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Despite its pervasive use, the clinical efficacy of platelet-rich plasma (PRP) therapy and the different mechanisms of action have
yet to be established. This overview of the literature is focused on the role of PRP in bone, tendon, cartilage, and ligament tissue
regeneration considering basic science literature deriving from in vitro and in vivo studies. Although this work provides evidence
that numerous preclinical studies published within the last 10 years showed promising results concerning the application of PRP,
many key questions remain unanswered and controversial results have arisen. Additional preclinical studies are needed to define
the dosing, timing, and frequency of PRP injections, different techniques for delivery and location of delivery, optimal physiologic
conditions for injections, and the concomitant use of recombinant proteins, cytokines, additional growth factors, biological

scaffolds, and stems cells to develop optimal treatment protocols that can effectively treat various musculoskeletal conditions.

1. Introduction

The vulnerability of the musculoskeletal system to acute
or chronic injuries is often dramatic and, according to the
WHO, they are the most common causes of severe long-term
pain and physical disability affecting hundreds of millions of
people worldwide [1]. Thus, bone, cartilage, tendon, and liga-
ment injuries have serious socioeconomic consequences; for
example, osteoarthritis affects nearly 27 million Americans or
12.1% of the adult population of the United States with a total
annual cost of about $89.1 billion [2]. Besides osteoarthritis,
also bone fracture care in osteoporotic patients has a high
incidence with an annual cost of about $17 billion [3]. Sim-
ilarly, ligamentous and tendinous injuries are very common
with an annual incidence estimated at about 1 per 1000 people
[4, 5]. However, the bulk of these musculoskeletal injuries
does not heal with conservative managements and frequently

requires surgery with several hardships for the patients. One
of the most innovative methods used to biologically enhance
tissue healing and regeneration includes the use of autologous
blood products and, in particular, platelet-rich plasma (PRP).
Blood is withdrawn from a patient’s peripheral vein and
centrifuged to achieve a high concentration of platelets
(PLTs) within a small volume of plasma. It is reinjected at
a site of injury or inserted as a gel or in combination with
other biomaterials during surgery. At baseline levels, PLTs
function as a natural reservoir for growth factors (GFs) and
plays an important role in tissue healing and regeneration.
GFs secreted by PLTs include platelet-derived growth factor
(PDGF), epidermal growth factor (EGF), insulin-like growth
factor (IGF-I), transforming growth factor -1 (TGF-1), vas-
cular endothelial growth factor (VEGF), hepatocyte growth
factor (HGF), and basic fibroblast growth factor (bFGEF),
which provide the potential to modulate the healing of many
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TABLE 1: Main GFs release by a-granules.

GFs Mechanism of action

(i) MSC proliferation and differentiation

(ii) Cell mitogenesis

TGF-

(iii) Collagen II, proteoglycan, and ECM synthesis
(iv) Endothelial chemotaxis and angiogenesis

(v) Macrophages and lymphocyte proliferation inhibition; chondrocyte differentiation

(vi) TIMP upregulation

PDGF-aand -b

(i) OBs and MSCs mitogenesis

(ii) Macrophages, neutrophil, and other cell chemotaxis; collagen I synthesis

bFGF

(i) Chondrocyte and OB differentiation

(i) MSCs, chondrocyte, and OB mitogenesis

(i) Endothelial chemotaxis and angiogenesis

EGF (ii) Collagen synthesis

(iii) MSC and epithelial cell mitogenesis

(i) Angiogenesis

(i) Cartilage regeneration
(iii) Fibrosis

(iv) Platelet adhesion

CTGF

VEGF (i) Angiogenesis

(ii) Endothelial cell mitogenesis

(i) Cell proliferation
IGF (ii) Collagen synthesis

(iii) Myoblast proliferation and differentiation

tissues through interaction with specific cells [6, 7] (Table 1).
This wide variety of GFs contributes to multifaceted roles of
PRP, including the enhancement of anabolism, bone and ves-
sel remodeling, cell proliferation, angiogenesis, inflammation
control, coagulation, and cell differentiation [8].

Despite the lack of high-quality clinical trial data, several
studies confirmed PRP clinical efficacy in the treatment of
different types of musculoskeletal injuries [132-139]. How-
ever, many important questions remain unanswered. To reach
a consensus on PRP use, there is the need of explaining why
the employment of PRP generates different clinical results.
The main drawback in evaluating the clinical effects of PRP
is the inconsistency in established preparation protocols. To
date, more than 40 commercial systems exist which claim
to concentrate whole blood into a PLT-rich substance but a
standardized preparation system has yet to be implemented
in the common practice. Therefore, it is highly important for
the clinician to be mindful of the different ways to obtain PRP
and how the different methods affect the composition of PRP
at the time of treatment [140]. The most important differences
between the protocols and machines currently used are blood
volume (from 9 to 120 mL), PRP volume (from 3 to 32 mL),
activators (CaCl,, thrombin, batroxobin, bovine thrombin,
and thrombin added to CaCl,), number of spins during
centrifugation (1 or 2), and PLT concentration (from 1x to 18x)
[141,142]. Additionally, the presence or absence of leukocytes,
which contain considerable amounts of VEGF could further
affect the quality of PRP and consequently its effects [143-
145]. In fact, a recent study by Kaux et al. demonstrated that
a local infiltration of PRP, without both erythrocytes and
leukocytes and obtained with the apheresis system, associated
with submaximal eccentric protocol can improve symptoms

of chronic jumper’s knee [146]. Finally, the quality of PRP
and resulting effects could also be influenced by patient’s
age, gender, body mass index, comorbidities, ethnic origin,
healing capabilities, and different lifestyles (smoke, alcohol
abuse, obesity; etc. . .) [147, 148].

The huge literature about this topic, from basic science
reviews to in vitro and in vivo research, as well as clinical stud-
ies, highlighted the need of validated classification systems
to compare the crucial differences between PRP preparation
protocols. Among those proposed, we considered the PAW
classification which assigns a code based on PLT concentra-
tion (PLTs/uL), kind of activation (endogenous/exogenous),
and white blood cell concentration (total WBCs and neu-
trophils) [149]. This paper is planned to give an overview of
the last decade on the in vitro and in vivo studies on PRP
in musculoskeletal regeneration also evaluating the different
preparation protocols. Bone, cartilage, tendon, and ligament
regeneration was considered.

2. Search Strategies

To identify the studies to be considered in the current
review, a PubMed database search was performed using the
following MeSH: “platelet-rich plasma” and “regeneration”
The searching limits were English language and papers
published from July 8, 2004, to July 8, 2014. Three authors
(Francesca Salamanna, Francesca Veronesi, and Melania
Maglio) evaluated all articles. Studies were included if they
were available online, in vitro or in vivo, and regarding bone,
cartilage, tendons, and ligaments, while they were excluded
if title and abstract clearly refuted eligibility. Also reviews,
letters, or comments to the editor and clinical studies were
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PubMed database
“Platelet-rich plasma” and “regeneration”
Filters: publication date from July 8, 2004, to July 8, 2014
English language

291 not related to the 3 e
musculoskeletal system
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(3 in vitro, 4 in vivo)

FIGURE 1: Schematic representation of the PubMed database searches.

excluded. All the selections were performed independently
in duplicate. Disagreement was resolved by consensus.

3. Results

3.1. Search Strategies. The PubMed search produced 619
articles. Several studies (494) were excluded: 290 were not
related to musculoskeletal system, 150 were reviews, letters,
or comments to the editor, 1 was on muscle regeneration, 33
were clinical studies on musculoskeletal system, and the other
20 were not available online to us. So a total of 125 articles
were analyzed (Figure 1). In Figure 2, the number of papers
for each tissue and year is reported (Figure 2).

Regarding bone tissue, the reviewed in vitro studies were
carried out on osteoblasts (OBs) or mesenchymal stem cells
(MSCs) with PRP combined or not with scaffolds. In vivo
studies were performed with PRP alone or with autologous
bone/scaffolds/cells or with a combination of scaffolds and
cells. For tendon tissue regeneration, the examined in vitro
studies evaluated the effects of PRP alone or with MSCs and
scaffold on tenocytes or tendon tissue explants. In the in vivo
studies, PRP was employed alone or associated with scaffolds,
cells (mainly MSCs), or their combination. Concerning the
in vitro studies on cartilage, PRP alone or with scaffold was
evaluated on human chondrocytes, while, in in vivo ones, PRP
was used in association with scaffolds or cells (chondrocytes
or MSCs), also in combination with microfractures. As for
anterior cruciate ligament (ACL) reconstruction, the in vitro
studies evaluated the ACL fibroblast behavior under the effect
of PRP with or without scaffolds while the in vivo evaluations
were performed with PRP alone or in combination with
scaffolds.

The main variables found among studies under review
are presented in Table 2, while all the basic science literature
derived from in vitro and in vivo studies were summarized in
Tables 3 and 4.

3.2. PRP Biology: What Have We Learned? Before examining
PRP effects in musculoskeletal regeneration, a brief overview
on its biology is provided below.
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FIGURE 2: An overview on the application of PRP in musculoskeletal
regenerative procedures in the last decade.

3.2.1. Terminology and PLTs Products. Even though PRP is a
generic term, many definitions and acronyms have appeared
to differentiate PRP constituents and state of activation but
may be also increasing the confusion. Although many authors
urge standardization, the variety of names unfortunately does
little to help standardize the product. PRP or PRF (platelet-
rich fibrin) is the most used acronyms to indicate PLTs
concentrates. Their processing techniques allow discarding
the nonclinical useful elements, such as most of red blood
cells, to concentrate the therapeutic effective ones, such as
PLTs, GFs, leukocytes, or fibrinogen/fibrin. Actually, PRP
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TABLE 2: Main variables of the reviewed studies and factors implicated in PRP efficacy.
. Blood volume PRP volume PLT count Leukocyte count .
Tissue type Study type (mL) (mL) (x10°/uL PRP) (x10*/uL) Activators
. _ _ _ Thrombin, CaCl,,
In vitro 51+30(n=4) 53+6.6(n=2) 42+6.6(n=4) NS Ca-gluconate (1 = 4)
Thrombin, CaCl,,
Bone CaCl, +
. _ _ _ _ thromboplastin,
In vivo 77 +135(n=54) 2.6+49(n=34) 23+23(n=34) 14+41/uL (n=23) Ca-gluconate, and
CaCl, + thrombin (n
=52)
Thrombin, CaCl,,
In vitro 93+167(n=8) 45+38(n=6) 19+24(n=10) 4+41/uL (n=2) Ca-gluconate +
Tendon thrombin (n = 5)
Invivo  17+16(n=15) 24+12(n=9) 19+16(n=9)  2+3/uL(n=2) Thrombmé)cacb (n=
In vitro 115+ 61(n=23) 1.0xtn/a(n=1) 09+n/a(n=1) NS Thrombin, CaCl,
Cartilage . ?hrqmbin, CaCl,, C.a,
In vivo 25+20 (n=11) 31+38(n=8) 28+39(n=38) NS Fibrinogen Thrombin
(n=4)
Anterior cruciate In vitro 33+38(n=2) NS 05+0.2(n=3) NS NS
ligament i =
8 Invivo  33+23(n=3) 50457(n=2) 16+0.7(n=5) NS Thrombin, CaCl, (n

1)

n: number of data available for the specific variable in the considered papers; NS: not specified.

products are divided into 4 families, based on leukocytes and
fibrin content: pure platelet-rich plasma (P-PRP), leukocyte-
and platelet-rich plasma (L-PRP), pure platelet-rich fibrin (P-
PRF), and leukocyte- and platelet-rich fibrin (L-PRF) [150].
The first, also known as plasma rich in growth factors (PRGF),
and the second are usually in the form of gel or liquid and
are characterized by a low-density fibrin network, without or
with leukocytes, respectively. On the other hand, the third,
also named platelet-rich fibrin matrix (PRFM), and the fourth
contain high-density fibrin network and exist only in the
gel form. P-PRF is without leukocytes, while L-PRF contains
leukocytes. It is clear that these four variables alone allow
many possible variants of PRP to be produced; however, they
provide a simple baseline for comparison.

3.2.2. PLTs Number and o-Granule Contents. In healthy
humans, the average PLT concentration of whole blood is
around 200,000/uL (normal range 150,000 to 350,000/uL)
[151]. PLTs are small anucleated cytoplasmic fragments of
megakaryocytes normally thought as the responsible agents
for hemostasis. Not only are the PLTs central to the clotting
cascade, but they are also fundamental to tissue healing.
The first step of the healing process is clot formation and
PLTs activation [151]. Then biologically active molecules, GFs,
and differentiation factors, are released from the a-granules
[152, 153]. About 70% of the GFs are secreted within the
first 10 minutes next to activation and, within the first hours,
almost 100% have been secreted [154]. According on where
they are in course of their life, several PLTs will die within a
few days while some others may last up to 9 days ongoing
to generate further GFs [155]. As previously mentioned,
the degranulation of a-granules result in the release of a
number of GFs, such as PDGF, EGE IGF-I, TGF -1, VEGE

HGE and bFGF (Table 1). However, other bioactive factors,
which include adhesive proteins, clotting and fibrinolytic
factors and their inhibitors, proteases and antiproteases,
antimicrobial proteins, and membrane glycoproteins, are
getting increased attention in the last decade [153]. Another
aspect is that a-granules also contain monocytes mediators
and different interleukins (ILs) and chemokines, such as IL-
1 3, IL-8, and MIP-1-2-3, regulated on activation, normal
T cells expressed and secreted (CCL5), and more others,
which are capable of mediating inflammation, stimulate cells
chemotaxis, proliferation, and maturation [153, 156, 157].

Although PLTs have now been shown to store and release
such a wide range of biologically active proteins, different
enigmas, regarding their contents and possible activities on
tissue healing, still remain to be solved.

3.2.3. Methods of PRP Activation. Different methods of acti-
vating PRP influence the concentration of GFs. PRPs are
frequently activated by calcium chloride, thrombin, chitosan,
and batroxobin. Calcium chloride and thrombin activation
are the two most common methods; 5% calcium chloride
treatment for 19 min produces the most effective PRP, which
has properties for soft-tissue adhesion [158]. Chitosan can be
used instead of thrombin because it enhances aggregation,
adhesion, and expression of «-granule membrane glycopro-
tein. Some data, however, suggest that exogenous thrombin
activation of PRP may actually diminish its ability to induce
bone formation compared with nonthrombin-activated PRP
[159].

3.2.4. Inter- and Intraspecies Variability. Preclinical models
offer fundamental basis for the development of clinical
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treatments, although it is necessary to consider inter- and
intraspecies variability principally in terms of PLTs count.
As reported by Mitruka and Rawnsley [160] each species
has its own number of PLTs, also with a wide range within
the same species. Thus, the knowledge of the exact number
of PLTs, when an animal model is used, is fundamental
for understanding the effectiveness of the PRP application.
Additional variability is added by some species-specific
peculiarities [148]. This important variability needs to be
considered in evaluating results from different animal models
because it could be one of the reasons for dissimilar results
obtained when PRP is used, as also demonstrated by the
studies described below.

3.2.5. Safety Profile. It is well known that PRP derive from
autologous blood and this implies minimal risks for disease
transmission, immunogenic reactions, and cancer [161]. GFs
act on cell membranes rather than on the cell nucleus and
activate normal gene expression [161]; they are not mutagenic
and act through gene regulation and normal wound healing
feedback control mechanisms.

Considering the long-term clinical experience with the
use of PRP in oral and maxillofacial field, its use is consid-
ered to be safe [162, 163]. Differently, no long-term studies
with PRP exist in the musculoskeletal field, despite a large
number of treated patients [164]. Recently, a nonrandomized,
prospective, longitudinal study on 808 patients indicated no
adverse effects following injection of PRGF into the knee joint
at 6 months [165]. Contrary, a recent case report reported
an exuberant inflammatory reaction after 1 injection of PRP
to treat jumper’s knee in a 35-year-old male type 1 diabetic
patient, revealing that PRP should be proposed only after
careful consideration in cases of patients with morbidity
risks [146]. Although the adverse effects are unusual, as with
any injection, there is always a slight risk of injection site
morbidity, infection, or injury to nerves or blood vessels.
Scar tissue formation and calcification at the injection site are
remote risks [166]. Infrequently, development of antibodies
against clotting factors V and IX leading to life threatening
coagulopathies has been reported [161, 167]. To date, no con-
vincing preclinical studies and clinical trials demonstrating
systemic effects following local PRP injections are reported
and, as showed by Dhillon et al., this is probably due to the
limited need of PRP injections in clinics and the short in vivo
half-lives and local bioavailability of GFs produced by PRP
[168].

4. The Role of PRP in
the Regeneration of Bone

4.1. In Vitro Studies. Several studies [9-13] evaluated the
in vitro effect of PRP showing that it was able to induce
proliferation and osteogenic activity of human OB and OB-
like cells. Additionally, Parsons et al. [14] investigated the
effect of PRP on the osteogenic potential of human MSCs,
suggesting the promotion of OB differentiation.

Bukharova et al. [15] developed a construct using a highly
purified bone matrix as scaffold and osteogenic committed
human adipose derived stem cells (ADSCs) together with

BioMed Research International

PRP, later activated with thrombin/calcium chloride (CaCl,).
While giving no real clues on the effect of PRP, the paper
showed the creation of a construct that may be suitable for
bone tissue engineering. Finally, Simson et al. [16] detected
that the combination of an injectable chondroitin sulfate
tissue adhesive and PRP with human MSCs could support
bone growth.

More recently, Perut et al. [17] investigated the efficacy of
different components of PLT concentrates on the osteogenic
differentiation of BMSCs. Comparing two different procure-
ment techniques, the authors reported that, in addition to the
differences in PLT recovery between systems, the composi-
tion of PRP was associated with variance in the progressive
release of bFGF from the platelet gel, which is associated with
the proliferation of BMSCs and their ability to mineralize.
The authors concluded that the ability of different PLT gels to
induce proliferation and osteogenic differentiation of BMSCs
was related to the composition of PRP including the platelet,
leukocyte, and GF concentrations and availability.

At a Glance. (1) PRP addition in culture medium of MSCs,
both BMSCs and ADSCs, and OBs improved proliferation
and osteogenic activity; (2) the ability of different PLT gels to
induce proliferation and osteogenic differentiation of BMSCs
was related to the PRP composition (Table 3).

4.2. In Vivo Studies. Clots of PRP, PLT-rich GF (PRGF), and
PLT-rich fibrin (PRF) were studied in different experimental
conditions (sheep sternal wounds, critical size defect in rat
calvaria, tibia and femurs, and nude mice calvaria bone
defect) with good results in terms of bone regeneration [30-
35] and promotion of the expression of TGF-f3 and bone
morphogenetic protein-2 (BMP-2) [34]. Additionally, Mes-
sora et al. [33] observed a better outcome for PRP activated
by CaCl, in comparison to PRP activated by thromboplastin.
Contrary to the above mentioned studies, Torres et al. [36]
showed no beneficial effect of PRP on osseous regeneration
in rabbit calvaria. Regarding the effect of topical application
of PRP and platelet-poor plasma (PPP), it was compared
in a rabbit model of full thickness calvaria defects, noticing
better results for PRP [37]. Two studies focused on the
application of PRP in osteoporosis [38, 39]. Chen et al. [38]
administered different concentrations of PRP to promote the
healing in osteoporotic rat femur. The results highlighted
that, if on the one hand PRP enhanced bone regeneration,
on the other hand too high concentrations could prevent a
complete healing. Interestingly, Liu et al. [39], instead, used
PRP to demonstrate its ability to prevent and treat osteo-
porosis by controlling the ratio of osteoblast and adipocyte
in ovariectomized female mice. The study detected that PRP
treatment improved bone quality in osteoporotic mice via
promoting osteogenesis while suppressing adipogenesis in
the bone marrow.

PRP was also added to autografts [40-45], Bio-Oss [46,
47], and fresh frozen bone allograft [48] in different animal
models (i.e., critical size defects in mini. pigs, rat calvaria, and
rabbit femur and tibia) and improved bone regeneration. In
addition, Nagata et al. [44] explored the influence that the
different proportion between particulate autogenous bone



BioMed Research International

grafts and PRP (50, 100, 150 L) could exert on rat calvaria
healing. The dose of 100 4L of PRP proved to be the most
effective in promoting bone formation, while the inhibitory
effect of the highest PRP doses was noticed. However, other
authors, using various animal models, found no benefits
when PRP was added to autologous bone [49-53], autologous
bone and Bio-Oss [55, 56], and xenografts [57].

Besides the use of PRP in combination with autografts,
allografts, or xenografts, numerous studies have focused their
attention on the PRP association with other synthetic and
biologic materials such as ceramics (hydroxyapatite, HA, bio-
glass, calcium phosphate, CaP, and beta-tricalcium phosphate
(B-TCP)) [58-65], metals [66], polymers (polyglycolic acid
(PGA)) [67], composites (polycaprolactone-20% tricalcium
phosphate (PCL-T'CP)) [68], hydrogels [69, 70], alginate [71],
coral [72, 73], and chitosan [74]. The majority of studies
obtained good outcomes regarding the bone regenerative
potential when PRP was added to the above mentioned
materials [58-74]. Additionally, a significant bone formation
was observed when PRP was used with biphasic CaP or
PGA containing BMP-2 [64, 67]. A different application was
proposed by Paulo et al., which treated rabbit fibula fracture
with PRP and daily hyperbaric oxygen therapy sessions,
with promising results [75]. However, several studies found
opposite outcomes [76] compared to those just quoted, in
particular, when PRP was used in association with ceramic
[77-80], metallic [81], or composite materials [82]. A work
by Clafshenkel et al. [80], exploring the association of
melatonin-calcium aluminate scaffold with the addition of
PRP in an ovariectomized rat model of calvaria defect,
explained the failure in promoting bone regeneration with a
possible conflict between the proliferative thrust induced by
PRP and the differentiative stimuli mediated by melatonin.

Newly formed bone in rabbit [83, 84] and mice [85]
calvaria defects were also obtained using PRP and bone
marrow mesenchymal stem cells (BMSCs). Niemeyer et al.
[86], also using a large animal model, observed that the
presence of PRP could in part balance the differences in
osteogenic potential of BMSCs and ADSCs. Kawasumi et al.
[13], instead, evaluating PRP with increasing concentration
of PLTs in combination with BMSCs in rat limb-lengthening
model, detected a better qualitative regeneration of bone
tissue using the higher PRP concentration. Lastly, Liu et
al. [87], also in a study on heterotopic site of nude mice,
testing a novel injectable tissue-engineered bone combined
with induced hADSCs resuspended in PRP, showed an
improvement in bone formation.

Comparing the contribution of MSCs and PRP to the
regenerative capacity of ceramic bone substitutes, several
studies indicated that the combined use of the three elements
got better results in terms of osteogenesis [88-91]. Addition-
ally, Kasten et al. [89] showed that over the positive effect
of PRP with MSC and ceramic material on bone healing, an
effect on vascularization was also proven. Batista et al. [92],
instead, proved the effectiveness in the repair of rabbit tibial
defects of PRP compared to bone marrow concentrate added
separately to 3-TCP scaffold, while Zhong et al. [93] obtained
comparable results between PRP and bone marrow aspirate
concentrate in combination with B-TCP in nude mice.
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Additionally, Behnia et al. [94] combined PRGF with a scaf-
fold designed as carrier for GFs and stem cells, proving not
only the applicability of the material but also the good poten-
tiality in promoting bone regeneration when combined with
PRGF and MSC. Man et al. [12] also tested the angiogenic and
osteogenic potential of alginate microspheres combined with
ADSCs and increasing percentage of PRP, demonstrating a
high rate of mineralization in a model of nude mice with
the presence of new vessel formation, with 10 and 15% of
PRP. Finally, Zhang et al. [95] evaluated the immunogenicity
of allogeneic PRP and the effect of a construct of allo-
geneic PRP/deproteinized bone matrix/autologous MSCs,
with promising results not only regarding immunity but also
for bone healing and vascularization. Contrary to the above
mentioned study, Khojasteh et al. [169] evaluated the different
contribution of PRP and BMSCs to various materials in rat
calvaria defect, observing better bone formation with BMSCs
alone as compared to their combination with PRP.

At a Glance. (1) Clots of PRP, PRGE, and PRF improved bone
regeneration, promoting expression of TGF-B and BMP-
2; (2) topical application of PRP showed better results in
comparison to PPP; (3) PRP in osteoporotic animal models
promoted bone healing; (4) PRP addition to autografts, Bio-
Oss, fresh frozen bone allografts, or other synthetic and
biologic materials showed discordant results in term of bone
healing; (5) PRP in association with BMSCs or ADSCs, also
in combination with different materials, showed good bone
regeneration (Table 4).

5. The Role of PRP in
the Regeneration of Tendons

5.1 In Vitro Studies. Several in vitro studies observed good
results with different PRP formulations or PRP associated
with scaffolds and BMSCs on tenocytes or tendon culture
explants. It was observed that the addition of PRP to the
culture medium counteracted the inhibition of tenocytes via-
bility and proliferation induced by the osteoblasts-tenocytes
coculture system [I8] or by ciprofloxacin or dexametha-
sone [19]. In addition, some studies compared different
PRP formulations. Platelet-poor clot releasate (PPCR) or
leukocyte-reduced PRP (IrPRP) showed better results than
platelet-rich clot releasate (PRCR) or high-concentration
PRP (hcPRP), respectively. Indeed PPCR or IrPRP increased
DNA content and total collagen and decreased VEGF-A,
TGF-f1, metalloproteinases (MMP) expression [20], and
proinflammatory cytokines in tenocytes or flexor digitorum
superficialis tendon explants [21].

It was also observed that the best results were found in
tenocytes with PRP gel activated with calcium and thrombin
(PRP-Ca-Thr) in comparison to that activated with calcium
(PRP-Ca) [22] and after the addition of PRFMembrane eluent
in comparison to PRFMatrix ones in tenocytes medium [23].

The addition of PRP to collagen patch seeded with
BMSCs improved biomechanical and histological features of
digitorum profundus tendon in in vitro repair model [24].
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At a Glance. PRP added to the culture medium of teno-

cytes or tendon explants improved viability and proliferation
(Table 3).

5.2. In Vivo Studies. The effects of PRP alone were evaluated
in acute lesions of rat supraspinatus, horse superficial digital
flexor, rat rotator cuff, rat patellar, rabbit intrasynovial flexor,
and sheep and rat Achilles tendons. An improvement in
biomechanical, collagen fiber orientation, metabolic activity
properties, and extracellular matrix (ECM) gene expression
and a decrease in inflammatory cell number, vascularity,
IGF-1, and TGF-f3 were observed [96-105]. In addition,
platelet-rich growth factor (PRGF) and PRP with fibrin
matrix (PRPF) showed the same results [106, 107]. On the
contrary, no significant improvements were observed after
the injection of PLT concentration (PC) in patellar tendons
[108].

Also the combinations of PRP formulations with cells or
scaffolds were studied. No synergic effect on sheep digital
flexor healing was shown, when PRP was combined with
peripheral blood MSCs (PBMSCs) [109]. On the other hand,
the best results were observed when PRP was combined with
ADSCs [110] or platelet-rich plasma fibrin matrix (PRPFM)
with cross-linked acellular porcine dermal patch (APD),
respectively, in rabbit and sheep Achilles tendon lesions [111,
130].

The use of PRP, collagen sponge, and tendon stem cells
(TSCs) improved histological parameters and Coll I and Coll
III expressions and productions of rat Achilles tendon lesions,
especially after physical activity [112].

Finally, after the injection into mice abdominal cavities,
tenocytes precultured with platelet-rich plasma-clot release
(PRCR) induced high collagen production and tenocyte
markers expression [113].

At a Glance. (1) On tendon lesions, PRP improved biome-
chanical, collagen fibers orientation, metabolic activity prop-
erties, and ECM gene expression with a decrease of inflam-
matory cell number, vascularity, IGF-1, and TGF-p; (2) PRP
and PBMSCs combination did not improved tendon healing;
(3) PRP combined with ADSCs or PRPFM with cross-linked
APD improved tendon healing (Table 4).

6. The Role of PRP in
the Regeneration of Cartilage

6.1. In Vitro Studies. PLT-derived GFs are proteins with the
capacity to stimulate chondrocytes to regenerate cartilage.
PRGF-treated chondrocytes showed markedly increased syn-
thesis of proteoglycans and collagen. Plasma rich in GFs is
an excellent vehicle for GFs, especially PDGF and TGEF-$.
In fact, several studies have documented the effectiveness of
GFs in chondrogenesis and prevention of joint degeneration
by controlling the synthesis and degradation of extracellular
matrix proteins. Their mode of action is to bind to the
extracellular domain of a target GF receptor, which in turn
activates the intracellular signal transduction pathways.

Wau et al. [25] evaluate the effect of collagen matrix on the
regeneration potentials of PRP for chondrocytes homeostasis
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showing that collagen matrix stimulated integrins and CD44
signaling was coordinated with the addition of PRP. These
interactions play a critical role in regulating cell prolifera-
tion, chondrogenic and inflammatory gene expressions, and
matrix remodeling of human articular chondrocytes. The
study demonstrated a schematic model of collagen matrix
cooperating with PRP to inhibit the ECM degradation and
promote ECM synthesis and deposition. Recently, Cavallo et
al. [26] assessed the effect of various PRP formulations on
human chondrocytes. Results showed that PRP with a rela-
tively low concentration of platelets and very few leukocytes
stimulated chondrocyte appearing to favor some mechanisms
that stimulate chondrocyte anabolism, as demonstrated by
the expression of type-II collagen and aggrecan, whereas PRP
with high concentrations of both platelets and leukocytes
appeared to promote other biological pathways involving
various cytokines. This might be due to the presence of
leukocytes in PRP; the leukocytes may have been responsible
for the increased expression of certain molecules such as
IL-1b, IL-6, VEGE and FGF-b, which in turn could have
stimulated TIMP-1 and IL-10.

At a Glance. (1) Collagen matrix and PRP promoted cartilage
ECM synthesis; (2) PRP with a relatively low concentration
of PLTs and very few leukocytes stimulated chondrocyte
anabolism; (3) PRP with high concentrations of both PLTs
and leukocytes appeared to promote chondrocyte catabolism
(Table 3).

6.2. In Vivo Studies. Some in vivo studies evaluated the effects
of PRP when combined with scaffolds (polymers, collagen,
and demineralized bone matrix), cells (chondrocytes and
MSCs), or a combination of them.

In rabbit chondral defects, PRP incorporated in
poly(lactic-co-glycolic acid) (PLGA) successfully improved
the healing [114], while, in sheep and goat osteochondral
defects, PRP with collagen-HA scaffolds or demineralized
bone matrix did not improve or even decreased the healing
[115, 116]. Kon et al. showed not only the lack of a positive
effect but also a negative influence of autologous PRP on bone
and cartilage regeneration with amorphous cartilaginous
repair tissue and a poorly spatially organized underlying
bone tissue [115].

After the assessment of feasibility of PRP as injectable
scaffold [117], an improvement in the repair of rabbit osteo-
chondral defects after the implantation of PRP seeded with
chondrocytes and a chondrocyte differentiation of BMSCs
and ADSCs seeded within the PRP scaffold was observed
[118]. Similarly, Lee et al. [119], using PRP gel embedded
with synovial membrane derived mesenchymal stem cell
(SDSCs), showed a substantial improvement in the repair of
osteochondral defects in a rabbit model.

The combination of hydrogel scaffold, chondrocytes, and
PRP promoted the in vivo healing of articular or nonarticular
cartilage lesions, respectively, in rabbit and rat, revealing
successful regeneration of hyaline chondrocytes with forma-
tion of perichondrium-like normal joint cartilage [120, 121].
On the contrary, the separate adding of PRP or BMSCs to
already available composite biphasic scaffold, composed by
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PLGA, poly(glycolic acid), and calcium sulfate, resulted in
a significantly better mini. pig osteochondral defect healing,
but with no synergic effects [122]. To preserve the advan-
tages of chondrocyte therapy in a single-stage approach to
osteochondral defects, Marmotti and coworkers [123] offered
a single-step therapeutic approach for osteochondral defects
using autologous cartilage fragments loaded onto a scaffold
composed of a hyaluronic acid derivative, human fibrin glue,
and PRP, in a rabbit model. Finally, the same studies [124, 125]
using sheep and rats, evaluated the effect of PRP combined
with microfractures on healing of chondral defects, showing
that PRP application in addition to microfractures resulted in
a better cartilage healing than microfractures alone.

At a Glance. (1) PRP incorporated in PLGA improved
cartilage healing; (2) PRP with collagen-HA or demineralized
bone matrix did not improve or even decreased cartilage
healing; (3) good quality results in cartilage regeneration
when PRP was associated with chondrocytes or MSCs with
or without scaffolds (Table 4).

7. The Role of PRP in the Regeneration of
Anterior Cruciate Ligament

71 In Vitro Studies. Mastrangelo et al. [27] observed that
porcine and ovine ACL fibroblasts within a collagen-platelet
scaffold from skeletally immature animals have greater
proliferation and migration potential than adolescent and
adult cells. Similar results were obtained by Magarian et al.
[28] observing the response to PRP treatment in human
ACL fibroblasts derived from 5 skeletally immature and 5
adolescent patients. Yoshida et al. [29] evaluated the optimal
concentration of PLTs (1x, 3x, and 5x) to stimulate ACL
healing using porcine ACL fibroblasts, revealing that 1x PRP
was the best stimulator while higher concentrations of PLTs
had diminishing effects.

At a Glance. (1) ACL fibroblasts within a collagen-platelet
scaffold from skeletally immature animals had greater pro-
liferation than adolescent and adult cells; (2) 1x PRP was the
best stimulator for ACL healing in ACL fibroblasts (Table 3).

7.2. In Vivo Studies. Several authors using different animal
models, porcine and canine, demonstrated that healing of
transected ACL could be enhanced with the use of a collagen-
PRP hydrogel placed within the repair site [126-128] sug-
gesting also that there was little functional difference in
ligament healing with the use of collagen scaffolds saturated
with 3x or 5x PRP [129]. Differently, Zhai and coworkers
[130] showed that platelet-rich gel + deproteinized bone could
trigger tendon-bone healing by promoting the maturation
and ossification of the tendon-bone tissue in a rabbit model.
Finally, the role of PRP in promoting revascularization and
reinnervation during ACL healing was clarified, using a
canine animal model [131].

At a Glance. (1) Healing of transected ACL enhanced with
the use of a collagen-PRP hydrogel; (2) PLTt-rich gel +
deproteinized bone triggered tendon-bone healing; (3) PRP
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promoted revascularization and reinnervation during ACL
healing (Table 4).

8. Discussion

Bone, cartilage, tendon, and ligament injuries have serious
socioeconomic consequences in terms of health, rehabili-
tation, and lost working hours. The rationale of the use
of PRP is that it concentrates more PLTs than the whole
blood, allowing the delivery of bioactive GFs and molecules
that promote tissue healing. Recently, regenerative medicine
and tissue engineering focused on the use of GFs [163]
and cell-based therapy to improve the quality and speed of
healing suggesting that this combined biological approach
may be useful even for the treatment of recalcitrant overuse
musculoskeletal injuries in highly demanding patients if the
appropriate dose of cells and GFs is applied [170].

No of fewer importance, PLT-rich preparations may also
improve long-term outcomes in patients expected to have
impaired healing, such as those with harmful lifestyle choices
(e.g., smoking), medications (e.g., steroids), comorbidities
(e.g., diabetes, osteoporosis, atherosclerosis, and Alzheimer),
and advanced age [171,172].

The use of PRP is a quick, minimally invasive, and
relatively low-cost therapeutic strategy and, for these rea-
sons, from the last three decades, PRP injections have been
studied as a therapeutic alternative for different muscu-
loskeletal injuries. The present study evaluated the last 10
years preclinical results on regenerative medicine and PRP
in the musculoskeletal tissues in order to summarize the
most important findings on both positive and negative data
and to stimulate further preclinical and clinical research.
Until 2006 PRP was preclinically investigated mainly for
bone regeneration but in the last few years, the number of
studies on the treatment of cartilage, ligaments, and especially
tendon lesions is increasing. Even if the preclinical results did
not report adverse effects, there was a wide variability among
the results making it impossible to draw a standard protocol
or indication for the so different musculoskeletal injuries.
First and foremost, the generalized nature of the terminology
may be a probable barrier to differentiate between various
products and their respective protocols and it is possible that
the different PRP preparation techniques, doses, and appli-
cation modalities produce different results. The other main
differences emerging regarded the number of centrifugations,
the withdrawn blood volume, the obtained PRP final volume,
the different PLT concentrations, the presence or absence of
leukocytes in the final preparation, and, lastly, the use of an
activator. The above listed factors are subjected to a great
variability and in many papers are not specified in detail.
The adoption of one of the proposed classification systems
(PAW classification), in order to compare data, was not always
and completely applicable, making it impossible to reach a
conclusion on the best PLT concentration to be used.

The application of PRP in vitro showed promising results
in all examined tissues. Researchers on bone demonstrated
that the addition of PRP in cell culture medium determined
good proliferation and osteogenic activity of MSCs (both
BMSCs and ADSCs) and OBs. The presence of PRP had



18

a positive effect in the culture of tenocytes or tendon explants
and promising results were also observed with chondrocytes
and ACL fibroblasts. The in vivo protocols are even more
varying and complex than the in vitro ones. In bone, a wide
spectrum of defects in different anatomic locations have
been analyzed (calvarium, radius, tibia, condyle, iliac crest,
ulna, femur, fibula, sternum, spine, frontal bone, and skull),
besides vessel and bone formations in ectopic sites, employ-
ing the combination of PRP with scaffolds or autologous
bone. Despite some contrasting data, in vivo studies showed
encouraging results when PRP was used, also in combination
with MSCs with or without other cells.

Different PRP formulations have been used for the regen-
eration of the most important tendons of the body: patellar,
Achilles, superficial or deep digital flexor, rotator cuff, and
intrasynovial flexor tendons. Similar to the bone tissue, for in
vivo tendon regeneration, good results were observed when
PRP was employed.

Finally, contrasting findings were observed in partial
thickness, full thickness, osteochondral defects, and ACL
reconstruction, although the in vivo studies on cartilage
regeneration reported good quality results when PRP was
associated with chondrocytes or MSC with or without scaf-
folds. Regarding ACL, all examined in vivo studies showed
high-quality results in terms of regeneration.

To summarize, in vitro studies underlined the role of PRP
for tissue regeneration and, when comparing different PRP
formulations, concluded that a specific range of PLT number
is required in order to obtain the best results with an increase
in ECM protein expression and a decrease in the levels of
proinflammatory cytokines and MMPs, via downregulation
of known catabolic signaling pathways. However, the in vitro
positive effects were not confirmed in all the in vivo studies
because of the many variables affecting the success rate in a
complex scenario where both PRP and the lesion site play a
crucial role.

9. Conclusions and Outlook for
Future Research

Despite the fact that many of the examined studies showed
the potential positive effect of PRP in the treatment of mus-
culoskeletal diseases, there is a paucity of human randomized
controlled trials to provide level I evidence for the efficacy
of this intervention. In fact, most of the human studies
are case series or retrospective studies without a control
group. Generally, they are small in size and unpowered. Thus,
further evaluations are recommended and future studies
should (1) find uniform and standardized nomenclature and
preparation protocols; (2) optimize the number of PLTs and
leukocytes cells; (3) make a direct comparison with other
therapeutic techniques; (4) increase the quality of preclinical
trials on safety, efficacy, and proof of concept studies; (5)
clarify the role of the patient and lesion characteristics
together with the local inflammatory microenvironment in
the clinical outcome.
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