

HHS Public Access

Author manuscript *Spinal Cord.* Author manuscript; available in PMC 2016 May 18.

Published in final edited form as: *Spinal Cord.* 2015 March ; 53(3): 200–203. doi:10.1038/sc.2014.205.

Complications and Urologic risks of Neurogenic bladder in Veterans with Traumatic Spinal Cord Injury

Meheroz H. Rabadi, M.D. MRCPI, FAAN, FANA¹ and Christopher Aston, Ph.D.²

¹Oklahoma City Veterans Affairs Medical Center

²Department of Pediatrics at the Oklahoma Health Sciences Center

Abstract

Objective—This observational study aimed to determine the types of urological lesion encountered in veterans with traumatic spinal cord injury (SCI) with neurogenic bladder (NGB), and the usage of bladder management programs to deal with NGB.

Background—NGB (detrusor muscle and urethral sphincter dysfunction with loss of bladder sensation to void) is common in daily practice; however, information on types of urological lesions encountered in these veterans with NGB and how best to manage their NGB is limited.

Method—We retrospectively reviewed the electronic charts of veterans with SCI enrolled in our program and regularly followed in our SCI clinic. Demographic data collected included: age, gender, ethnicity, and age, level, severity and cause of spinal injury. Also noted was presence of NGB, episodes of urinary tract infection (UTI), bladder program followed, and urological lesions found on renal nuclear scans, renal ultrasounds, and cystoscopies.

Results—Of 161 veterans with SCI, symptoms of NGB was present in 133 (82.6%). Veterans with NGB had more severe spinal injury, and more frequent UTI (p < 0.05). Renal atrophy and hydronephrosis were the most common urological lesions seen in patients with UTI. Clean intermittent catheterization (CIC) was the most frequently used bladder program resulting in less frequent occurrence of UTI.

Conclusion—Renal atrophy and hydronephrosis were the most common urological lesions encountered in veterans with NGB especially in those with UTI. CIC was the most frequently used bladder management program with the least risk for UTI.

Keywords

Veterans; SCI; Neurogenic bladder; Urological lesions; Renal Scan; Cystoscopy; Urodynamic study; Bladder program

Corresponding Author: Meheroz H. Rabadi, M.D., MRCPI, FAAN, FANA, Veterans Affairs Medical Center, 921 NE 13th Street, Oklahoma City, OK, 73104, Phone: (405)456-5298, Fax: (405)456-1504, rabadimh@gmail.com, meheroz.rabadi@va.gov. **Conflict of interest:** We declare we have no conflict of interest

Introduction

Detrusor muscle and urethral sphincter dysfunction with loss of bladder sensation to void due to spinal cord injury (SCI) results in a neurogenic bladder (NGB) (1). The main types of NGB are: a) failure to store urine from a hyperreflexic detrusor or a decrease in sphincter resistance, b) failure to empty urine from a areflexic detrusor or an increase in sphincter resistance, or iii) detrusor sphincter dyssynergia from lack of co-ordination between detrusor contraction and sphincter relaxation leading to high voiding pressure and incomplete emptying (2).

Commonly encountered urological lesions have been bladder stones but other lesions such as renal stones, urethral fistulas, erosions, stricture, and infections, such as cystitis and epididymitis, have resulted mainly from how the NGB is managed (3, 4).

Management of NGB usually entails ensuring an adequate fluid intake to maintain a urine flow of 1.5 to 2.0 liters per day. Options include clean intermittent catheterization (CIC), use of external (condom), indwelling (Foley) or supra-pubic catheters where indicated (5), and good personal hygiene including replacement of Foley and supra-pubic catheters and urinary containment devices every 28 days. Since the initial recommendation by Guttman and Lapides to use CIC for bladder management in patients with SCI (6, 7), CIC is now the practice method preferred by 84% of 269 certified urologists surveyed by mail questionnaire (8). Physicians taking care of SCI patients should be aware of the recent guidelines on how best to manage patients with NGB (9).

We therefore decided to study the management of NGB and the types of renal and urological lesions commonly encountered in veterans with SCI who are regularly followed in our SCI program on an out-patient basis. The findings of this study will help improve our bladder management program in these patients to reduce risk of renal and urological lesions and in turn improve their quality of life.

Method

Participants

The local Institutional Review Board for Human Subjects Research and the local Veterans Affairs Research and Development Committees' approval were obtained for the study. On retrospective chart review there were 161 veterans with SCI registered in our SCI program at the Oklahoma City VA Medical Center from 1/1/2000 through 12/31/2012, who were routinely seen every 4 months. All patients with SCI seen in the clinic during this time frame were included. Veterans with SCI are usually enrolled in our program within a year of their injury. The average follow-up time of these patients within the study period was 10.5 ± 3.8 (SD) years. During clinic visits patients were assessed for current medical conditions such as autonomic dysreflexia, urinary tract infection (UTI), and spasticity. Self-care strategies for managing their neurogenic bowel and bladder and pressure ulcer prevention were also reviewed. Data collected from chart review included age of injury, gender, ethnicity, level and severity of injury based on American Spinal Injury Association (ASIA) Impairment Scale (AIS) grade: A, B, C, D and E), (10), etiology (motor vehicle crash, gunshot wound,

fall, diving, or other), age at onset of SCI, time since onset of the SCI, and SCI-related complications such as neurogenic bowel and bladder on their initial evaluation and subsequent follow-up visits by a certified clinician.

Veterans Health Administation directive stipulates that veterans with SCI and NGB should have a bladder management program based on the specific bladder dysfunction found on the initial urodynamic study once clinically stable after their initial injury. These veterans should on each follow-up visit be tested for blood urea nitrogen (BUN), creatinine, glomerular filtration rate (GFR) and urinary analysis. They should have a yearly renal ultrasound to evaluate renal structure, a radionuclide renal scan to evaluate both structure and function by measuring GFR, a urology consult for cystoscopy to evaluate bladder structure and urodynamic study to evaluate bladder function when needed. Though the bladder management is driven by the urodynamic study findings, it is modified by veteran's preference, his personal setup and change in the level of AIS severity overtime. Presence of UTI was defined by a urine analysis showing presence of significant bacteriuria (10^5 cfu/ml) in the presence of nitrites and WBC > 10/HPF, and a positive urine culture, with or without symptoms or signs such as fever (> 100 degrees Fahrenheit), chills, lethargy, increasing muscle spasms, AD, malodorous and cloudy urine, lower abdominal pain/ tenderness provided no other potential etiology for these non-specific complains were identified. Antibiotics were prescribed based on urine culture and sensitivity findings.

Statistical analysis

Group descriptive statistics were expressed as mean ± standard deviation and grouped frequencies. Differences between groups were assessed using the Generalized Linear Model framework. In the simplest case of two group comparisons without covariates this is equivalent to using t-tests for continuous variables and chi-square for categorical data, but allows generalization to include covariates in the model. Covariates considered were age at the time of injury, severity of injury (AIS grade), and duration since SCI. Data analyses were conducted using IBM SPSS Statistics (IBM Corp. Released 2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp). Results corresponding to p-values lower than 5% are described as significant and reported.

Results

The mean age of our study sample (N=161) was 59.5 ± 13.6 years (range 25 - 90 years), male: female ratio was 157:4, 80.7% were non-hispanic white, age at onset of injury was 38.8 ± 16.6 years (range 18 - 82 years), and duration since SCI insult 20.6 ± 16.6 years (range 1 - 68 years). The most common cause of injury in 47% was motor vehicle/cycle accident followed by falls in 29%. The spinal level of injury was cervical in 55%, thoracic in 32%, and lumbosacral in 13%. Severity of injury based on American Spinal Cord Injury [ASIA] Impairment scoring [AIS] was: A 36%, B 15.5%, C 19.2%, D 22.9 and E 6.2%. Symptoms of NGB such as urinary incontinence were NGB was present in 133 of the 161 patients with SCI giving a prevalence of 82.6% during the 13 year study period.

Of the 161 patients, 119 had a renal ultrasound (Tables 1a and 1b). The urological lesions found were: renal atrophy (10%), simple renal cysts (22%), renal calculi (13%) and

hydronephrosis (8%). Only 23 patients had cystoscopy; these found urinary bladder calculi (22%) and urinary bladder wall thickening (4%). The distributions of urological lesions based on renal ultrasound and cystoscopies did not differ significantly across different levels of spinal injury (p > 0.05). However, lower glomerular filtration rate by renal scan and more frequent UTI episodes were seen in cases with a cervical level of injury (p < 0.05). Similarly, the distribution of urological lesions based on renal ultrasound and cystoscopy did not differ significantly across all grades of severity (p > 0.05). However, higher glomerular filtration rate on blood testing and more frequent UTI episodes were seen in more severe injury grades, AIS A or B (p < 0.05). Patients with UTI had more frequent urological lesions such as renal atrophy (18%) and hydronephrosis (12%) compared to those without UTI (3% and 3%, respectively, p < 0.05).

Urinary bladder management program was documented in 153 patients (95%) (Table 2a, 2b, 2c). The most frequently used bladder program was: none (spontaneous voiding) in 45 cases (29%), followed by CIC in 40 (26%), Foley catheter in 27 (18%), and supra-pubic in 22 (14%). Spontaneous voiding and CIC were more commonly used in SCI affecting the lumbo-sacral level, while Foley and supra-pubic catheterizations were more commonly used in SCI affecting and CIC was more commonly used in patients with incomplete motor SCI (AIS D or E), while Foley and supra pubic catheterizations were more SCI (AIS D or E), while Foley and supra pubic catheterizations with complete SCI (AIS A or B) (p < 0.05).

Discussion

Given that the consequences of NGB are preventable (5), Veterans Health Administration Directive 1176 stipulates all eligible veterans with Spinal Cord Injury and Disorder (SCI&D) be provided with a full range of care to promote and maintain health, independence, and quality of life so they can be productive individuals.

In this retrospective longitudinal study, the most common urological lesions encountered on renal scan were: renal atrophy, calculi, simple renal cyst and hydronephrosis; and on cystoscopy was bladder calculi and bladder wall thickening. Presence of a particular type of urological lesions had no relation to the level or severity of spinal cord injury. We had a low uptake of cystoscopy and urodynamic studies in this study (16%) as the veterans refused to undergo invasive urological testing. Similar low levels of diagnostic testing were found by Chen et al. in their study of 1649 patients in eighteen Modular Spinal Cord Injury Services (MSCIS). They also found that abnormal test results were not associated with patient age, level of injury, or severity of injury (11).

The aim of bladder management program is to reduce the incidence of urological lesions, UTI, and preserve renal function. In this study spontaneous voiding followed by CIC was the most frequent bladder management program over a 13 year period. Condom catheters were used by 6% of the veterans who were able to spontaneously void but used it at night time as they had difficulty getting-up and making it to the toilet in time and by those veterans who used it for long road trips. Thirty-two percent of the patients had indwelling catheters, compared to 47% in the Weld et al. study of 316 veterans with SCI (12). Weld et

al. found normal bladder compliance on urodynamic studies to be the highest in CIC (73.9%) and lowest in the Foley catheter (23.3%) groups. The type of bladder program was strongly influenced by both the level (Table 2a) and severity of injury (Table 2b) in this study. Patients with lumbosacral injury were able to self-void or use CIC in 76% cases, while patients with cervical and thoracic injury needed Foley or supra-pubic catheterization. Likewise, spontaneous voiding occurred in 60% to 80% of patients with AIS grade D or E, CIC in 42% of patients with AIS grade C, and Foley and supra-pubic catheterization by patients with AIS grade A or B. McKinley et al., in their study of patients enrolled in MSCIS, found indwelling catheters were more frequently used by those who were tetraplegic-complete than by those who were paraplegic-incomplete (13, 14).

In our study UTI was present in 16% and 35% of cases of spontaneous voiding and CIC compared to 48% in the indwelling Foley and 73% in the supra-pubic catheter groups. Although the frequency of UTI was lower in the CIC group compared to the indwelling catheter group the frequency of UTI was still high compared to other studies and had to do with poor CIC technique in our patients. Renal stones on renal ultrasound were found in 6%, 0% and 5% of the cases in the CIC, indwelling Foley and supra-pubic catheter groups, respectively. Larsen et al., in their study of 142 veterans with SCI, found the CIC group to have fewer incidences of UTI, renal calculi, urethral strictures and tears, and bladder cancer compared to the catheterized group (4). Likewise, Weld et al. (15) found urological complications in 53.5% of patients with chronic indwelling catheters versus 27.2% in the CIC group. Chen et al., in their study of 8314 patients with SCI enrolled in MSCIS Care program, found bladder management program had no effect on renal stone formation. They found most of their first kidney stones (7%) were acquired within the initial 10 years of injury, and was strongly associated with bladder instrumentation (3) as was the case in our study.

There are several limitations of this study: First, this study was limited to a veteran population predominantly comprised of white men, so it may not be generalizable to the general population. Second, the small sample size may preclude determining of some differences between groups as significant. Third, this was a single center study. Finally, the inherent bias associated with the retrospective data should be considered. However, the strength of this study lies in the completeness of the data captured by the standardized SCI registry over a 13 year period with no patient lost to follow-up.

Conclusion

This study shows that (1) the urological lesions mainly encountered in veterans with NGB on renal scan were renal atrophy, renal calculi, simple renal cyst and hydronephrosis; and on cyctoscopy bladder calculi and bladder wall thickening; and (2) CIC was the commonly used and a better bladder management method to deal with NGB as they had reduced incidence of UTI and needed less frequent hospitalization. Since the analysis of our data we now have a regular bowel and bladder class where both the patient and their care-giver receive education, hands on training and demonstration of CIC skills on a mannequin, and a hand-out which reinforces the taught catheterization steps in the class to reduce the incidence of UTI.

Acknowledgments

C.E.A. was funded for this study by the National Institutes of Health, National Institute of General Medical Sciences, grant 1 U54GM104938.

References

- 1. Rackley R, Kim KD. Neurogenic Bladder. Accessed September 2012
- 2. Wein AJ. Classification of neurogenic voiding dysfunction. J Urol. 1981 May; 125(5):605–609. [PubMed: 7014929]
- Chen Y, DeVivo MJ, Roseman JM. Current trend and risk factors for kidney stones in persons with spinal cord injury: a longitudinal study. Spinal Cord. 2000 Jun; 38(6):346–353. [PubMed: 10889563]
- Larsen LD, Chamberlin DA, Khonsari F, Ahlering TE. Retrospective analysis of urologic complications in male patients with spinal cord injury managed with and without indwelling urinary catheters. Urology. 1997 Sep; 50(3):418–422. [PubMed: 9301708]
- 5. Smith JM. Indwelling catheter management: from habit-based to evidence-based practice. Ostomy Wound Manage. 2003 Dec; 49(12):34–45.
- 6. Guttmann L, Frankel H. The value of intermittent catheterisation in the early management of traumatic paraplegia and tetraplegia. Paraplegia. 1966 Aug; 4(2):63–84. [PubMed: 5969402]
- 7. Lapides J, Diokno AC, Silber SJ, Lowe BS. Clean, intermittent self-catheterization in the treatment of urinary tract disease. J Urol. 1972 Mar; 107(3):458–461. [PubMed: 5010715]
- Razdan S, Leboeuf L, Meinbach DS, Weinstein D, Gousse AE. Current practice patterns in the urologic surveillance and management of patients with spinal cord injury. Urology. 2003 May; 61(5):893–896. [PubMed: 12735998]
- Stöhrer M, Blok B, Castro-Diaz D, Chartier-Kastler E, Del Popolo G, Kramer G, Pannek J, Radziszewski P, Wyndaele JJ. EAU guidelines on neurogenic lower urinary tract dysfunction. Eur Urol. 2009 Jul; 56(1):81–88. [PubMed: 19403235]
- American Spinal Injury Association. Reference Manual of the International Standards for Neurological Classification of Spinal Cord Injury. Chicago, IL: American Spinal Injury Association; 2003.
- Chen D, Apple DF Jr, Hudson LM, Bode R. Medical complications during acute rehabilitation following spinal cord injury--current experience of the Model Systems. Arch Phys Med Rehabil. 1999 Nov; 80(11):1397–1401. [PubMed: 10569433]
- Weld KJ, Dmochowski RR. Effect of bladder management on urological complications in spinal cord injured patients. J Urol. 2000 Mar; 163(3):768–772. [PubMed: 10687973]
- Cameron AP, Wallner LP, Tate DG, Sarma AV, Rodriguez GM, Clemens JQ. Bladder management after spinal cord injury in the United States 1972 to 2005. J Urol. 2010 Jul; 184(1):213–217. [PubMed: 20478597]
- McKinley WO, Jackson AB, Cardenas DD, DeVivo MJ. Long-term medical complications after traumatic spinal cord injury: a regional model systems analysis. Arch Phys Med Rehabil. 1999 Nov; 80(11):1402–1410. [PubMed: 10569434]
- Weld KJ, Graney MJ, Dmochowski RR. Differences in bladder compliance with time and associations of bladder management with compliance in spinal cord injured patients. J Urol. 2000 Apr; 163(4):1228–1233. [PubMed: 10737503]

Tests	<u>в</u>	Cervical (n=86)	Thoracic (n=50)	Lumbo-sacral (n=21)	ал-d	p-value
Blood tests:						
Blood urea nitrogen	19	19 ± 19	18 ± 20	15 ± 8	0.	0.62
Creatinine	1.0	1.0 ± 0.8	1.1 ± 1.1	1.2 ± 1.4	0.	0.73
Glomerular filtration rate (eGFR)	100	108 ± 39	103 ± 34	90 ± 30	0.	0.48
Glomerular filtration rate (GFR)	10	76 ± 31	91 ± 31	96 ± 36	0.0	0.052
Renal Ultrasound:	и 	n=64	n=42	n=13		
Renal atrophy	9	6 (9.4)	5 (11.9)	1 (7.7)	0.	0.87
Simple renal cysts	15	15 (23.4)	8 (19)	3 (23.1)	0.0	0.86
Renal calculi	11	11 (17.2)	3 (7.1)	1 (7.7)	0.0	0.27
Hydronephrosis	7.0	7.0 (8.0)	1 (1.9)	1(4.8)	0	0.27
Cystoscopy:	u	n=13	n=7	n=3		
Urinary bladder calculi	5 (5 (38.5)	1 (14.3)	2 (66.7)	0.	0.26
Urinary bladder thickening	1	1 (7.7)	0 (0)	1 (33.3)	0	0.23
Urinary tract infection	35	35 (39.8)	24 (46.2)	3 (14.3)	0.0	0.038
Pressure ulcers	27	27 (30.7)	20 (38.5)	3 (14.3)	0.31	31
b: Urological lesions relative to the severity on ASIA Impairment Severity (AIS) grade (Mean ± Standard Deviation, or n (%), as appropriate)	severity on ASIA In	npairment Severity	y (AIS) grade (Mean	ı ± Standard Deviat	ion, or n (%), as a	ppropriate
Tests	AIS A (n=58)	AIS B (n=25)	AIS C (n=31)	AIS D (n=37)	AIS E (n=10)	p-value
Blood tests:						
Blood urea nitrogen	20 ± 23	21 ± 26	14 ± 5	20 ± 12	14 ± 7	0.48

Spinal Cord. Author manuscript; available in PMC 2016 May 18.

0.13 **0.011** 0.88

 1.0 ± 0.3

 1.5 ± 1.4 85 ± 25 87 ± 31

 0.9 ± 0.2 86 ± 19 81 ± 32

 1.0 ± 0.7 118 ± 21 87 ± 30

 1.0 ± 1.1 119 ± 46 82 ± 34

> Glomerular filtration rate (eGFR) Glomerular filtration rate (GFR)

Creatinine

 100 ± 60

+1

n=2

n=25

n=22

n=22

n=48

Renal Ultrasound:

Author	
Manuscrip	
ot	

Author Manuscript

b: Urological lesions relative to the severity on ASIA Impairment Severity (AIS) grade (Mean ± Standard Deviation, or n (%), as appropriate)	severity on ASIA In	npairment Severity	(AIS) grade (Mea	ı ± Standard Devia	tion, or n (%), as a	ppropriate)
Tests	AIS A (n=58)	AIS B (n=25)	AIS C (n=31)	AIS D (n=37)	AIS E (n=10)	p-value
Renal atrophy	6 (12.5)	4 (18.2)	0 (0)	1 (4)	1 (50)	0.064
Simple renal cysts	10 (20.8)	8 (36.4)	6 (27.3)	2 (8)	0 (0)	0.17
Renal calculi	5 (10.4)	3 (13.6)	4 (18.2)	3 (12)	0 (0)	0.89
Hydronephrosis	5 (10.4)	3 (13.6)	0 (0)	1 (4)	0 (0)	0.39
Cystoscopy:	n=12	9=U	n=3	n=1	n=1	
Urinary bladder calculi	5 (41.7)	1 (16.7)	1 (33.3)	1 (100)	0 (0)	0.47
Urinary bladder thickening	0 (0)	1 (16.7)	0 (0)	0 (0)	1 (100)	0.014
Urinary tract infection	32 (55.2)	14 (56)	9 (29)	6 (16.2)	1 (10)	0.0002
Pressure ulcers	33 (56.9)	12 (48)	5 (16.1)	0 (0)	0 (0)	0.31

Author Manuscript

Rabadi and Aston

None-Spontaneous voiding Clean intermittent catheterization	N.	Cominol	Thomasia	I works		o ho	
None-Spontaneous voiding Clean intermittent catheterization		cervicai (n=88)	(n=52)	sacral	i=21)	p-vaue	
Clean intermittent catheterization	45	30 (34.1)	9 (17.3)	6 (28.6)		0.048	
	40	15 (17)	15 (28.8)	10 (47.6)	(9)		
Condom	9	3 (3.4)	5 (9.6)	1 (4.8)			
Foley catheter	27	13 (14.8)	14 (26.9)	0 (0)			
Supra-pubic	22	14 (15.9)	7 (13.5)	1 (4.8)			
Timed voiding	2	2 (2.3)	0 (0)	(0) 0			
Urostomy	7	5 (5.7)	1 (1.9)	1 (4.8)			
lleostomy	1	1 (1.1)	0 (0)	0 (0)			
Bladder Program	ASIA A (n=58)	ASIA B (n=25)	ASIA C (n=31)	ASIA D (n=37)	ASIA E (n=10)	p-value	
None-Spontaneous voiding	4 (6.9)	3 (12)	8 (25.8)	22 (59.5)) 8 (80)	0.0000	
Clean intermittent catheterization	10 (17.2)	7 (28)	13 (41.9)	9 (24.3)	1 (10)		
Condom	3 (5.2)	4 (16)	1 (3.2)	0 (0)	1 (10)		
Foley catheter	17 (29.3)	4 (16)	4 (12.9)	2 (5.4)	0 (0)		
Supra-pubic	16 (27.6)	5 (20)	1 (3.2)	0 (0)	0 (0)		
Timed voiding	0 (0)	0 (0)	0 (0)	2 (5.4)	0 (0)		
Urostomy	5 (8.6)	2 (8.0)	0 (0)	0 (0)	0 (0)		
lleostomy	1 (1.7)	0 (0)	0 (0)	0 (0)	0 (0)		
c: Relationship of Bladder Program to Neurogenic Bladder Management and its findings	to Neurogen	ic Bladder Ma	inagement and i	ts findings			
Bladder Program	N= UTI		Renal u	Renal ultrasound		Cystoscopy	Urodynamics
		Renal	Simple	Renal	Hydronephrosis		

Spinal Cord. Author manuscript; available in PMC 2016 May 18.

(0) (0)

1 (33.3)

(0) (0)

 45
 7 (15.6)
 2 (7.4)
 7 (25.9)
 6 (22.2)

None-Spontaneous voiding

⊳
Ę
Ы
la
ЪС
SCI
Ъ.
—

Author Manuscript

Author Manuscript

c: Relationship of Bladder Program to Neurogenic Bladder Management and its findings	am to l	Veurogenic H	sladder Ma	nagement and	l its finding	S		
Bladder Program	$\mathbf{Z}^{=}$	ITU		Renal	Renal ultrasound		Cystoscopy	Urodynamics
			Renal atrophy	Simple Renal cyst	Renal calculi	Hydronephrosis		
Clean intermittent catheterization	40	14 (35)	0 (0)	7 (21.9)	2 (6.2)	2 (6.3)	2 (6.3)	0 (0)
Condom	6	4 (44.4)	2 (25)	2 (25)	4 (50)	2 (25)	0 (0)	1 (50)
Foley catheter	27	13 (48.1)	3 (13.6)	2 (9.1)	0 (0)	1 (4.5)	1 (25)	1 (25)
Supra-pubic	22	16 (72.7)	3 (15)	5 (25)	1 (5)	2 (10)	2 (40%)	0 (0)
Timed voiding	2	0 (0)	0 (0)	0(0)	0 (0)	0 (0)	0 (0)	0 (0)
Urostomy	7	7 (100)	2 (28.6)	2 (28.6)	2 (28.6)	2 (28.6)	2 (50)	0 (0)
Ileostomy	1	1 (100)	0 (0)	1 (100)	0 (0)	0 (0)	0 (0)	0 (0)

Rabadi and Aston