
metastasis. Aberrant MET activation results from autocrine 
or paracrine mechanisms due to overexpression of HGF 
and/or MET or from a ligand-independent mechanism 
caused by activating mutations or amplification of MET. 
The literature provides compelling evidence for the role 
of MET signaling in cancer development and progression. 
The finding that cancer cells often use MET activation to 
escape therapies targeting other pathways strengthens 
the argument for MET-targeted therapeutics. Diverse 
strategies have been explored to deactivate MET signaling, 
and compounds and biologics targeting the MET pathway 
are in clinical development. Despite promising results 
from various clinical trials, we are still waiting for true 
MET-targeted therapeutics in the clinic. This review will 
explore recent progress and hurdles in the pursuit of MET-
targeted cancer drugs and discuss the challenges in such 
development.
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Core tip: Aberrant activation of MET receptor tyrosine kinase 
signaling is frequently observed in many human cancers. 
Such activation not only affects cancer development and 
progression, but it also contributes to resistance against 
other cancer drugs. The inhibition of MET signaling is an 
attractive approach for cancer intervention, and pursuit 
of MET-targeted cancer therapeutics is underway. Even 
though promising results have been reported from various 
clinical trials, many challenges remain to be addressed 
before and even after the arrival of such drugs in the clinic. 
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Abstract
MET (MNNG HOS transforming gene) is one of the receptor 
tyrosine kinases whose activities are frequently altered in 
human cancers, and it is a promising therapeutic target. 
MET is normally activated by its lone ligand, hepatocyte 
growth factor (HGF), eliciting its diverse biological activities 
that are crucial for development and physiology. Alteration 
of the HGF-MET axis results in inappropriate activation of a 
cascade of intracellular signaling pathways that contributes 
to hallmark cancer events including deregulated cell 
proliferation and survival, angiogenesis, invasion, and 

World J Biol Chem 2015 May 26; 6(2): 16-27
 ISSN 1949-8454 (online)

© 2015 Baishideng Publishing Group Inc. All rights reserved.

World Journal of
Biological ChemistryW J B C

16WJBC|www.wjgnet.com May 26, 2015|Volume 6|Issue 2|

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.4331/wjbc.v6.i2.16



Zhang YW. MET-targeted cancer therapeutics development

INTRODUCTION
It has been three decades since the discoveries of 
MET (MNNG HOS transforming gene) and its ligand, 
hepatocyte growth factor [HGF; also known as 
scatter factor (SF)][1-5]. MET, encoded by the proto-
oncogene MET on chromosome 7 (7q31), is a receptor 
tyrosine kinase (RTK). Under physiological conditions, 
it is stimulated by HGF, mainly through a paracrine 
mechanism, which triggers a cascade of intracellular 
signaling networks. The signaling driven by this ligand-
receptor pair is involved in mitogenesis, motility, 
and morphogenesis, and it is essential for many 
developmental and physiological processes[6-8]. Like that 
of many RTKs, MET signaling is tightly regulated, and its 
timely attenuation is crucial for proper regulation of its 
activities[9-11]. Inappropriate activation of this signaling 
cascade can cause hallmark cancer events that include 
deregulated cell proliferation, survival, transformation, 
angiogenesis, and invasion[12,13]. Several different 
mechanisms can lead to an aberrant MET signaling, 
including autocrine or paracrine activation resulting from 
overexpression of MET and or of HGF, and a ligand-
independent mechanism caused by activating mutations 
or amplification of the MET gene[12]. 

Alteration of MET signaling has been reported in 
almost all types of human cancers and is often associated 
with poor prognosis[7,12] (http://www.vai.org/met/). The 
evidence provides a compelling rationale for targeting 
this pathway, and the rationale is strengthened by 
the fact that cancer cells often use the HGF-MET 
axis to escape therapies targeting other RTKs or sign-
aling molecules[12,14-16]. Cancer treatment has been 
revolutionized by targeted therapy since the success 
of Gleevec (imatinib) for treating chronic myelogenous 
leukemia by inhibiting BCR-Abl tyrosine kinase activity[17]. 
Other targeted therapies include drugs targeting 
epidermal growth factor receptor (EGFR) and vascular 
endothelial growth factor receptor (VEGFR)[11]. Targeted 
therapies are the trend in cancer treatment, even though 
not all such drugs have lived up to their promise, in 
part due to the complexity of the cancer genome[18-21]. 
Relative to how much we know about the molecular 
mechanisms of cancers and the numbers of suitable 
therapeutic targets that have been identified, the 
targeted therapies available in the clinic are quite limited. 
MET is one of the targetable molecules that are still 
lacking effective drugs for cancer treatment. 

Over the years, diverse strategies have been explored 
to inhibit MET pathway activation, from blocking either 
ligand access or receptor dimerization to inhibiting MET 
kinase activity or preventing downstream signaling 
activation[12,22,23]. These efforts have led to the discovery 
of many MET inhibitors possessing distinct specificities 
and efficacies (Figure 1). There are hundreds of clinical 
trials aiming to bring MET inhibitors from the bench to 
bedside[12,23-25] (https://ccrod.cancer.gov/confluence/
display/CCRHGF/Home). While many MET inhibitor 
trials have shown promising results, various challenges 

remain. For instance, which patient will benefit from MET-
targeted therapeutics and what companion diagnostics 
will be needed for patient stratification? How can MET-
targeted therapeutics be effectively used for tailoring a 
patient-oriented treatment plan?

MET SIGNAL TRANSDUCTION AND 
ACTIVITIES
MET is normally expressed in cells of epithelial or 
endothelial origin, while its ligand HGF is predominantly 
produced by mesenchymal cells[26]. This decoupling 
enables a tight regulation of MET signaling in tissues 
and cells where its activity is required, through the 
response of MET to gradients of HGF. When HGF 
binds, the MET receptor undergoes dimerization and a 
conformational change, leading to phosphorylation of its 
key tyrosine residues and recruitment of downstream 
signaling molecules. This recruitment triggers activation 
of important intracellular signaling pathways such as 
Ras-MAPK, PI3K-AKT, Src, STAT3, PLC-γ or Cdc42/
Rac. Such activation is either mediated by scaffolding 
adaptors like Gab1 and Grb2 or by direct binding of 
signaling molecules to the multisubstrate-docking 
sites in the MET cytoplasmic region[27-30]. MET signaling 
is subject to timely attenuation that is regulated by 
several mechanisms, including phosphatase-mediated 
dephosphorylation, receptor turnover, and negative 
feedback inhibition[27,31-34]. Such regulation determines 
the duration and threshold of the MET signal output, 
how cells will respond, and what biological activities will 
be induced.

Diverse biological activities, from cell proliferation 
and survival to cell motility and invasion, can be 
induced by MET signaling, but it is still vague how 
the overall response to this signaling is produced. For 
instance, under what circumstances stimulated cells 
will proliferate rather than migrate or invade. Among 
many signaling pathways downstream of MET, activation 
of Ras-MAPK/ERK is crucial for cell proliferation; PI3K-
Akt contributes more to cell survival; Cdc42/Rac 
activation induces cell motility; and STAT3 has been 
implicated in cell transformation and tubulogenesis[6-8,34]. 
Nonetheless, these intracellular pathways often have 
crossover activities, and they interplay to carry out many 
complicated biological roles driven by MET, such as 
invasion and branching morphogenesis[6-8,34]. The signal 
output and cellular response can be further complicated 
by crosstalk between the HGF-MET axis and many other 
cell-surface receptors or signaling pathways[12,34]. 

MET-mediated biological activities are part of many 
developmental and physiological processes. For example, 
the HGF-MET axis is essential for the developing 
placenta, embryonic liver, and limb muscles during 
embryogenesis[35-37], and it may be involved in the early 
development of the lungs, kidneys, and mammary 
glands[38-42]. HGF promotes formation of blood vessels and 
lymphatic vessels[43-45], and it plays a role in developing 
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neurons[46,47]. Physiologically, MET signaling is indispensable 
for liver regeneration and repair[48-50] and for skin wound 
healing[51]; it also contributes to insulin secretion and glucose 
metabolism[52,53]. A significant role of this signaling axis in 
the regulation of stem cell activity has also been found[54]. 
HGF can stimulate the migration and differentiation of 
mesenchymal stem cells (MSCs) while inhibiting their 
proliferation[55,56], and it can induce differentiation of bone 
marrow stem cells into hepatocytes[57,58]. 

MET SIGNALING IN CANCERS
The link of MET to cancer can be traced back thirty 
years. MET was originally cloned from a carcinogen-
induced chromosome rearrangement in a human 
osteosarcoma cell line as part of the TPR-MET fusion[1,59], 
an oncogenic product which was also observed in 
human gastric carcinoma[60]. The most decisive evidence 
of MET signaling in cancers came from the identification 
of its germline and somatic mutations in papillary renal 
cell carcinomas (RCC)[61]. These mutations mainly 
locate in the tyrosine kinase (TK) domain of MET, 
resulting in constitutive activation of its signaling[62]. 
Such mutations have also been sporadically identified in 
childhood hepatocellular carcinoma (HCC) and head neck 
squamous cell carcinoma (HNSCC)[63,64]. Interestingly, 
MET mutations identified in other human solid cancers 
(such as lung and gastric cancers, and melanoma and 
thyroid carcinomas) are mostly in the extracellular 
semaphorin (Sema) domain and the juxtamembrane (JM) 
domain[65-69]. In lung adenocarcinoma, it is estimated 

that 4% of the tumors have exon 14 skipping in the 
MET mRNA due to splicing site mutations, and thus have 
JM-domain defect[20]. These non-TK-domain mutations 
likely affect ligand binding or CBL-mediated turnover 
of MET, thereby altering MET signal transduction. 
Besides genetic abnormalities, MET signaling is mostly 
altered through a paracrine or autocrine activation 
mechanism by inappropriate increases in MET and/or 
HGF expression. Evidence of such alterations has been 
documented in almost all types of human cancers, and 
high MET and HGF expressions are often correlated 
with invasive phenotype and poor prognosis[7,12]. 
Alternatively, aberrant MET activation in cancer cells can 
be the result of amplification of the MET gene, which 
is found in gastric, esophageal, lung, colorectal, and 
breast cancers[70-76]. 

Another important aspect of MET signaling in 
cancers emerged from studies of drug resistance. 
Activation of the HGF-MET axis has become one of the 
most crucial mechanisms that cancer cells adapt to 
bypass therapies targeting other oncogenic pathways. 
The first such evidence came from the analysis of 
non-small-cell lung cancer (NSCLC) patients treated 
with gefitinib (an EGFR inhibitor), which revealed 
amplification of MET as a mechanism for gefitinib 
resistance[14]. This mechanism accounts for acquired 
resistance to EGFR-targeted therapies (gefitinib and 
erlotinib) in about 5% of NSCLCs that harbor EGFR-
activating mutations and are primarily sensitive to the 
treatment[77-80]. MET amplification is also associated 
with acquired resistance to cetuximab or panitumumab 
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(both EGFR-targeted monoclonal antibodies) in patients 
with metastatic colorectal cancer (mCRC)[81]. An 
alternative mechanism of resistance to EGFR-targeted 
therapies in lung cancer via MET signaling may be 
through up-regulation of HGF expression[82-84]. This 
mechanism could have a widespread impact on drug 
resistance to various anticancer kinase inhibitors[16]. 
For instance, stroma-derived HGF contributes to 
innate and acquired resistance to vemurafenib (RAF 
inhibitor) treatment of melanomas[15], and it may trigger 
resistance to ALK inhibitors in EML4-ALK lung cancer 
cells[85]. MET activation also confers tumor resistance 
to chemotherapy or radiotherapy.

Aberrant MET activation can elicit a multitude of 
biological consequences, ultimately leading to tumo-
rigenesis and metastasis[6-8,12]. It causes oncogenic 
transformation and provides growth and survival signals 
to cancer cells by overactivating numerous downstream 
pathways (RAS-MAPK, PI3K-AKT, and STAT3, to name 
a few). In animal models, overexpression of MET in 
the liver results in HCC[86], while targeted expression 
of mutant MET in mammary epithelium leads to the 
development of breast cancers[87,88]. In parallel, MET 
causes invasive behavior of cancer cells, leading to 
metastasis; this is achieved by its abilities to up-regulate 
multiple extracellular matrix-degrading proteases, 
inducing the epithelial-to-mesenchymal transition and 
activating cell-mobilizing machinery[6-8,12]. The HGF-
MET axis has also been implicated in the regulation 
of cancer stem cell activities in colon cancer and 
glioblastoma[89-91]. Besides direct contribution to the 
pathogenesis of cancer cells, MET signaling can enhance 
angiogenesis to strengthen tumor-supporting circuitry 
for promoting growth and survival[43,92,93]. 

DEVELOPMENT OF MET-TARGETED 
THERAPEUTICS: THE PROMISE
The indisputable role of MET signaling in cancer has 
made it a promising target for cancer intervention. 
Many approaches have been taken to try to effectively 
inhibit MET signaling activation in cancer cells[12,22-23]. 
Resulting from these efforts is a spectrum of targeted 
inhibitors having diverse biochemical and biological 
properties, including neutralizing antibodies to MET 
or HGF, small-molecule tyrosine kinase inhibitors 
(TKIs) of MET, and others (Figure 1). To date, more 
than two dozen MET-targeted inhibitors are in clinical 
development, with hundreds of trials conducted or 
underway, either as a single agent or in combination 
with other cancer drugs[12,23-25]. 

Ficlatuzumab (AV-299), rilotumumab (AMG102), and 
TAK-701 are humanized anti-HGF monoclonal antibodies 
that block HGF-dependent paracrine/autocrine MET 
activation. Ficlatuzumab, as a single agent for patients 
with advanced solid tumors, showed a partial benefit 
of stable disease in phase Ⅰ trials. Favorable responses 
were observed in a subgroup of NSCLC patients who 

had low MET expression when ficlatuzumab was used 
in combination with an EGFR inhibitor in a phase Ⅱ 
study[94-97]. Patients with refractory advanced solid 
tumors had a response of stable disease when treated 
with rilotumumab alone[98]. Recent phase Ⅱ clinical 
trials of rilotumumab in combination with chemotherapy 
extended progression-free survival (PFS) in patients with 
gastric cancer[99]. A benefit of combining rilotumumab 
with panitumumab was reported in a randomized 
phase Ⅱ trial of patients with mCRC who carry wild-
type KRAS[100]. TAK-701, which has been tested in a 
phase Ⅰ trial, inhibits HGF-mediated resistance to gefitinib 
in an NSCLC tumor model[101,102]. 

Unlike HGF blockers, onartuzumab (MetMAb, a 
humanized monovalent antibody to MET) neutralizes MET 
by inhibiting HGF binding and receptor dimerization[103,104]. 
In a phase Ⅰ dose-escalation study, onartuzumab, as a 
single agent and in combination with bevacizumab, was 
well tolerated in patients with advanced solid tumors[105], 
while in a preclinical model it enhanced the antitumor 
efficacy of anti-VEGF biologics[106]. Several phase Ⅱ/Ⅲ 
trials of onartuzumab in combination with bevacizumab 
and or chemotherapeutic agents have been initiated for 
treating cancers such as mCRC, glioblastoma, NSCLC, 
breast cancer, and gastric cancer. In a randomized phase 
Ⅱ trial, onartuzumab and erlotinib in combination had 
a favorable outcome in MET-positive NSCLC patients, 
with MET expression of 2+ or 3+ scores based on 
immunohistochemical (IHC) staining[107]. This group of 
patients had a significant improvement of PFS (median 
2.9 mo vs 1.5 mo) and overall survival (OS; median 
12.6 mo vs 3.8 mo) relative to the placebo plus erlotinib 
controls. However in the MET-negative group, a worse OS 
was observed relative to the control group[107]. This result 
has led to a phase Ⅲ trial of onartuzumab plus erlotinib 
in MET-positive advanced NSCLC patients[108]. ABT-700 
and LY2875358, two other antagonist antibodies against 
MET, are also being evaluated in early-phase trials[109,110]. 

While the anti-HGF and anti-MET biologics provide 
unique target specificity and long-lasting efficacy, the 
majority of potent MET inhibitors in clinical development 
are small-molecule TKIs. These are either selective or 
non-selective inhibitors of MET, and they mostly compete 
for the ATP-binding pocket in the TK-domain. Examples 
of selective inhibitors include AMG337, EMD1214063 
(MSC2156119J), INC280 (INCB028060), and volitinib 
(HMPL-504); no significant safety concerns have been 
reported from early-phase studies of these oral inhi-
bitors[111-114]. EMD1214063 is potent in suppressing 
the activities of both wild-type MET and its activating 
mutants in preclinical models[112,115,116], and ongoing 
phase Ⅰ/Ⅱ trials will evaluate its safety/efficacy in 
NSCLC and HCC. Several phase Ⅰ/Ⅱ trials of INC280 are 
recruiting patients with cancers including advanced cases 
of HCC, NSCLC, glioblastoma, or melanoma. A global 
phase Ⅱ study of volitinib has been initiated for papillary 
RCC[114]. PF-04217903, another potent selective TKI of 
MET, has been discontinued from trials due to a strategic 
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development decision[117]. 
Non-selective MET TKIs represent a different class 

of blockers; among them are crizotinib, cabozantinib, 
and foretinib. Crizotinib (Xalkori, PF-02341066), 
which was primarily designed for MET inhibition and 
displayed antitumor effects in MET-amplified NSCLC, is 
a multikinase inhibitor of MET, ALK, and ROS1[118-120]. 
Crizotinib is FDA-approved for treatment of ALK-fusion 
NSCLC patients, and it has shown antitumor activity 
in advanced ROS1-rearranged NSCLC[120]. A durable 
response to crizotinib was reported in an NSCLC patient 
with MET amplification but no ALK rearrangement[121]. 
Patients with MET-amplified esophagogastric adeno-
carcinoma or recurrent glioblastoma have also shown 
clinical responses to crizotinib treatment[122,123]. A cross-
tumoral phase Ⅱ trial of crizotinib has been launched in 
patients with locally advanced and/or metastatic tumors 
that carry ALK and/or MET alteration. Ongoing trials 
also include crizotinib in combination with erlotinib or 
other inhibitors.

Cabozantinib (XL184) inhibits multiple molecular 
targets, including MET, VEGFR2, RET, AXL KIT, and 
FLT3, and it suppresses tumor growth, angiogenesis 
and metastasis[124]. Cabozantinib (Cometriq) was app-
roved by the FDA as an orphan product for treating 
medullary thyroid cancer (MTC) in late 2012. A phase 
III trial for this rare human cancer showed a response 
rate of 28% for cabozantinib versus none for placebo 
(median PFS of 11.2 mo vs 4.0 mo), most likely due to 
its inhibitory activity on RET; it showed significant but 
manageable toxicity[125]. Cabozantinib phase Ⅱ trials 
displayed clinical activity in metastatic CRPC, resulting 
in improvement in PFS, bone scans, and pain, and a 
reduction of soft tissue lesions[126,127]. Clinical trials of 
cabozantinib are under way for several other cancer 
types, including NSCLC, glioblastoma, breast, ovarian, 
and urothelial cancers. Its combination with erlotinib 
has been tested in advanced NSCLC in an early-phase 
trial[128]; many other combination studies involving 
cabozantinib are under way. 

Foretinib (XL880, EXEL-2880, and GSK1363089) is a 
multikinase inhibitor targeting MET, VEGFR2, RON, TIE-2, 
PDGFRβ, KIT, FLT3, and AXL. It has shown antitumor 
activity in xenograft tumors and in a phase Ⅰ trial of 
metastatic or unresectable solid tumors[129,130]. With a 
manageable toxicity profile, it demonstrated in a phase 
Ⅱ trial a high response rate in advanced papillary RCC 
patients who had germline MET mutations[131]. Phase Ⅱ 
trials are studying foretinib in metastatic gastric cancer, 
recurrent/metastatic HNSCC, and triple-negative breast 
cancer. Phase Ⅰ/Ⅱ trials also test combinations of 
foretinib with erlotinib against locally advanced/metastatic 
NSCLC or with lapatinib against HER2-overexpressing 
metastatic breast cancer. Other non-selective TKIs of 
MET include amuvatinib (MP470), golvatinib (E7050), 
LY2801653, MGCD265, and MK-2461, all of these inhibit 
both MET and other targets[132-136]. 

Tivantinib (ARQ197), unlike other MET TKIs, is a 

non-ATP-competitive small-molecule inhibitor of MET 
that has a broad spectrum of antitumor activity[137]. It 
selectively binds to inactive/unphosphorylated MET and 
inhibits its autophosphorylation[138]. Clinical development 
of tivantinib is being actively pursued. Examples 
from completed phase Ⅱ trials include tivantinib as a 
second-line treatment for advanced HCC, as well as 
its combination with erlotinib for previously treated 
NSCLC[139,140]. These results have led to the launches 
of phase Ⅲ trials of tivantinib either as a monotherapy 
or in combination, among many other ongoing clinical 
studies. 

CHALLENGES OF MET-TARGETED 
THERAPEUTICS 
Despite promising results, there have also been 
setbacks to MET-targeted therapeutics development, 
and numerous challenges remain to be addressed. 
For instance, rilotumumab in several phase Ⅱ trials 
showed no or limited efficacy in patients with metastatic 
RCC, castration-resistant prostate cancer (CRPC), 
or recurrent glioblastoma or ovarian cancer[141-144]. 
Foretinib as a single agent lacked efficacy in unselected 
patients with metastatic gastric cancer in a phase Ⅱ 
study[145]. The COMET-1 phase Ⅲ trial of cabozantinib 
in men with metastatic CRPC failed to meet its primary 
endpoint of demonstrating a statistically significant 
improvement of overall survival relative to prednisone 
treatment[146]. Further, the MARQUEE phase Ⅲ trial of 
tivantinib plus erlotinib and the MetLung phase Ⅲ trial 
of onartuzumab plus erlotinib in patients with advanced 
NSCLC were terminated following independent review 
board examination. Both trials failed to demonstrate 
any meaningful efficacy of combination compared 
with erlotinib alone[25,108,147]. Also, recent studies have 
demonstrated that tivantinib has cytotoxic activity 
independent of MET[148,149], raising the question of 
whether the clinical antitumor efficacy of this selective 
MET inhibitor was solely due to MET inhibition. 

Such setbacks lead to the question of whether those 
clinical trials targeted the right groups of cancer patients 
for MET inhibition. One major challenge in patient 
selection is a lack of reliable biomarkers for companion 
diagnosis. IHC staining of MET has been widely used 
for assessing its protein status in tumors; patients with 
MET-IHC-positive gastric cancer displayed the greatest 
survival benefit from rilotumumab in combination with 
chemotherapy[99]. However, such staining unexpectedly 
failed in selecting patients for the MetLung phase Ⅲ 
trial, even though this biomarker was able to identify 
responders (MET-IHC score 2+ or 3+) for onartuzumab 
plus erlotinib treatment in a phase Ⅱ study[25,107,108,150]. 
It remains to be seen why MET-IHC biomarker failed in 
the latter trial and whether improvements in sensitivity 
and specificity would make it more reliable for patient 
stratification. 

Other potential biomarkers include MET mutations 
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and MET amplification (gains in gene copy number or 
chromosome 7 polysomy). Germline MET TK-domain 
mutations are highly predictive for papillary RCC patients’ 
response to foretinib treatment[131]. Nonetheless, MET 
mutation as a biomarker in general has its limitations, 
because a majority that are found in broader cancers 
are non-TK-domain mutations[20,65-69] whose value 
in predicting response to MET inhibitors remains 
undetermined. Fluorescence in-situ hybridization (FISH) 
of MET has been evaluated for a link between MET 
amplification and patient response in MET inhibitor 
trials[99,111,122,131,145,150]. Even though the sample sizes 
were mostly small for interpretation, patients with MET-
amplified tumors usually have better response, indicating 
the value of MET-FISH as a predictive biomarker. The 
power of this biomarker will be further defined when 
results from several ongoing trials enrolling MET-
amplified cancer patients become available. In addition, 
serum/plasma HGF and soluble MET concentrations have 
also been used in exploratory biomarker analyses[95,99,150]. 

While improved biomarkers are vital for better design 
and success of MET inhibitor trials, developing the proper 
therapeutic strategy to maximize drug efficacy in the 
clinic is equally important. The latter can be challenging, 
because alterations of MET signaling found in the 
majority of human cancers are not activating mutations 
or amplifications of MET, and the alterations are often 
accompanied by the activation of other pathways[7,12]. The 
use of MET-targeted drugs as a monotherapy has its own 
merit if MET alteration is the oncogenic driver; however, 
it might not perform well when different oncogenic 
pathway(s) is co-activated. The existence of crosstalk 
between MET and other pathways such as EGFR and 
VEGFR also complicates the outcome of MET-targeted 
monotherapy, providing further rationale for drug 
combination[12,34]. Clinical trials of various combination 
therapies have aimed to simultaneously inhibit MET 
and other molecular targets. However, determining 
what drug combination is best suited to which patient 
in the clinic demands a comprehensive platform of 
multiplexed molecular diagnoses. On the other hand, 
several targeted therapies, including those of EGFR 
and B-RAF, may theoretically benefit from combination 
with MET inhibitors to prevent MET signaling-mediated 
drug resistance[14-16,77-84]. Such combination strategies, 
nevertheless, are practically challenging because this 
resistance mechanism only accounts for a fraction of the 
resistant cases. 

CONCLUSION
MET signaling is highly important in cancer malignancy, 
making it a promising molecular target for cancer 
intervention. The development of MET-targeted drugs is 
in full gear at multiple fronts, but numerous challenges 
remain. The failure of several late-stage clinical trials has 
put such development under scrutiny, but encouraging 
results are coming from other trials and new develo-
pments. Future trials should also put the activity of 

MET inhibitors on cancer invasion and metastasis in 
perspective. Inevitably, drug resistance will be expected 
for MET-targeted therapeutics, and such events have 
been observed in in vivo studies[151-154]. To enhance the 
performance of MET inhibition and to prevent cross-
drug resistance, engineering bi-specific or multi-specific 
antibodies against MET and other cell surface receptors 
may provide a solution[155-157]. Many clinical benefits 
can be expected from the eventual approval of MET-
targeted drugs.
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