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Selfs without Mating Type Switching, in Contrast to Its Close Relative
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Imeida et al. (1) have interrogated the genomes of two Preu-

mocystis species, Pneumocystis jirovecii and its sister Pneumo-
cystis carinii, for genes known to be involved in sexual reproduc-
tion in the widely studied fission yeast Schizosaccharomyces pombe,
with the hope that defining genetic pathways governing sexual
reproduction in Preumocystis will inform disease prevention strate-
gies. Pneumocystis spp. cause host-specific lung infections in mam-
mals, and sexual reproductive propagules appear to be the infectious
stage of the life cycle (2). P. jirovecii, a genetically intractable obligate
human pathogen, causes pneumonia in immunosuppressed individ-
uals, with an estimated 400,000 life-threatening infections reported
annually worldwide and a mortality rate of up to 80% (3). P. carinii
inhabits the lungs of rats (4).

P. cariniiand relatives were long thought to be protozoan parasites
until molecular phylogenetic analysis (1988) clearly placed them
within the ascomycetes (5, 6), together with baker’s yeast (Saccharo-
myces cerevisiae), the human pathogen Candida albicans (in the sub-
phylum Saccharomycotina), the human pathogen Coccidioides immi-
tis, pricey European truffles (Tuber spp.) and morels (Morchella spp.),
and familiar contemporary genetic models, such as the saprobes Neu-
rospora spp. and the destructive cereal pathogens Cochliobolus het-
erostrophus and Fusarium graminearum (all Pezizomycotina). Al-
though in the same phylum, Prneumocystis is only distantly related to
these other fungi. In fact, it is associated with a diverse group of an-
cient lineages at the base of the ascomycete phylogenetic tree collec-
tively known as the Taphrinomycotina (7, 8). The Taphrinomycotina
include, in addition to the Pneumocystis mammalian pathogens,
Taphrina deformans, a dimorphic plant pathogen that causes leaf curl
disease of peach, and S. pormbe, used in the fermentation of millet beer
and a genetic model second only to S. cerevisiae (9, 10). Molecular
requirements for S. pornbe sexual reproduction were elucidated more
than 25 years ago (11).

Unlike S. pombe and T. deformans, Pneumocystis species are
obligate pathogens and thus cannot be cultured. This element
complicates the study of Pneumocystis biology, including its pos-
sible sexual cycle, and is challenging from a clinical perspective,
because sex is thought to play a crucial role in the survival of
Pneumocystis. Only the cysts, which are considered to be asci con-
taining the sexual spores, are infectious and able to spread to new
hosts (2). Despite the crucial potential importance of sex to the
epidemiology of Pneumocystis pneumonia, little is known about
molecular mechanisms associated with this developmental path-
way in Pneumocystis. Earlier studies hinting at a sexual lifestyle
include a report on the possible observation of synaptonemal
complexes (12), a report identifying conserved mating and mei-
otic genes that are functional when heterologously expressed in
S. pombe mutants (13), and evidence that the meiotic recombinase
Dmcl is expressed in cysts (14). The study by Almeida et al. (1)
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offers significant insight into the mechanism by which sexual re-
production might occur in Preumocystis.

Almeida et al. (1) queried genome sequences of P. jirovecii,
P. carinii, and their relative T. deformans with genes known to be
involved in sexual reproduction in S. pombe and identified candi-
date homologs. Mating in S. pombe is controlled by the single
mating type locus matl and is successful when strains of opposite
mating type, designated P and M, pair. P and M cells differ in gene
content at matl (15, 16). Furthermore, as with the budding yeast,
S. cerevisiae (17, 18), S. pombe has, in addition to the active mat1
mating type locus, two linked but silent mating type loci, one
containing the P and the other the M gene content. By pro-
grammed interconversion, one of the silent copies can change
places with the active copy at the matI locus, leading to “switch-
ing” of cell type. Thus, homothallism in both yeasts refers to a
change in mating type in some of the cells within a culture of a
formerly uniform mating type, followed by mating of “switched”
cells with “unswitched” cells within the culture, culminating in the
production of sexual spores. This type of homothallism with mat-
ing type switching has not been described in Pezizomycotina to
date.

Given that Pneumocystis is related to S. pombe, one might ex-
pect these fungi to have similar mating systems, but this is not
what Almeida et al. (1) found. Instead, they detected a single mat-
ing type locus in the two Pneumocystis species, one or two loci in
T. deformans (short contig sequences make linkage uncertain),
and no silent loci (Fig. 1). This configuration indicates that these
fungi are unable to switch mating type using an S. pombe-type
mechanism. Also, the Pneumocystis and Taphrina mating type loci
contain both P and M mating type genes, an arrangement, de-
noted as primary homothallism, known to enable selfing in Pe-
zizomycotina. Where it has been examined carefully in Pezizomy-
cotina, all instances of primary homothallism arose from a genetic
recombination event (and loss in some cases) between heterothal-
lic relatives.

Evidence for primary homothallism is new to the Taphrinomy-
cotina, but homothallism was inferred previously in population
genetics studies which demonstrated widespread clonality in P. ji-
rovecii (19, 20). As noted above, primary homothallism has been
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observed in the largest group of ascomycetes, the Pezizomycotina.
Examples include the mostly saprobic, but sometimes opportu-
nistic, human pathogens Aspergillus nidulans (21, 22) and Neosar-
torya fischeri (23, 24) and various plant pathogens and saprobes.
One of the best-studied examples is Cochliobolus spp. All het-
erothallic Cochliobolus species have a single mating type locus
(MAT1I), with a single gene, either MATI1-1 or MAT1-2, and only
isolates that differ at MAT1I are able to mate (Fig. 1). Like Pneu-
mocystis, the primary homothallic Cochliobolus species have both
mating type genes in their genomes, generally arranged side by
side at a single locus (25). Functional analyses involving swapping
of heterothallic for homothallic MAT genes and of homothallic
for heterothallic MAT genes demonstrate that mating lifestyle can
be altered by an exchange of MAT genes. Heterothallic C. heteros-
trophus can be rendered homothallic by introduction of the ho-
mothallic Cochliobolus luttrellii MAT genes, and homothallic
C. luttrellii can be rendered heterothallic by introduction of the
heterothallic C. heterostrophus MAT genes (25, 26). We note that
homothallism without switching using silent mating type cassettes
has also been described in the Saccharomycotina. Examples in-
clude strains of predominantly heterothallic C. albicans that be-
come capable of self-mating through alterations in pheromone
signaling (27) and the recently described novel switching mecha-
nism in Hansenula polymorpha, in which only one of two linked
MATI and MAT?2 genes is expressed in a single nucleus (28, 29).
Homothallism in H. polymorpha is achieved by a chromosomal
inversion of the MAT region.

How do primary homothallic fungi evolve? The origin of the
mating type gene arrangement in Pneumocystis and Taphrina is
unknown, because these are the first and only MAT configura-
tions described, but there is evidence in the Pezizomycotina that
primary homothallic species originated from heterothallic an-
cestors by means of recombination between DNA motifs
shared between opposite mating type alleles (25, 30-33). Op-
posite mating type alleles differ in DNA sequence, but when,
for example, both MATI-1 and MATI-2 of heterothallic C. het-
erostrophus are aligned with the fused MAT1-1/MATI-2 sequence
of primary homothallic C. luttrellii, all sequences are identical
across an 8-nucleotide stretch that, in C. luttrellii, is located at the
fusion junctions between opposite mating type alleles. This sug-
gests that recombination between MAT genes of a Cochliobolus
heterothallic ancestor resulted in the fused mating type arrange-
ment found in C. luttrellii today. For some primary homothallic
representatives, no recombination sites have been identified, and
in some, only one MAT gene is present (e.g., Neurospora africana
has only matA [MATI], while Huntiella moniliformis has only
MAT?2) (30, 34-41). In the genomes of other primary homothallic
ascomycetes and possibly in T. deformans, the opposite mating
type alleles are unlinked. This configuration can be explained by
hypothesizing that heterothallic MAT genes are first linked by
recombination and then rendered unlinked via a double-strand
break between the linked MAT genes and a chromosomal trans-
location event. Examples include A. nidulans (22), N. fischeri (24),
and possibly one species of Cochliobolus (25).

How the primary homothallic mating type arrangement in
Pneumocystis evolved is unknown. The P and M matI genes are
present on the same Pneumocystis chromosome; thus, recombina-
tion between the mat genes in an as-yet-undiscovered heterothal-
lic ancestor is the most likely mechanistic scenario. It is curious,
however, that the Pneumocystis mating type genes are more closely
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FIG1 Mating type locus organization in select species mentioned in the text.
The phylogenetic relationship of the species is given on the left, and mating
type arrangements are on the right. Boxes correspond to mating type genes,
and gene names are within the boxes. Red boxes encode alphal («1) domain
proteins, blue boxes high-mobility-group (HMG) box proteins, yellow boxes
amphipathic alpha-helix proteins, green boxes homeobox proteins, and white
boxes proteins with other or unknown domains. An “X” signifies a silent
mating type locus. Horizontal lines between the boxes correspond to noncod-
ing regions or non-mating type genes. Dashed lines indicate unknown DNA
sequence, and an asterisk between boxes means that mating type genes are
unlinked. For species with more than one mating type allele, both alleles,
including allele designations, are provided. Gene diagrams are not to scale.
“Hetero” stands for heterothallic, “Homo” for primary homothallic, and
“Homo/switching” for homothallic by switching. Ascomycete subphyla are
indicated by vertical lines on the right. For references, see the text. The phylo-
genetic topology is based on the work of Schoch et al. (42). S. herbarum,
Stemphylium herbarum; S. macrospora, Sordaria macrospora; N. crassa, Neuro-
spora crassa.

related to their homologs in T. deformans than to homologs in
S. pombe (1) (Fig. 1), because Pneumocystis is more closely related
to S. pombe than to T. deformans (7, 10). This suggests that the
mating type arrangement of Pneumocystis and T. deformans may
have evolved following the separation of these two lineages and
then was transferred horizontally from one lineage to the other, as
demonstrated for Stemphylium MAT genes (30). Alternatively, the
mating type arrangement of Pneumocystis may have evolved
before the separation of the Taphrinomycotina lineages. The
S. pombe silent mating type cassettes used to effect switching and
homothallism may have been acquired later (Fig. 1).

In conclusion, the evidence generated by Almeida et al. (1) and
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the body of genetic and phylogenetic evidence from the study of
other ascomycete species, strongly suggest that the examined
Pneumocystis species are primary homothallic species. Whether
this is the case for all Pneumocystis species and how primary ho-
mothallism evolved in Pneumocystis and the Taphrinomycotina, in
general, require additional studies. Given the clinical importance
of Pneumocystis and the plant-pathogenic nature of Taphrina,
molecular understanding of their reproductive strategies and evo-
lutionary trajectory may have substantial practical implications.
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