines. ATM inhibits K-Ras-mediated expansion of 

bronchoalveolar stem cells and lung tumor growth in vivo [233, 237]. On the other hand, 

aPKCs appear to be dispensable for mammalian hematopoietic stem cell function [238]. 

PKCι has been also implicated in colon and pancreatic cancer using cell lines and animal 

models [229–230]. PKCι is required for hedgehog signaling in basal cell carcinomas. 

Indeed, PKCι functions downstream of smoothened (SMO) to phosphorylate and activate 

the GLI1 transcription factor. Moreover, PKCι is up-regulated in tumors resistant to SMO 

inhibitors, and targeting PKCι suppresses the growth of resistant basal carcinoma cell lines 

[239]. Other interesting signaling connections have been established for PKCι, including 

mutually antagonistic regulation with RhoB in glioblastoma cell invasion [240], links with 

the NF-κB pathway [241–242], as well as association with cell cycle proteins cyclin E in 

ovarian cancer [226] and S-phase kinase-associated protein 2 (SKP2) in esophageal cancer 

[243].

Final remarks

Tangible progress has been made in the last 30 years in understanding the regulation and 

cellular functions of PKC isozymes in cancer. The picture that emerged, however, is less 

than clear. What we have learned over the last years is that the biology of PKC isozymes is 

exceptionally complex, and that many studies in cell lines do not necessarily apply to in vivo 

models. For the next wave of studies on PKC function, the generation of animal models 

recapitulating the scenarios observed in different cancer types should be a priority. 

However, it is still not known whether the activation status of different members of the PKC 

family is altered in cancer and whether activated PKCs functionally interact with oncogenes 

and tumor suppressors genes driving the tumorigenic and metastatic phenotype.
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One would expect that PKC is a promising target for cancer therapy, but only for specific 

PKC isozymes that display oncogenic activity, such as PKCε and PKCι. The portfolio of 

available PKC inhibitors remains narrow, and unfortunately the majority of compounds lack 

specificity among members of the PKC family or even with other kinases unrelated to PKC. 

Hence, there is a great need to design selective small molecule inhibitors for PKC isozymes 

that have sufficient potency to impair PKC function in vivo. There may be concrete 

opportunities to rationally design inhibitors against the ATP-binding site, but this is still 

challenging due to the high homology among PKCs in that region. Some examples of small 

molecules capable of disrupting protein-protein interactions for PKC isozymes provided 

proof-of-principle for alternative approaches in the design of PKC modulators [177, 237, 

244]. C1 domain ligands, such as the bryostatins [245–246], did not show major beneficial 

effects in patients despite their anti-tumor effects in mice [244]. One may envision that PKC 

isozyme specific inhibitors may possibly work in combined therapies with chemotherapeutic 

agents for discrete cancer types. Translating PKC modulators into a clinical setting remains 

a formidable challenge that we face for the next years.
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Figure 1. 
Structure of PKC isozymes. PKCs are multidomain proteins that are regulated by lipids and 

protein-protein interactions. Diacyclycerol (DAG) generated upon activation of receptors 

causes the activation of cPKCs and nPKCs, and its actions are mimicked by phorbol esters. 

aPKCs do not respond to DAG or phorbol esters. PKCs activate a number of signal 

transduction pathways that regulate tumorigenesis and metastasis.
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Figure 2. 
Expression of PKCε in prostate cancer. (a) In silico PKCε mRNA expression profiling in 81 

normal/normal adjacent prostate tumors, 48 primary prostate carcinomas and 25 prostate 

cancer metastasis obtained from a publicly available dataset (GSE6919). PRKCE, PKCε 

gene. (b) Meta-analysis of PRKCE mRNA expression across 16 prostate microarray studies 

from the Oncomine database. This meta-analysis shows non-statistically significant 

differences in PRKCE mRNA expression (combined p-value=0.41) between normal and 

prostate cancer groups. Red intensity is a representative of the statistical significance in 

mean difference between normal and protate cancer for each study. (c) Expression of PKCε 

in “normal” immortalized prostate epithelial RWPE-1 cells vs. prostate cancer cells. This 

figure was originally published by Garg R, Blando J, Perez CJ, Wang H, Benavides FJ, and 

Kazanietz MG. in J Biol Chem. 2012 287:37570–37582, © The American Society for 

Biochemistry and Molecular Biology.
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Figure 3. 
Loss of PKCα gene enhances tumor progression. (a) Deletion of the PKCα gene enhances 

the formation of tumors in APCMin/+ mice, and those tumors show a more aggressive 

phenotype. (b) Deletion of PKCα in K-Ras mutant mice resulted in progression of benign 

tumors to adenocarcinoma. Tumors exhibit high frequency and grade, and are bigger in size.
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Figure 4. 
Multiple biological functions regulated by PKCδ. Studies in cellular models established 

important roles for PKCδ in apoptosis and as a negative regulator of cell cycle progression. 

PKCδ has been also implicated in cancer cell motility and invasiveness. Studies using 

animal models showed that PKCδ can either act as a tumor suppressor or contribute to 

tumorigenesis depending on the context.

Garg et al. Page 32

Oncogene. Author manuscript; available in PMC 2015 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Phenotype of prostate-specific PKCε transgenic mice. Prostate-specific overexpression of 

PKCε in mice under the control of the probasin (PB) promoter leads to a preneoplastic 

phenotype. Representative photomicrographs for H&E, phospho-Akt, phospho-NF-κB and 

phospho-Stat3 staining in ventral prostates from 12-month old male PB-PKCε mice are 

shown.
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Figure 6. 
Roles of atypical PKCs in cancer. Most evidence points to PKCζ as a tumor suppressor 

protein and PKCι as an oncogenic kinase.
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