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The CCN family member 2 (CCN2, also known as connective tissue growth factor) may behave as a risk biomarker and a potential
therapeutic target for renal disease. CCN2 participates in the regulation of inflammation and fibrosis. TGF-𝛽 is considered themain
fibrogenic cytokine; however, in some pathological settings TGF-𝛽 also has anti-inflammatory properties. CCN2 has been proposed
as a downstream profibrotic mediator of TGF-𝛽, but data on TGF-𝛽 role in CCN2 actions are scarce. Our aim was to evaluate the
effect of TGF-𝛽 blockade in CCN2-mediated experimental renal damage. Systemic administration of the C-terminal module of
CCN2 to mice caused sustained renal inflammation. In these mice, TGF-𝛽 blockade, using an anti-TGF-𝛽 neutralizing antibody,
significantly increased renal expression of the NGAL (a kidney injury biomarker), kidney infiltration by monocytes/macrophages,
and upregulation of MCP-1 expression. The anti-inflammatory effect of TGF-𝛽 seems to be mediated by a dysregulation of the
systemic Treg immune response, shown by decreased levels of circulating CD4+/Foxp3+Treg cells. Our experimental data support
the idea that TGF-𝛽 exerts anti-inflammatory actions in the kidney and suggest that it is not an optimal therapeutic target.

1. Introduction

Chronic kidney disease (CKD) is amajor health problem that
has reached epidemic proportions and may lead to end-stage
renal disease or early cardiovascular death [1]. Moreover, the
increasing incidence of diabetes, hypertension, and obesity
will result in future increases in the number of patients
with CKD. Available therapy for CKD only delays, but does
not prevent, disease progression. Besides, there are still no
valid biomarkers that more accurately reflect the severity
of the underlying renal histopathological changes and
predict CKD progression or death [1]. Among the potential
biomarkers and therapeutic targets, the CCN family member
2 (CCN2) has emerged as an interesting candidate [2].

CCN2 was initially described as the major platelet derived
growth factor-related mitogen secreted by human vascular
endothelial cells and named connective tissue growth factor
(CTGF) [3]. This matricellular protein is a member of the
CCN family of secreted, cysteine-rich regulatory proteins;
therefore, the term CCN2 is used, as a proposal for uniform
nomenclature [4]. CCN2 is a developmental gene, silenced
in the adult kidney and reexpressed during kidney injury [2].
CCN2 levels in plasma or urine have been proposed to behave
as risk biomarkers for CKD [5–7] and for cardiac dysfunction
in patients exhibiting myocardial fibrosis and chronic heart
failure [8]. Initial studies showed that CCN2 contributed
to fibrosis [9], and it was proposed as an antifibrotic target
[10, 11]. Experimental studies have shown that inhibition
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of endogenous CCN2 by antisense oligonucleotides slows
disease progression in experimental diabetic nephropathy,
unilateral ureteral obstruction, and nephrectomized TGF-𝛽1
transgenic mice [3, 12–14], suggesting that selective CCN2
blockade could be used to treat renal disease.

CCN2 contains four functional modules than can be
cleaved by proteases leading to several degradation products
with biological activity [15]. Among these degradation frag-
ments, the C-terminal cysteine knot module 4 of 11.2 kDa,
named here CCN2(IV), has special relevance. CCN2 binds
to the epidermal growth factor receptor (EGFR), through
this C-terminal module [16]. Many studies have described
that CCN2 and CCN2(IV) share many biological responses,
including regulation of fibrosis [17], activation of the EGFR
pathway, and downstream signalling, including MAPKs cas-
cade [16]. Emerging experimental evidences support the
novel concept of CCN2 as a proinflammatory cytokine [2,
18]. CCN2 is a chemotactic factor for immune cells [19],
promotes cell adhesion and migration [2], and upregulates
proinflammatory factors, including cytokines, chemokines,
and adhesion molecules in resident cells [2, 18–21]. We
have previously demonstrated that systemic administration
of recombinant CCN2(IV) acutely inducedTh1/Th2 cytokine
production in the murine kidney after 24 hours, suggesting
that CCN2 could induce inflammation in vivo [21].Moreover,
chronic CCN2(IV) administration caused a sustained kidney
proinflammatory response, mainly characterized by activa-
tion of the Th17 immune response [19].

CCN2 as a mediator or coactivator of TGF-𝛽 mediated
profibrotic responses [2, 9, 11, 22]. CCN2 overproduction
has been proposed to play a major role in pathways that
lead to fibrosis [2, 11]. Indeed, the notion that CCN2 is
a downstream profibrotic mediator of TGF-𝛽 is the chief
operating paradigm in the field, but there is no data on the
effect of TGF-𝛽 blockade in CCN2 actions in vivo. In this
paper we have investigated the effect of TGF-𝛽 blockade
in experimental CCN2(IV)-induced renal damage, focusing
on the regulation of inflammation and the modulation of
Th17/Treg responses.

2. Materials and Methods

2.1. In Vivo Studies. Studies were performed in adult male
C57BL/6 mice (9–12 weeks old, 20 g; obtained from Harlan
Interfauna Ibérica) and maintained at the local animal facili-
ties under special pathogen free conditions.All procedures on
animals were performed according to the international and
Instituto de Investigación Sanitaria Fundación Jiménez Dı́az
Animal Research Committee guidelines.

Mice received a single intraperitoneal injection (i.p.) of
CCN2(IV) at the dose of 2.5 ng/g of body weight, dissolved
in saline (𝑛 = 10 mice), as previously described [17, 18] and
were studied 10 days later. The purity of CCN2(IV) (obtained
from MBL/Peprotech, Bionova) was confirmed by MALDI-
TOF (not shown).Wehave previously described that systemic
CCN2(IV) administration caused a sustained inflammatory
response in the kidney that peaked at 10 days [20]; therefore,
this time point was chosen for the experiments. For TGF-𝛽

neutralization experiments, mice were injected with an anti-
TGF-𝛽 pan-specific neutralizing antibody (100 𝜇g/mouse) or
their corresponding IgG control (R&D, 𝑛 = 10 mice per
group), starting 24 h before CCN2(IV) injection and every
72 h thereafter until sacrifice at 10 days, following a previously
described neutralization protocol [23].

Mice were sacrificed under anesthesia (Isoflurane, Abbott
laboratories). The kidneys were perfused in situ with cold
saline before removal. One kidney from eachmousewas fixed
in buffered formalin, embedded in paraffin, and used for
immunohistochemistry.The other kidney was snap-frozen in
liquid nitrogen for gene and protein studies.

2.2. Renal Histology and Immunohistochemistry. Paraffin-
embedded sections were stained using standard histology
procedures. Immunostaining was carried out in 3𝜇m thick
tissue sections that were deparaffinized and antigen retrieved
using the PT Link system (Dako Diagnósticos) with Sodium
Citrate Buffer (10mM) adjusted to pH 6 or pH 9 depending
on the immunohistochemical marker. Immunohistochem-
ical staining was performed using the Dako Autostainer.
The endogenous peroxidase was blocked and then sections
were incubated for 30min at room temperature with pri-
mary antibody: anti-CD3 and anti-CD4 (Dako) or anti-
F4/80 (Serotec). After washing, slides were treated with
the EnVision DuoFLEX Doublestain System using 3,3󸀠-
diaminobenzidine. For F4/80 staining, a rabbit anti-rat
antibody was used as linker before EnVision treatment.
Sections were counterstained with Carazzi’s hematoxylin.
The total number of positive stained cells was quantitated
in 5 randomly chosen fields (200x) using Image-Pro Plus
software. Data are expressed as positive stained area versus
total analyzed area. Samples from each animalwere examined
in a blind manner. Negative controls were incubated with
a nonspecific immunoglobulin of the same isotype as the
primary antibody and without primary antibody.

2.3. Protein Studies. Kidney extracts were lysed in lysis buffer
[50mMTris-HCl, pH 7.4, 150mMNaCl, 2mM EDTA, 2mM
EGTA, 0.2%TritonX-100, 0.3%NP40, 100 𝜇Mphenylmethyl-
sulfonyl fluoride, 1mM dithiothreitol, 100 𝜇M Na

3
VO
4
, and

1mM protease-inhibitor cocktail (Sigma)]. Protein concen-
tration was determined by the BCA method (Pierce). Tis-
sue protein extracts (30 𝜇g/lane) were separated on 8–12%
polyacrylamide-SDS gels under reducing conditions. Sam-
ples were then transferred onto PVDFmembranes (Bio-Rad),
blocked in TBS with 0.05% Tween-20 and 5% nonfat dry
milk, and then incubated overnight at 4∘C with the primary
antibodies and subsequently incubated with peroxidase-
conjugated IgG (Amersham) and developed by ECL chemilu-
minescence (GEHealthcare). Autoradiographs were scanned
using the GS-800 Calibrated Densitometer (Quantity One,
Bio-Rad). Primary antibodies were affinity purified anti-
mouse/human/rat Foxp3 (1 : 1000) (e-bioscience: 14-4774),
NGAL (1 : 500) (Santa Cruz, sc-18698).The efficacy of protein
loading and transfer to membranes was assessed by incuba-
tion with mouse anti-GAPDH antibody (1 : 5000) (Chemi-
con: MAB374). IL-17A levels were analyzed with an ELISA
kit from eBioscience.
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2.4. Gene Expression Studies. Total RNA was isolated from
renal samples with Trizol (Invitrogen). cDNA was synthe-
sized using the high capacity cDNA archive kit (Applied
Biosystems) using 2 𝜇g of total RNA primed with random
hexamer primers, following the manufacturer’s instructions.
Multiplex RT-PCR was performed using fluorogenic (FAM)
TaqMan MGB probes and primers designed by Assay-on-
Demand gene expression products (Applied Biosystems):
MCP-1 Mm00441242 m1 and RANTES Mm01302428 m1.
The mRNA copy numbers were calculated for each sample
by the instrument software using Ct value. Results were
expressed in copy numbers, calculated relative to control
mice, after normalization against 18s (4210893E vic).

2.5. Flow Cytometry Analysis. In blood samples from differ-
ent mice groups, circulating levels of T lymphocytes were
evaluated. Cell surface staining was performed using FITC-
labeled anti-CD3 or anti-CD8 and PE-labeled anti-CD4
(BD Pharmingen). After cell surface staining, Foxp3 was
stained using Foxp3 staining kit (BD Pharmingen) according
to manufacture instruction. Flow cytometry analysis was
conducted on a FACSCalibur (BD Biosciences) with Cell
Quest Pro software.

2.6. Statistical Analysis. Statistical analysis was done using
the SPSS statistical software (version 11.0, Chicago, IL). After
Kolmogorov-Smirnov test that determined the nonnormal
sample distribution of the data, differences between groups
were assessed by Mann-Whitney 𝑈 test. The exact 𝑃 value is
shown in each graph bar.

3. Results

3.1. TGF-𝛽 Blockade Amplified CCN2(IV)-Induced Renal
Inflammatory Response. To evaluate the effect of TGF-𝛽
blockade on CCN2(IV)-induced renal damage, active TGF-
𝛽 was blocked using a pan-specific neutralizing anti-TGF-𝛽
antibody or its corresponding isotype IgG, and renal damage
was evaluated by assessment of the biomarker of renal injury,
neutrophil gelatinase-associated lipocalin (NGAL) [24]. In
CCN2(IV)-injected mice, kidney NGAL protein expression
levels were elevated showing a significant upregulation in
theCCN2(IV)-injected TGF-𝛽-treatedmice (Figure 1).These
data suggest that TGF-𝛽 blockade increased CCN2(IV)-
mediated renal damage.

The main pathological feature of CCN2(IV) adminis-
tration to mice was kidney infiltration by leukocytes and
upregulation of proinflammatory mediators, while renal
fibrosis was not observed [20]. Therefore, we evaluated
the effect of TGF-𝛽 blockade on CCN2(IV)-induced renal
inflammation. Treatmentwith aTGF-𝛽neutralizing antibody
significantly increased the number of infiltrating inflamma-
tory cells, mainly F4/80+ monocytes-macrophages, in the
kidney of CCN2(IV)-injected mice, compared to IgG-treated
CCN2(IV)-injected mice (Figures 2(a) and 2(b)). Moreover,
renal gene expression of several proinflammatory mediators
was elevated in response to TGF-𝛽 neutralization (Figure 3).
The recruitment of immune cells into damaged tissue is
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Figure 1: TGF-𝛽 blockade exacerbates CCN2(IV)-induced renal
damage. C57BL/6 mice received a single ip injection of 2.5 ng/g
body weight recombinant CCN2(IV) or vehicle (saline) and were
sacrificed after 10 days. For TGF-𝛽 neutralization experiments, mice
were treated with anti-TGF-𝛽 antibody or an isotype IgG control
(𝑛 = 10 mice per group) starting 24 hours before CCN2(IV)
injection and every 72 h until sacrifice at day 10 after CCN2(IV).
Renal damagewas assessed by evaluation of renal levels of biomarker
NGAL by western blot. (a) shows a representative western blot and
data expressed as mean ± SEM (𝑛 = 10 animals per group) of fold-
change as compared to controls. ∗𝑃 < 0.05 versus control.

mainly regulated by chemokines. Among them, MCP-1 is
the main chemokine involved in monocytes-macrophages
recruitment [25]. In CCN2(IV)-injected mice, renal MCP-
1 and RANTES gene expression was significantly increased
in response to TGF-𝛽 blockade (Figure 3). Moreover, MCP-
1 protein levels were also upregulated in this group (around
2-fold versus IgG-treated CCN2(IV)-injected mice, data not
shown). These data suggest an activation of the local inflam-
matory responsewhenTGF-𝛽 is blocked and confirm the role
of TGF-𝛽 as an anti-inflammatory cytokine.

3.2. TGF-𝛽 Blockade Modulates Systemic Treg, but Not
Th17, Immune Response in CCN2(IV)-Injected Mice. TGF-𝛽
behaves as an anti-inflammatory factor in some conditions
and it has been involved in the differentiation of Treg
cells, through activation of the transcription factor X-linked
forkhead/winged helix (Foxp3) [26, 27]. We have previously
reported that Th17, but not Treg, immune response partici-
pates in CCN2(IV)-mediated renal inflammation [20]. Our
next aim was to evaluate whether the effect of TGF-𝛽 block-
ade on the renal inflammatory response could bemediated by
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Figure 2: TGF-𝛽 neutralization increases CCN2(IV)-induced renal inflammatory response. The inflammatory cell infiltration was
characterized in paraffin-embedded renal sections by immunohistochemistry with anti-F4/80 (specific for monocyte/macrophage), anti-
CD3 (T lymphocyte marker), and anti-CD4 (effector lymphocyte T marker) antibodies. (a) shows the immunohistochemistry quantification
expressed as mean ± SEM (𝑛 = 10 animals per group) of fold-change as compared to controls. Mean ± SEM. ∗𝑃 < 0.05 versus control.
#
𝑃 < 0.05 versus CCN2(IV)-IgG. (b) shows a representative animal from each group (200x magnification). Arrows indicate infiltrating cells
in detail (400x magnification).
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Figure 3: TGF-𝛽 blockade upregulates CCN2(IV)-induced renal
chemokine expression. Kidney gene expression of MCP-1 and
RANTES was evaluated by real time PCR. Data are expressed as 𝑛-
fold increase over control as mean ± SEM of 10 animals per group.
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𝑃 < 0.05 versus control. #𝑃 < 0.05 versus CCN2(IV)-IgG.

aTh17/Treg response imbalance. InCCN2(IV)-injectedmice,
TGF-𝛽 blockade did notmodify IL17A (Figure 4(b)) or Foxp3
(Figure 4(a)) renal levels.

We analysed the number of circulating blood cells by flow
cytometry. Although circulating CD4+/Foxp3+ Treg cells
were notmodified inCCN2(IV)-injectedmice, TGF-𝛽 block-
ade dramatically decreased circulating CD4+/Foxp3+ Treg
cells (Figure 5(a)). In addition, TGF-𝛽 blockade increased the
number of T cytotoxic lymphocytes (CD8+) and decreased
the CD4+/CD8+ ratio (Figures 5(b) and 5(c)). These data
suggest that TGF-𝛽 blockade could lead to a systemic inflam-
matory response that increases the kidney susceptibility to
inflammation.

4. Discussion

In this report we described that TGF-𝛽 blockade increased
the kidney inflammatory response to CCN2(IV) adminis-
tration. This increased inflammatory response was mainly
characterized by the local kidney upregulation of MCP-
1 and proinflammatory chemokines and the infiltration of
monocytes/macrophages aswell as by the dysregulation of the
systemic Treg immune response.

CCN2 regulates numerous cellular processes includ-
ing cell differentiation, adhesion, proliferation, and, as we
described here, inflammation. CCN2 is a multimodular
protein of four functional modules: the N-terminal insulin-
like growth factor-binding domain (IGFB), the cysteine-
rich domain (also called von Willebrand type c domain), a
thrombospondin type 1 repeat domain, and the C-terminal
heparin-binding domain [2, 28]. Functional domains within
the CCN2 modules interact with different growth factors,
receptors, and matrix components and mediate specific

CCN2 responses [2, 28]. These modules may be cleaved
by proteases to yield several biologically active degradation
products [15]. In chondrocytes, the N-terminal CCN2 mod-
ule, but not the C-terminal module, had a direct interaction
with the proteoglycan aggrecan and stimulated its production
[29]. In Xenopus cells, the N-terminal module, through the
cysteine-rich domain, can directly bind to TGF-𝛽 in the
extracellular space, potentiating TGF-𝛽 receptor binding and
Smad signalling [30]. In cultured mesangial cells, CCN2, via
its N-terminal module, antagonized TGF-𝛽1 binding to TGF-
𝛽 type III receptor (endoglin) and inhibited Smad pathway
activation [31]. The thrombospondin type 1 repeat domain
can bind to extracellular matrix and vascular endothelial
growth factor [2]. Some authors have hypothesized that
CCN2 is a downstreammediator of TGF-𝛽profibrotic actions
[10, 11]. Individual CCN2 domains interact with TGF-𝛽 in
a different manner: the C-terminal domain mediated TGF-
𝛽-induced fibroblast proliferation, whereas the N-terminal
domain mediated myofibroblast differentiation and collagen
synthesis [32].The C-terminal CCN2module binds integrins
and regulates signalling in fibrosis and inflammation [2,
10]. We have recently demonstrated that the C-terminal
module of CCN2 binding to EGFR regulates renal and
vascular inflammation [16, 33]. In tubular epithelial cells,
𝛼V𝛽3 integrin directly binds to theC-terminal CCN2module
but is not necessary for the binding of CCN2 to EGFR and
the subsequent complex formation [16]. All these data show
the complexity of CCN2 actions and the importance of the
evaluation of CCN2 modules functional activities.

Although many in vitro studies have demonstrated that
TGF-𝛽1 induces CCN2 synthesis [11, 12], there are scarce
studies evaluating whether CCN2 could regulate TGF-𝛽
expression or actions. In addition, TGF-𝛽 synthesis is a
complex process with multiple steps of regulation [12]. Our
group has previously described that systemic Angiotensin
II infusion upregulates tissue CCN2 as early as at 3 days,
while elevated levels of active TGF-𝛽1 were observed later
on, at 7 days. Moreover, CCN2 induction was associated with
inflammation, while TGF-𝛽1 overproduction correlated with
fibrosis, as assessed by fibronectin and collagen deposition
[34–36]. Accordingly, CCN2(IV) administration in mice
caused a sustained renal inflammation, but there was no
increase in TGF-𝛽 synthesis or matrix deposition [20]. These
data suggest that CCN2 in vivo could be involved in the
induction of a proinflammatory or a profibrotic response
depending on the presence/absence of TGF-𝛽1.

TGF-𝛽 is a pleiotropic cytokine that has been involved
in many human diseases, including proliferative disorders,
fibrotic diseases, and immune-mediated pathologies [11, 37].
TGF-𝛽1 is a key factor in fibrosis, including the kidney fibrosis
[38–43]. In cultured renal cells, TGF-𝛽1 stimulates extracel-
lular matrix production, inhibits matrix degradation by the
regulation of matrix metalloproteinases, and is a key factor
in the induction of tubuloepithelial to mesenchymal transi-
tion [42, 43]. Increased levels of active circulating TGF-𝛽1
in mice caused renal fibrosis [38]. TGF-𝛽 blockade amelio-
rated experimental fibrosis in models of vascular restenosis,
spontaneously hypertensive rats [11], and peritoneal damage
[39]. Both in CKDpatients and in experimental renal fibrosis,



6 Mediators of Inflammation

0

1

2

3

4

Control IgG

CCN2(IV) 

Re
na

l I
L-

17
A

 p
ro

te
in

 le
ve

ls 
(n

-fo
ld

) ∗
∗

Anti-TGF𝛽

(a)

Re
na

l F
ox

p3
 p

ro
te

in
 le

ve
ls 

(n
-fo

ld
)

0

1

2

Control IgG

CCN2(IV) 

Anti-TGF𝛽

(b)

Figure 4: Effect of TGF-𝛽 blockade on renalTh17/Treg responsesmodulated byCCN2(IV).Themainmarkers forTh17 or Tregwere evaluated
in renal total protein extracts. (a) Renal levels of IL-17A were evaluated by ELISA. (b) Foxp3 renal levels were analysed by western blot. Data
is shown as ratio of renal Foxp3/GAPDH protein. Mean ± SEM of 10 mice per group and representative western blot experiment. ∗𝑃 < 0.05
versus control.

elevated renal levels of TGF-𝛽1 have been associated with
fibrosis, characterized by excessive matrix accumulation in
the glomerulus and in the interstitium [40, 44–50]. TGF-
𝛽1 blockade by different approaches, including neutralizing
antibodies, siRNAs, or blockers such as decorin, inhibited
fibrosis both in vitro and in experimental renal disease
[40, 50–53]. Interestingly, in some of these models, such
as puromycin-induced nephrosis or diabetic nephropathy,
TGF-𝛽 blockade worsened both proteinuria and albuminuria
[40, 50–53]. Furthermore, in unilateral urethral obstruction,
conditional deletion of TGF-𝛽1 ameliorated tubulointerstitial
fibrosis but increased inflammation [54]. In this paper, we
have observed that TGF-𝛽1 neutralization increased exper-
imental renal inflammation induced by CCN2(IV), and
this was mainly characterized by a significant increase in
local kidney proinflammatory chemokines and macrophage
infiltration.

Beside its role as a profibrotic factor, TGF-𝛽 has anti-
inflammatory functions. Indeed, mice deficient in TGF-𝛽1
develop a lethal multiorgan inflammatory disease and died
at 3-4 weeks of age [55], and conditional deletion of TGF-𝛽1
or its type II receptor in T cells induced autoimmune disease
[56, 57].Moreover, increased TGF-𝛽 plasma levels as a conse-
quence of either exogenous administration or overexpression
protect from experimental inflammatory diseases, including
arthritis, autoimmune encephalomyelitis, nonobese diabetic
mice, and systemic lupus erythematous [58–60]. Moreover,
mice overexpressing latent TGF-𝛽 were protected against
both renal inflammation and fibrosis in obstructive kidney
disease models [41, 61]. In experimental vascular dam-
age, TGF-𝛽 blockade caused local inflammation associated
with no reduction in stent-induced neointima formation
[62] or acceleration of atherosclerotic plaque formation
[63–65].

The anti-inflammatory actions of TGF-𝛽1 have been
attributed to its role in the activation of Treg response [66,
67]. Treg cells can suppress immune responses to autoanti-
gens, alloantigens, and infectious agents [68]. In several
experimental models, Treg cell administrationwas beneficial.
In experimental Angiotensin II infusion, intravenous admin-
istration of Treg cells inhibited immune cell infiltration and
decreased proinflammatory mediators in both renal and vas-
cular tissues [69]. Treg cells injection inhibited experimental
renal damage, including anti-GBM glomerulonephritis and
adriamycin-induced nephropathy [70, 71]. Patients with
lupus nephritis presented elevated Th17 immune response
and exhibited low systemic levels of TGF-𝛽1 and Treg cells,
compared to healthy subjects [72, 73]. We have observed
that neutralizing antibodies against TGF-𝛽 downregulated
circulating CD4+/Foxp3+ Treg cells in experimental
CCN2(IV)-mediated renal damage, suggesting that TGF-𝛽
blockade significantly impaired the protective effect of Treg
cells.

We have previously described that systemic long-term
CCN2(IV) administration induced a local sustained Th17
immune response, characterized by increased kidney IL-6
production, ROR𝛾t levels, and STAT3 activation, with no
changes in renal levels of Th1/Th2 cytokines or Treg-related
factors (TGF-𝛽 and foxp3), suggesting that Th1/Th2/Treg
responses were not modulated by CCN2(IV), at least in the
murine kidney [17]. Now, we have observed that TGF-𝛽
blockade did not modify Th17 immune response, as shown
by unaltered renal IL-17A levels. Moreover, renal Foxp3
levels, which regulate Treg differentiation, were not changed.
Our data indicates that TGF-𝛽 blockade did not modify
renal levels of Th17/Treg differentiation factors, suggesting
that the anti-inflammatory effects could be mediated by the
regulation of systemic Treg levels.
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Figure 5: TGF-𝛽 blockade modulates circulating immune cells. Lymphocyte populations were analyzed in blood samples by flow cytometry.
(a) represents the percentage of CD4+ FOXP3+ cells among CD4+ T cells. (b) shows the percentage of cytotoxic (CD8+) T lymphocytes among
total CD3+ T lymphocytes. The CD4+/CD8+ ratio is shown in (c) (mean ± SEM of 5 mice per group). #𝑃 < 0.05 versus CCN2(IV)-IgG.

5. Conclusions

Our experimental data support the idea that TGF-𝛽 exerts
anti-inflammatory actions in the kidney and suggest that
TGF-𝛽 blockade may not be an adequate therapeutic strategy
for kidney disease.
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[11] M. Ruiz-Ortega, J. Rodŕıguez-Vita, E. Sanchez-Lopez, G. Car-
vajal, and J. Egido, “TGF-𝛽 signaling in vascular fibrosis,”
Cardiovascular Research, vol. 74, no. 2, pp. 196–206, 2007.

[12] H. Yokoi, M. Mukoyama, T. Nagae et al., “Reduction in con-
nective tissue growth factor by antisense treatment ameliorates
renal tubulointerstitial fibrosis,” Journal of the American Society
of Nephrology, vol. 15, no. 6, pp. 1430–1440, 2004.

[13] H. Okada, T. Kikuta, T. Kobayashi et al., “Connective tissue
growth factor expressed in tubular epithelium plays a pivotal
role in renal fibrogenesis,” Journal of the American Society of
Nephrology, vol. 16, no. 1, pp. 133–143, 2005.

[14] M. Guha, Z.-G. Xu, D. Tung, L. Lanting, and R. Natarajan,
“Specific down-regulation of connective tissue growth factor
attenuates progression of nephropathy in mouse models of type
1 and type 2 diabetes,” The FASEB Journal, vol. 21, no. 12, pp.
3355–3368, 2007.

[15] C.-C. Chen and L. F. Lau, “Functions and mechanisms of
action of CCN matricellular proteins,” International Journal of
Biochemistry and Cell Biology, vol. 41, no. 4, pp. 771–783, 2009.

[16] S. Rayego-Mateos, R. Rodrigues-Dı́ez, J. L. Morgado-Pascual
et al., “Connective tissue growth factor is a new ligand of
epidermal growth factor receptor,” Journal of Molecular Cell
Biology, vol. 5, no. 5, pp. 323–335, 2013.

[17] B.-C. Liu, J.-D. Zhang, X.-L. Zhang, G.-Q. Wu, and M.-X. Li,
“Role of connective tissue growth factor (CTGF) module 4 in
regulating epithelial mesenchymal transition (EMT) in HK-2
cells,” Clinica Chimica Acta, vol. 373, no. 1-2, pp. 144–150, 2006.

[18] L. Kular, J. Pakradouni, P. Kitabgi, M. Laurent, and C. Mar-
tinerie, “The CCN family: a new class of inflammation mod-
ulators?” Biochimie, vol. 93, no. 3, pp. 377–388, 2011.

[19] I. Cicha, A. Yilmaz, M. Klein et al., “Connective tissue growth
factor is overexpressed in complicated atherosclerotic plaques
and induces mononuclear cell chemotaxis in vitro,” Arterioscle-
rosis, Thrombosis, and Vascular Biology, vol. 25, no. 5, pp. 1008–
1013, 2005.

[20] R. Rodrigues-Dı́ez, R. R. Rodrigues-Dı́ez, S. Rayego-Mateos et
al., “The C-terminal module IV of connective tissue growth
factor is a novel immune modulator of the Th17 response,”
Laboratory Investigation, vol. 93, no. 7, pp. 812–824, 2013.
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[37] Y. Shi and J. Massagué, “Mechanisms of TGF-𝛽 signaling from
cell membrane to the nucleus,” Cell, vol. 113, no. 6, pp. 685–700,
2003.

[38] J. B. Kopp, V. M. Factor, M. Mozes et al., “Transgenic mice with
increased plasma levels of TGF-𝛽1 develop progressive renal
disease,” Laboratory Investigation, vol. 74, no. 6, pp. 991–1003,
1996.

[39] J. Loureiro, A. Aguilera, R. Selgas et al., “Blocking TGF-
𝛽1 protects the peritoneal membrane from dialysate-induced
damage,” Journal of the American Society of Nephrology, vol. 22,
no. 9, pp. 1682–1695, 2011.

[40] E. P. Bottinger, “TGF-beta in renal injury and disease,” Seminars
in Nephrology, vol. 27, pp. 309–320, 2007.

[41] W. Wang, X. R. Huang, A. G. Li et al., “Signaling mechanism
of TGF-𝛽1 in prevention of renal inflammation: role of Smad7,”
Journal of the American Society of Nephrology, vol. 16, no. 5, pp.
1371–1383, 2005.

[42] W.Wang, V. Koka, andH. Y. Lan, “Transforming growth factor-
𝛽 and Smad signalling in kidney diseases,” Nephrology, vol. 10,
no. 1, pp. 48–56, 2005.

[43] A. A. Eddy and E. G. Neilson, “Chronic kidney disease progres-
sion,” Journal of the American Society of Nephrology, vol. 17, no.
11, pp. 2964–2966, 2006.

[44] T. Yamamoto, N. A. Noble, A. H. Cohen et al., “Expression of
transforming growth factor-𝛽 isoforms in human glomerular
diseases,” Kidney International, vol. 49, no. 2, pp. 461–469, 1996.

[45] T. M. Coimbra, J. Carvalho, A. Fattori, C. G. A. Da Silva, and
J. J. Lachat, “Transforming growth factor-𝛽 production during
the development of renal fibrosis in rats with subtotal renal
ablation,” International Journal of Experimental Pathology, vol.
77, no. 4, pp. 167–173, 1996.

[46] R. E. Gilbert, A. Cox, L. L. Wu et al., “Expression of trans-
forming growth factor-𝛽1 and type IV collagen in the renal

tubulointerstitium in experimental diabetes: effects of ACE
inhibition,” Diabetes, vol. 47, no. 3, pp. 414–422, 1998.

[47] C. Hill, A. Flyvbjerg, H. Grønbæk et al., “The renal expression
of transforming growth factor-𝛽 isoforms and their receptors in
acute and chronic experimental diabetes in rats,”Endocrinology,
vol. 141, no. 3, pp. 1196–1208, 2000.

[48] S. J. Shankland, J. Pippin, R. H. Pichler et al., “Differen-
tial expression of transforming growth factor 𝛽-isoforms and
receptors in experimental membranous nephropathy,” Kidney
International, vol. 50, no. 1, pp. 116–124, 1996.

[49] I. S. Park, H. Kiyomoto, S. L. Abboud, and H. E. Abboud,
“Expression of transforming growth factor-beta and type IV
collagen in early streptozotocin-induced diabetes,” Diabetes,
vol. 46, no. 3, pp. 473–480, 1997.

[50] W. A. Border and N. A. Noble, “TGF-𝛽 in kidney fibrosis: a
target for gene therapy,” Kidney International, vol. 51, no. 5, pp.
1388–1396, 1997.

[51] K. Sharma, Y. Jin, J. Guo, and F. N. Ziyadeh, “Neutralization of
TGF-𝛽 by anti-TGF-𝛽 antibody attenuates kidney hypertrophy
and the enhanced extracellular matrix gene expression in STZ-
induced diabetic mice,” Diabetes, vol. 45, no. 4, pp. 522–530,
1996.

[52] F. N. Ziyadeh, B. B. Hoffman, D. C. Han et al., “Long-term
prevention of renal insufficiency, excessmatrix gene expression,
and glomerular mesangial matrix expansion by treatment with
monoclonal antitransforming growth factor-beta antibody in
db/db diabetic mice,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 97, no. 14, pp. 8015–
8020, 2000.

[53] L.-J. Ma, S. Jha, H. Ling, A. Pozzi, S. Ledbetter, and A. B. Fogo,
“Divergent effects of low versus high dose anti-TGF-𝛽 antibody
in puromycin aminonucleoside nephropathy in rats,” Kidney
International, vol. 65, no. 1, pp. 106–115, 2004.

[54] X.-M. Meng, X. R. Huang, J. Xiao et al., “Diverse roles of TGF-
𝛽 receptor II in renal fibrosis and inflammation in vivo and in
vitro,” Journal of Pathology, vol. 227, no. 2, pp. 175–188, 2012.

[55] A. B. Kulkarni, C.-G. Huh, D. Becker et al., “Transforming
growth factor 𝛽1 null mutation in mice causes excessive inflam-
matory response and early death,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 90, no.
2, pp. 770–774, 1993.

[56] J. C. Marie, D. Liggitt, and A. Y. Rudensky, “Cellular mecha-
nisms of fatal early-onset autoimmunity inmice with the T cell-
specific targeting of transforming growth factor-𝛽 receptor,”
Immunity, vol. 25, no. 3, pp. 441–454, 2006.

[57] M. O. Li, S. Sanjabi, and R. Flavell, “Transforming growth
factor-𝛽 controls development, homeostasis, and tolerance
of T cells by regulatory T cell-dependent and -independent
mechanisms,” Immunity, vol. 25, no. 3, pp. 455–471, 2006.

[58] W. Chen, W. Jin, M. Cook, H. L. Weiner, and S. M. Wahl, “Oral
delivery of group A streptococcal cell walls augments circu-
lating TGF-𝛽 and suppresses streptococcal cell wall arthritis,”
Journal of Immunology, vol. 161, no. 11, pp. 6297–6304, 1998.

[59] Y. X. Jin, L. Y. Xu, H. Guo, M. Ishikawa, H. Link, and B.-
G. Xiao, “TGF-beta1 inhibits protracted-relapsing experimental
autoimmune encephalomyelitis by activating dendritic cells,”
Journal of Autoimmunity, vol. 14, no. 3, pp. 213–220, 2000.

[60] C. A. Piccirillo, Y. Chang, and G. J. Prud’homme, “TGF-
𝛽1 somatic gene therapy prevents autoimmune disease in
nonobese diabetic mice,” Journal of Immunology, vol. 161, no. 8,
pp. 3950–3956, 1998.



10 Mediators of Inflammation

[61] X. R. Huang, A. C. K. Chung, X. J. Wang, K. N. Lai, and H. Y.
Lan, “Mice overexpressing latent TGF-𝛽1 are protected against
renal fibrosis in obstructive kidney disease,” American Journal
of Physiology—Renal Physiology, vol. 295, no. 1, pp. F118–F127,
2008.

[62] I.-M. Chung, J. Kim, Y. K. Pak et al., “Blockade of TGF-𝛽 by
catheter-based local intravascular gene delivery does not alter
the in-stent neointimal response, but enhances inflammation in
pig coronary arteries,” International Journal of Cardiology, vol.
145, no. 3, pp. 468–475, 2010.

[63] Z. Mallat, A. Gojova, C. Marchiol-Fournigault et al., “Inhi-
bition of transforming growth factor-𝛽 signaling accelerates
atherosclerosis and induces an unstable plaque phenotype in
mice,” Circulation Research, vol. 89, no. 10, pp. 930–934, 2001.

[64] E. Lutgens, M. Gijbels, M. Smook et al., “Transforming growth
factor-𝛽 mediates balance between inflammation and fibrosis
during plaque progression,” Arteriosclerosis, Thrombosis, and
Vascular Biology, vol. 22, no. 6, pp. 975–982, 2002.

[65] A.-K. L. Robertson, M. Rudling, X. Zhou, L. Gorelik, R. A.
Flavell, and G. K. Hansson, “Disruption of TGF-𝛽 signaling
in T cells accelerates atherosclerosis,” The Journal of Clinical
Investigation, vol. 112, no. 9, pp. 1342–1350, 2003.

[66] W. Chen, W. Jin, N. Hardegen et al., “Conversion of Peripheral
CD4+CD25− Naive T Cells to CD4+CD25+ Regulatory T Cells
by TGF-beta Induction of Transcription Factor Foxp3,” The
Journal of ExperimentalMedicine, vol. 198, no. 12, pp. 1875–1886,
2003.

[67] S. G. Zheng, J. D. Gray, K. Ohtsuka, S. Yamagiwa, andD. A.Hor-
witz, “Generation ex vivo of TGF-beta producing regulatory T
cells fromCD4+CD25- precursors,”The Journal of Immunology,
vol. 169, no. 8, pp. 4183–4189, 2002.

[68] J. B. Wing and S. Sakaguchi, “Foxp3+ T
𝑟𝑒𝑔

cells in humoral
immunity,” International Immunology, vol. 26, no. 2, pp. 61–69,
2014.

[69] T. Barhoumi, D. A. Kasal, M. W. Li et al., “T Regulatory
lymphocytes prevent angiotensin II-induced hypertension and
vascular injury,” Hypertension, vol. 57, no. 3, pp. 469–476, 2011.

[70] D. Mahajan, Y. Wang, X. Qin et al., “CD4+CD25+ regulatory T
cells protect against injury in an innatemurinemodel of chronic
kidney disease,” Journal of the American Society of Nephrology,
vol. 17, no. 10, pp. 2731–2741, 2006.

[71] D. Wolf, K. Hochegger, A. M. Wolf et al., “CD4+CD25+
regulatory T cells inhibit experimental anti-glomerular base-
ment membrane glomerulonephritis in mice,” Journal of the
American Society of Nephrology, vol. 16, no. 5, pp. 1360–1370,
2005.

[72] Q. Xing, H. Su, J. Cui, and B.Wang, “Role of treg cells and TGF-
𝛽1 in patients with systemic lupus erythematosus: a possible
relation with lupus nephritis,” Immunological Investigations, vol.
41, no. 1, pp. 15–27, 2012.

[73] Q. Xing, B. Wang, H. Su, J. Cui, and J. Li, “Elevated Th17 cells
are accompanied by FoxP3+ Treg cells decrease in patients with
lupus nephritis,” Rheumatology International, vol. 32, no. 4, pp.
949–958, 2012.


