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Abstract
Over the last decades, nitric oxide (NO) has been definitively 
recognised as one of the key players involved in immunity 
and inflammation. NO generation was originally described in 

activated macrophages, which still represent the prototype 
of NO-producing cells. Notwithstanding, additional cell 
subsets belonging to both innate and adaptive immunity 
have been documented to sustain NO propagation by means 
of the enzymatic activity of different nitric oxide synthase 
isoforms. Furthermore, due to its chemical characteristics, 
NO could rapidly react with other free radicals to generate 
different reactive nitrogen species (RNS), which have been 
intriguingly associated with many pathological conditions. 
Nonetheless, the plethora of NO/RNS-mediated effects still 
remains extremely puzzling. The aim of this manuscript is to 
dig into the broad literature on the topic to provide intriguing 
insights on NO-mediated circuits within immune system. 
We analysed NO and RNS immunological clues arising from 
their biochemical properties, immunomodulatory activities 
and finally dealing with their impact on different pathological 
scenarios with far prompting intriguing perspectives for their 
pharmacological targeting.
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Core tip: Nitric oxide (NO) is a diffusible molecule, which 
is responsible for many physiological and pathological 
conditions. In this work we described some of its chemical 
characteristics and how it is generated. More, NO could 
rapidly react with other free radicals to generate different 
reactive nitrogen species (RNS). Indeed, we addressed 
the contribution of NO/RNS in different immune cells and 
how these reactive molecules are pivotal to control cellular 
responses focusing on inflammatory settings.
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INTRODUCTION
Nitric oxide (NO) is a diffusible molecule, which is 
involved in many different physiological and pathological 
conditions. It modulates blood flow[1,2], neural activity[3] 
and immune defence mechanism[4]. 

In biological systems, NO is mainly synthesised enzy
matically starting from Largine according to the following 
chemical reaction:

This reaction is catalysed by three different 
enzymes, identified in the ‘90s, encoded by different 
genes with different localization, regulation, catalytic 
properties and inhibitor sensitivity, called respectively 
neuronal (nNOS or NOS1), inducible (iNOS or NOS2) 
and endothelial (eNOS or NOS3) nitric oxide synthase. 

Genomic organization is similar among these isoforms 
suggesting a common ancestral progenitor and is composed 
by a bidomains structure (an oxigenase domain at Nterm 
and a reductase one at Cterm) with a intervening calmodulin 
(CaM) binding region between the two[5]. Calmodulin is 
necessary for the activity of all these enzymes, even though 
Ca2+dependence of NO synthesis distinguishes the NOS 
isoforms, with nNOS and eNOS having a much higher Ca2+ 
requirement than iNOS. 

nNOS and eNOS are constitutively expressed among 
several cell types, including the endothelium, platelets, 
and neurons. Their function is mainly dependent on an 
intracellular calcium rise, even though other calcium 
independent mechanisms could impact on it, for example 
shear stress[6-10]. 

On the other hand iNOS is largely expressed only 
after induction by immunologic and inflammatory stimuli 
and its role in the direct protection against pathogens has 
been clearly demonstrated. For example, the requirement 
of iNOS for the eradication of Mycobacterium tuberculosis 
infection has been established[11] as well for other 
Listeria monocytogenes[12] and the protozoan parasite 
Leishmania major[13,14] in the '90s. Recent evidence has 
contributed to clarify mechanisms upon this immune 
response[1517].

A fourth enzyme has been more recently characterised 
in rat liver and named mithocontrial NO synthase or 
mtNOS[18,19]. This latter enzyme has been shown to be 
constitutively active, calcium dependent and ascribable 
for mitochondria homeostasis and bioenergetics. Indeed, 
it has been shown mainly by the group of Ghafourifar 
that activation of mtNOS upon chemotherapeutic drug 
administration induces oxidative and nitrative stress, with 

consequent apoptosis of cells[20,21].
NO is not only the product of NOS enzymes but it 

is also generated in tissues by either direct dispro
portionation or reduction of nitrite to NO under the 
acidic and highly reduced conditions occurring in 
disease states, such as ischemia[2224]. The biological 
significance of this alternative source of NO production 
consists in restoring physiological NO level when 
enzymatic production is uncoupled or dysregulated, as 
in atherosclerosis[25] or other inflammatory status[26].

NO AND RNS
Unlike reactive oxygen species (ROS), which are directed 
into the phagosome, NO is synthesised in the cytoplasm of 
the cell and diffuse rapidly across cell membrane[4]. Due to 
its chemical characteristics, NO could rapidly react with other 
free radicals such as O2

• to generate the highly reactive 
oxidant peroxinitrite (ONOO) and other reactive nitrogen 
species (RNS), which have been intriguingly associated with 
many pathological conditions such as chronic inflammation, 
atherosclerosis[27], diabetes[28], inflammatory bowel 
disease[29] and autoimmune diseases[30]. Peroxynitrite has 
multiple cytotoxic effects which are ascribable to aberrant 
generation of proteins, posttranslational modification 
(PTMs) of the existing ones, DNA damage, activation 
of poly(ADPribose), mitochondrial dysfunction and cell 
death thus widely affecting transcriptional regulation, gene 
expression and cell signalling[31,32]. 

Among the several RNS-induced modifications, the 
prevalent reaction is the coupling of a NO moiety with 
sulfhydryl groups on proteins, yielding Snitrosothiols. The 
most affected residue is tyrosine. Nowadays, the presence 
of nitrotyrosine is commonly accepted as a hallmark of 
in situ inflammation and is associated with many different 
pathologies, spacing from atherosclerosis, genetic disorders 
to cancer[3336]. However, NO alone is not capable of 
nitrating tyrosine thus the accumulation of 3nitrotyrosine 
is the reaction product of the other RNS[37]. Moreover, 
under inflammatory conditions, tyrosine nitration may be 
dependent on the activity of myeloperoxidase, secreted by 
monocytes and polymorphonuclear neutrophils[38].

The biological significance of such modified residues 
lied in altered protein degradation[39], modification in 
protein properties[40,41], resulting signalling[42] and many 
other phenomena[43].

Tyrosine is not the only amino acid that is affected 
by the presence of RNS. Indeed, most of the amino 
acids containing aromatic rings could react with RNS and 
ROS. Among these, modifications of tryptophan were 
highlighted. Initially, nitration of tryptophan residues in 
proteins was assessed by means of proteomic assays, 
such as decreased in tryptophan-associated fluorescence 
and mass spectrometry, and was associated with 
decreased functionality of modified proteins[44]. However, 
the majority of the studies so far was unable to detect 
nitrotryptophan derivatives in vivo due to the lack of 
good antibodies. This gap was recently filled by Ikeda 
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and collaborators, who developed an antibody specifically 
reactive with nitrated tryptophan residues[45]. This 
tool boosted the investigation of the presence of such 
modification in vivo. Ikeda and Yamakura in their studies 
identified 6-nitrotryptophan residues in extract of PC12 
cells, suggesting that NO production drives physiological 
processes, such as differentiation and morphological 
changes. These claims were further supported by similar 
consequences observed upon tyrosine modifications[4648].

NO, RNS AND INFLAMMATION 
NO has been generally recognised as one of the key players 
involved in immunity and inflammation. In infectious 
conditions, NO displays antiviral and antimicrobial activities, 
both cytotoxic (tissuedamaging) and cytoprotective 
(tissuepreserving), acting as either an immunostimulatory 
(proinflammatory) or immunosuppressive (antiinflam
matory) agent. Most of NOmediated immune effects 
have been demonstrated to be dependent on the 
activity of iNOS enzyme which, apart from releasing NO, 
provokes the depletion of local arginine (together with 
arginase) in macrophages or other host cells sustaining 
growth inhibition and death of the parasites[4]. Although 
it has been proposed that efficient pathogen killing 
require colocalization of iNOS with pathogencontaining 
compartments[49,50], the fact that NO can diffuse across 
cell membranes might allow for an antimicrobial activity at 
distance, even in those cases where NO acts in cells that 
do not express iNOS[51]. However, Olekhnovitch et al[52] 
have recently proposed a novel cooperative mechanism of 
collective NO production to sustain tissuewide immunity 
during infections. Indeed authors provide evidence that 
the diffusion of NO from numerous phagocytes at the site 
of infection promotes equally effective parasite killing in 
NOproducing cells and bystander cells[52]. 

Further more, over the last decades, several reports 
attempted to definitively clarify NO appointment in 
the immune system[4]. Nevertheless, the plethora of 
heterogeneous NOmediated responses precludes an 
univocal definition thus demanding additional investigations. 
Although NO activity mainly lies on its local spatio
temporal concentration, the phenotype and functional 
commitment of the immune cells, responsible for its 
generation, dramatically impact on its own activity. 
Additionally, given the intrinsic nature of this highly
diffusible uncharged gas, specific immune subsets 
become selective NOtargets even if not directly involved 
in its production.

This part of the review aims to provide intriguing 
spotlights on the role of NO in different immune cell 
subsets belonging to both innate and adaptive immunity.

Dogmatically, NO is produced by macrophages by 
means of iNOS activity which is transcriptionally primed 
by cytokines and microbial stimulation. The sustained 
generation of NO endows macrophages with cytostatic 
or cytotoxic activity against pathogens and tumour 
cells[53,54]. Although the production of NO by human 
macrophages remains controversial, growing evidence 

supports this notion providing data for the expression 
and activity of iNOS and eNOS isoforms in these cells[55].

Historically, macrophages were divided into two 
major categories (M1/M2) depending on their activation 
status and inflammatory attitude, even though this 
paradigm has been recently expanded to account for 
their enormous functional plasticity[56,57]. 

In 2000, Mills et al[58] ascertained a relevant metabolic 
discrepancy between M1/M2 subsets mainly due to a 
remarkable difference in arginine metabolism. Once 
differentiated, M1 or classically activated macrophages 
trigger Th1 immune response and secrete high amounts 
of NO to kill intracellular pathogens and to exert 
cytotoxicity towards tumour cells[59]. On the other side, 
M2 macrophages express high levels of arginaseI, 
which competes with iNOS for their common substrate 
Larginine, thus preventing NO generation[60].

It is thus clear that NO represents a remarkable 
hallmark of macrophage activation states in path
ological settings and that both macrophages and NO 
fulfil relevant and divergent roles in cancer biology. 
Mechanistically, it has been proposed that in the early 
stages of tumour progression, macrophages exploit high 
concentrations of NO and RNS to kill tumour cell clones. 
Later on, tumourreprogrammed macrophages produce 
low levels of NO/RNS, which in turn promote cancer 
growth and spreading.

Weiss et al[61] postulated that NO, produced by 
intratumoural macrophages, represents the crucial 
determinant for the antimetastatic potential of IL2/
α-CD40 immunotherapy. Conversely, iNOS expression 
and the coincident NO/RNS generation has been shown to 
contribute to the immunosuppressive attitude of myeloid
derived suppressor cells (MDSCs), a heterogeneous cell 
population associated with tumours[42,62,63].

The dichotomous activity of macrophagederived NO 
definitely mirrors the aforementioned functional plasticity 
of these cells in response to environmental cues. The 
multifaceted role of NO in cancer will be deeply scrutinise 
in the proper paragraph of this manuscript named “NO, 
RNS and cancer”.

NO represents a master regulator for the activity of 
other different immune subsets such as T lymphocytes, 
dendritic cells (DCs), natural killer cells (NKs) and 
mast cells. As for macrophages, NO potentially exhibits 
either positive or negative modulatory properties in all 
these subsets.

In cancer, it has been postulated that high con
centration of NO impairs T cell functions by blocking the 
signalling cascade downstream of IL2 binding the IL2 
receptors[64]. On the other side, lower concentrations of 
NO have been shown to promote Th1 differentiation by 
selectively upregulating IL12 receptor beta 2[65]. 

More recently, a cogent paper demonstrated that NO 
produced by iNOS in activated T cells impairs TH17 cell 
differentiation trough the nitration of tyrosine residues 
in RORγt thus regulating IL-17 expression at the trans-
criptional level[66]. An interesting report designated NO 
as the driving force for the generation of a new subset of 
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the mechanism of NO production in NK cells needs to 
be clarified. It was proposed that the endogenous NO 
generation by active eNOS isoform prevents NK cells 
from activationinduced apoptosis, thereby maintaining 
cell fitness[85].

Mast cells (MCs) are widely distributed throughout the 
extravascular area in the body where they play versatile 
roles dealing with innate immunity, IgEmediated allergy 
and inflammation. Indeed, they promote neutrophil 
phagocytosis, lymph node hyperplasia and can directly 
phagocytise and kill bacteria[86].

Data concerning NO/RNS generation by either 
rodent or human mast cells are still controversial. While 
investigating this topic in 2004, Swindle and colleagues 
concluded that activated rodent and human mast cells 
were unable to generate intracellular NO or to express 
iNOS[87]. According to this study, foregoing reports, 
indicating a potential NOlike activity in peritoneal mast 
cells, were misled by the presence of NOproducing 
macrophage in their cell preparation[88]. 

Conversely, a different group demonstrated the 
expression of NOS isoforms and production of NO by 
various MC populations including rat peritoneal MCs, 
human skin MCs (HSMC) and human mast cell lines 
(HMC1 and LAD2)[89,90].

Nevertheless, as reviewed for other immune subsets, 
it is well accepted that exogenous NO centrally impacts 
on mast cell functions. Exploiting a variety of either NO 
chemical donors or NOS inhibitors on both primary or 
mast cell lines, introductory reports in the field showed 
that NO blocks antigeninduced degranulation, mediator 
production and release[91]. Moreover, NO has been 
shown to promote CD8α up-regulation trough NO-
cGMP pathway in rat peritoneal MCs. This remarkable 
event enlarges CD8 receptor sensitivity to alternative 
signals and coincidently boosts MCmediated immune 
responses[92]. It is well known that during activation 
processes, MCs adhere to the extracellular matrix 
basically interacting with fibronectin, vitronectin, collagen 
type Ⅰ, collagen type Ⅳ, and laminin. NO impairs human 
MC adhesion to the matrix by an alternative mechanism 
that is mainly independent of the direct activation of sGC 
or RNS generation[93] (Table 1 and Figure 1).

NO, RNS AND AUTOIMMUNE DISEASE
In addition to promote an effective immune response 
in the control of infectious diseases, iNOSmediated 
NO production may be involved in the dysregulation of 
immunity, playing a role in chronic inflammatory disorders. 
Autoimmune diseases could be considered as a chronic 
inflammatory status where the breakdown of immune 
tolerance, a complex process involving both genetic and 
environmental factors, is mainly caused by the post
translational modification of antigens. This occurrence 
results in the recognition of host proteins as “non-self” 
and indeed in the initiation of an adaptive immune 
response. Many inflammatory autoimmune diseases, 

regulatory cells (NOTregs) via the NO-p53-IL-2-OX40-
survivin signalling pathway[67]. Nonetheless, by means 
of syngeneic mouse melanoma model, Jayaraman et 
al[68] postulated that iNOS, expressed by CD4+ T cells, 
manifestly inhibits their commitment to Treg by blocking 
the release of TGFβ1.

Although compelling studies addressed the role of 
NO in T cell biology, NO contribution to the regulation of 
B cell activity remains unclear. Very recently, Giordano 
and colleagues shed light on the role of NO in regulating 
humoral immune responses. Indeed, authors suggested 
that NO generated by both inflammatory Mo-DCs and 
nonhematopoietic cells potentially regulate T cell
independent (TI)2 antibody responses by inhibiting 
BAFF production[69].

DCs are the most powerful APCs of the immune 
system[70,71] representing the bridge between innate and 
adaptive immunity. In the canonical maturation pathway, 
microbial products trigger DCs activation, which leads to 
the production of large amounts of cytokines, especially 
IL12 and IFNα, driving the differentiation of naive 
Tcells into effector cells[72,73]. Moreover, DCs exposed 
to inflammatory cytokines rapidly activate other innate 
protective cells such as NK and NKT cells[74]. So far, the 
role of DCs as potential NOproducing cells has not been 
fully investigated and data concerning the impact of 
NO on DC maturation and functions are still debated. 
During the last years, several reports investigated this 
issue. Activated murine DCs do essentially express the 
iNOS isoform in response to cytokines or pathogen 
stimulation[75]. Conversely, the expression of iNOS and 
the production of NO during the commitment of human 
DCs are still debated. A recent report claimed that in the 
human immune system nNOS but not iNOS mediated NO 
synthesis is pivotal for the maturation and differentiation 
of these cells[76]. Nevertheless, the expression of iNOS 
as well as NO production clearly participate in the innate 
defence against intracellular pathogens[77].

Additionally, an interesting study by means of real
time metabolic flux analysis pointed out NO as the key 
metabolic regulator in inflammatory monocyte-derived 
DCs, expressing iNOS, in response to TLR stimulation[78]. 
In 2003, a groundbreaking publication firstly identified a 
new TNF/iNOSproducing (Tip)DC subset in the spleens 
of Listeria monocytogenesinfected mice[79], whose role 
was recently clarified. Specifically, these cells act as 
sources of NO in a variety of infections clearly indicating 
that NO produced by DCs actively participates in both 
innate and adaptive immunity to pathogens[80,81].

NK cells are effectors of the innate immune system, 
instrumental for host defence toward infection from 
bacteria, virus and parasites[82]. Moreover, NKs actively 
participate in tumour surveillance and rejection of 
transplanted organs[83]. Nonetheless, the role of NO in 
NK cell activation is not completely understood. NOS 
isoform activity correlates with rodent NK cellmediated 
cytotoxicity, as proved by both nitrite accumulation and 
pharmacological enzymatic interference[84]. In humans, 
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which are accompanied by oxidative stress, exhibit an 
excess of reactive chemical species that are able to post
translationally modify proteins, potentially forming neo
epitopes[30,96-98]. These neoepitopes may directly elicit 
an adaptive immune response or indirectly sustaining 
other mechanisms such as the molecular mimicry (a host 
antigen being “seen” as a “non-self” protein), the exposure 
of cryptic epitopes (exposure of amino acid sequences 
after changes in the threedimensional structure of a 
protein), the epitope spreading (spreading of antigenicity 
from a given epitope to other parts of the same protein 
or other proteins) and the coupling of an autoantigen 
to an exogenous antigen[99,100]. Increased generation of 
neoepitopes/PAMPs/DAMPs may therefore serve as a 
mechanism for increased uptake and presentation of 
autoantigens to the immune system, hence for example 
the accumulation of nitrotyrosinecontaining proteins 
in tissues might induce an autoimmune response and 
sustain a chronic inflammatory reaction[96]. Indeed, murine 

models of systemic lupus erythematosus (SLE) showed 
abnormally high levels of RNS compared with normal mice 
and the systemic blockade of RNS production ameliorates 
the pathology[101]. Further and not surprisingly, elevated 
levels of antinitrotyrosine antibodies have also been 
measured in the synovial fluid of patients with rheumatoid 
arthritis and osteoarthritis[102] as well as in serum from 
patients with SLE[103-105]. This finding was also verified in 
patients with active lupus nephritis, who have higher levels 
of serum nitrotyrosine than those without renal disease, 
suggesting that overproduction of NO and its derived 
reactive species may have a pathological role in SLE and 
lupus nephritis[106,107].

NO, RNS IN DIABETES
Diabetes mellitus is a chronic disease characterised 
by elevated blood sugar levels resulting from either a 
lack of insulin production or resistance to insulin[108]. 
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NK: Natural killer cell.
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Hyperglycaemia, glucose autoxidation, accumulation of 
advanced glycosylation end products (AGEs), enhanced 
receptor for advanced glycation end product (RAGE) 
and angiotensin Ⅱ receptor type 1 (AT1R) signalling as 
well as elevated levels of free fatty acids and leptin, have 
been reported to contribute to elevated production of 
ROS and RNS in diabetic vessels and myocardium[109,110]. 
Several reports suggest a positive correlation between 
increased serum and/or vascular 3nitrotyrosine levels, 
increased blood pressure and/or endothelial dysfunction 
in diabetic patients[111,112]. Additionally, high oxidative 
and nitrative stress in diabetes might induce oxidation 
and/or nitration of various insulin receptors in peripheral 
tissues, which may contribute to the development of 
insulin resistance[113]. Moreover, peroxynitrite injury 
has been implicated in the “metabolic memory” 
phenomenon, which refers to the therapeutic effects of 
intensive glycemic control achieved by early intervention 
in both experimental and clinical studies[28,114]. In 
diabetic hearts, the persistent myocardial oxidative 
and nitrative stress might also leads to dysfunction of 
important antioxidant defense mechanisms, such as the 
inactivation of superoxide dismutases and catalase and 
depletion of endogenous antioxidants, as metallothionein 
and glutathione[115,116] and dysregulation of important 
redoxdependent transcription factors [e.g., NFE2L2 
nuclear factor, erythroid 2like 2 (Nrf2)][117,118]. However, 
peroxynitriteinduced protein nitration has been involved 
in the development of chronic diabetic peripheral 
neuropathy[119] and has been documented in peripheral 
nerve[120], vasa nervorum[121], spinal cord and dorsal root 

ganglion of streptozotocindiabetic and obese mice[120,122], 
indicating that diabetes creates not just oxidative, but 
oxidativenitrosative stress in the peripheral nervous 
system.

NO, RNS AND NEUROINFLAMMATION
As in other inflammatory disorders, NO plays a dual role 
in modulating neuroinflammation. On one hand, NO 
might induce apoptosis of autoreactive T cells that enter 
the central nervous system (CNS)[123]; on the other hand, 
NO produced by iNOS within the CNS predominantly 
contributes to multiple sclerosis and experimental 
autoimmune encephalomyelitis (EAE) pathogenesis[124]. 
Particularly, NO and peroxynitrite accumulation may 
affect the components of CNS causing lipid peroxidation 
and consequent damage of oligodendrocytes[125], 
disruption of bloodbrain barrier integrity[126], activation 
of matrix metalloproteinases[127], with a block in 
axonal conduction[128] and finally promoting axonal 
degeneration[129]. Interestingly, recent findings on CNS 
of EAE rats demonstrated that iNOSderived NO potently 
inhibits CXCL12 gene expression in a p38dependent 
manner in vitro and that inhibition in vivo of iNOS activity 
sustains CXCL12 expression and protection of rats from 
EAE[130].

NO, RNS AND IBD
Early in the 1990s, various studies based on animal 
models as well as in humans, indicated that NO may 
be involved in gastrointestinal inflammation and that it 
may have a pathogenetic role in inflammatory bowel 
disease (IBD)[131]. Analysis of rectal biopsy specimens 
from patients with active ulcerative colitis showed 
higher concentrations of citrulline, the coproduct of 
NO synthase, with respect to those from patients with 
quiescent disease or a normal histology, indicating 
that the increased biosynthesis of citrulline might be a 
consequence of NO synthase activity[132]. Additionally, NO 
produced following the upregulation of iNOS in colonic 
epithelial cells has been closely associated with the 
initiation and maintenance of IBD[29]. Notwithstanding, 
the exact role of NO overproduction in intestinal 
inflammation remains obscure, since it has been reported 
that NO production plays a beneficial role in the acute 
nonspecific colitis settings. On the other hand however, in 
models of chronic colitis accompanied by a dysregulated 
immune response, where iNOS is persistently up
regulated, NO displays a detrimental activity on mucosal 
integrity[29]. High levels of NO from iNOS may in fact 
exacerbate the clinicopathological features of colitis 
by direct cytotoxicity, activation of neutrophils[133], 
vasodilatation and reduced smooth muscle tone[134].

NO, RNS AND CANCER
As already mentioned, NO and its derivative have been 
extensively associated with many different pathologies. 
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Table 1  Nitric oxide in immune cells

Cell compartment Features Ref.

Innate immunity
Macrophage
  M1 High level of NO [55-59,61]

Expression of iNOS
NO-mediated cytotoxicity

  M2 Reduced level of NO
Immune suppressive function

Natural Killer cells
NO-mediated cytotoxicity [84,85]
NO-mediated cell fitness

Mast cells
NOS expression [87,89-91,93]

NO-mediated cell adhesion and 
function

Myeloid-derived suppressor cell 
iNOS expression [62,64,94,95]

Immune modulating function
Dendritic cells

NOS expression [72,73,75-77]
Pathogen clearance

Adaptive immunity
Lymphocyte
  T-cell T-cell activation and function [64-68,72,73]

T-cell commitment 
  B-cell Reduced level of NO [69]

T-independent antibody response

NO: Nitric oxide; NOS: Nitric oxide synthase; iNOS: Inducible NOS.
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The connection between cancer and inflammation dates 
back to 1863, when Rudolf Virchow noted leucocytes in 
neoplastic tissues, suggesting that the “lymphoreticular 
infiltrate” reflected the origin of cancer at sites of chronic 
inflammation[135]. Moreover, smouldering inflammation 
increases the risk of developing many types of cancer, 
including bladder, cervical, gastric, intestinal, oesophageal, 
ovarian, prostate and thyroid cancer[136,137], thus representing 
one of the novel additional hallmarks of cancers[138]. As a 
result of chronic inflammation, tumour microenvironment 
harbours different corrupted resident or purposely 
recruited cells which exert conflicting functions establishing 
a peculiar cytokine milieu[139]. Among these, tumour
associated macrophage (TAM) and myeloidderived 
suppressor cells (MDSCs) present in tumour overexpress 
iNOS and release oxidizing molecules, such as hydrogen 
peroxide (H2O2) and peroxynitrite (ONOO) which cause 
nitration and nitrosylation of components of the T cell 
receptor (TCR) signalling complex, and the loss of the 
TCR δchain, thereby inhibiting T cell activation through 
the TCR and contributing to tumour progression[95,140,141]. 
More recently, Molon et al[142], in 2011, have demonstrated 
that chemokine nitration prevents intratumoural 
infiltration of antigenspecific T cells, which remained 
confined at the edge of tumours being unable to reach 
the central core due to the nitration of CCL2, a master 
chemokine. Moreover, several investigators have reported 
the expression of iNOS by malignant cells or within the 
tumour microenvironment, both at mRNA and protein 
level. In breast carcinoma, an initial study suggested that 
iNOS activity was higher in less differentiated tumours 
and detected predominantly in TAMs[143]. Subsequently, 
other reports demonstrated that iNOS was also expressed 
by breast carcinoma cells and positively correlated 
with tumour stage[144] and microvessel density[145]. In 
addition to breast cancer, iNOS is markedly expressed in 
approximately 60% of human colon adenomas and in 
20%-25% of colon carcinomas, while the expression is 
either low or absent in the surrounding normal tissues. 
Similar results were obtained for human ovarian cancer 
and melanoma. Other cancers that express iNOS are 
head and neck, oesophagus, lung, prostate, bladder and 
pancreatic carcinomas, brain tumours, Kaposi’ s sarcoma, 
mesothelioma, and haematological malignancies[63]. 
Moreover, the eNOS has been found in both endothelial 
and tumour cells of breast carcinomas, and the nNOS 
has been detected in some oligodendroglioma and 
neuroblastoma cell lines. However, the role of NO in 
cancer biology has not been clearly elucidated yet, since 
various studies have shown that NO may either promote 
or inhibit tumour progression and metastasis. The net 
effect of NO in tumours seems to depend on the activity 
and localization of NOS isoforms, concentration and 
duration of NO exposure, cellular sensitivity and hypoxia/re
oxygenation process within tumour microenvironment[146]. 
In general, high concentrations of NO and RNS can arrest 
cell cycle (cytostatic effect) or induce cell death, whereas 
low concentrations may protect cells from apoptosis. 
In fact, generation of high levels of NO/RNS is a very 

effective tool to induce cell death, and macrophages use 
it as a major weapon in their arsenal against invading 
pathogens and tumour cells[147]. High levels of NO/RNS 
posttranslationally modify deathrelated target proteins, 
as the death receptors of the TNFα superfamily, and block 
respiration in target cells by affecting the mitochondrial 
respiratory chain and its outer membrane permeability 
and thus leading to the release of cytochrome c and 
apoptosis initiation[148,149]. Moreover, high NO concentrations, 
oxidizing and/or deaminating the DNA bases, result in 
DNA breaks, DNA base modifications or DNA cross-links, 
which cause mutations that may either activate oncogenes 
or deactivate tumour suppressor genes. In addition, NO/
RNS-driven protein modifications such as S-nitrosylation 
or nitration may inhibit proteins belonging to the DNA 
repair systems, driving to genomic instability[150,151]. 
Importantly, DNA damages that cannot be repaired cause 
apoptosis induction, by the activation of DNAdamage
sensing proteins (e.g., p53, PARP, DNA-PK, BRCA1, 
ATM)[152]. However, NO has been demonstrated to inhibit 
programmed cell death in endothelial cells and some 
liver cancer cell lines, mainly through Snitrosylation 
of the activesite cysteine of caspases[153], thus per
petuating mutations and consequently sustaining 
transformation[154,155]. On the other hand, NO may 
induce apoptosis either via downregulation of the anti 
apoptotic protein survivin, as observed in human lung 
carcinoma cells[156], or upregulation of Fas expression, 
as shown in ovarian carcinoma cell lines, through the 
specific inactivation of the transcription repressor yin
yang1, which binds to the silencer region of the Fas 
promoter[157]. Besides enhancing cytotoxicity, NO plays 
a role in angiogenesis and metastasis since several 
reports showed a positive correlation between NOS 
expression/activity in tumour tissues and lymphatic 
metastasis in head and neck, thyroid, breast, stomach, 
gallbladder cancers[146,158] and melanoma[159]. As under 
physiologic conditions, NO maintains blood flow by 
dilatation of arterial vessels, promotes perivascular cell 
recruitment and vessel remodelling and maturation within 
tumours[146]. NO exposure of A431 squamous carcinoma 
cells and MDAMB231 breast cancer cells was, in fact, 
able to induce VEGFC expression, which mediates 
lymphangiogenesis and metastasis[160]. However, NO may 
also inhibit the aggregation of platelets through a cGMP
dependent mechanism, preventing aggregates formation 
with tumour cells, which may facilitate their adhesion 
to vascular endothelial cells and haematogeneous 
dissemination[161]. Finally, as previously mentioned, NO/
RNS can suppress tumour-specific adaptive immunity 
through several mechanisms. One mechanism involves 
the inhibition of phosphorylation, and thereby the 
activation of important signalling proteins in the IL2
receptor pathway [including Janus activated kinase 1 
(JAK1), JAK3, STAT5, extracellularsignalregulated kinase 
(ERK) and AKT] in T cells[162]. Additionally, NO promotes 
tumour immunosuppression, by affecting the stability of 
IL-2 encoding mRNA and the release of IL-2 by activated 
human T cells[163]. Finally, NO/RNS may dampen anti-
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tumour immunity through post-translational modifications 
of key proteins for T cell activation, such as CD8 and 
TCR complex α/β chains molecules[42] and T lymphocyte 
recruitment to the tumour site, such as the chemokine 
CCL2[142]. Thus, interfering with NO/RNS production within 
tumour microenvironment may represent a promising 
successful strategy to implement the efficacy of anti
tumour therapy alone or, even better, in combination with 
conventional chemotherapy, radiotherapy, photodynamic 
therapy and immunotherapy approaches[164167] (Table 2).

CONCLUDING REMARKS
Over the last decades, the role of NO in the immune 
system has been extensively reviewed. While investigating 
NOmediated responses, a number of reports argued for 
either a NOstimulatory or inhibitory activity in distinctive 
immune events. Nonetheless, the generation of NO in 
several immune cell subsets remains still controversial 
thus demanding additional studies. 

So far, a general consensus in the field has been 
achieved highlighting the indisputably role of this diffusible 
mediator in shaping immune activities.

This manuscript aims to provide spotlights on NO
moulded biology specifically focussing on its pivotal 
participation in distinctive inflammatory programs. 
Indeed throughout this review, we scrutinised the role 
of NO in selective scenarios starting with the description 
of its biochemical properties, immunomodulatory activities 
and finally dealing with its remarkable impact on 
different pathological settings. Collectively all the 
aforementioned investigations pointed out the relevance 
of NOmediated effects in the regulation of either innate 
or adaptive immunity.

Additionally, the combination of NO with other reactive 
species originates RNS, which are actively involved 
in several pathological conditions such as chronic 
inflammation, autoimmune diseases and cancer. Basically, 
RNS generate and amplify distinctive inflammatory 
circuits by affecting protein structure and functions, gene 
expression, cell signalling and cell death. 

Hence, this manuscript also emphasises the duplicity 
of NOmediated responses in distinctive immune cell 
subsets. This dichotomous attitude apparently hinders 
the identification of NO as a foolproof target thus 
preventing the identification of feasible therapeutic 
strategies that could be rapidly delivered to the clinic. 
Nonetheless, we believe that the plasticity of NO signals 
could be potentially exploited for the development of 
new focussed pharmacological approaches.

Of note, RNS-mediated PTMs potentially represent 
a novel marker for monitoring the efficacy of therapy 
during disease treatment or in the followup care.

This pursuit requires a thorough understanding of 
NO/RNS biology in the context of the immune system 
thus opening the way for intriguing investigations.
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