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Abstract

Introduction—We sought to determine if monitoring heart rate variability (HRV) would enable 

preclinical detection of secondary complications after subarachnoid hemorrhage (SAH).

Methods—We studied 236 SAH patients admitted within the first 48 hours of bleed onset, 

discharged after SAH day 5, and had continuous electrocardiogram records available. The 
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diagnosis and date of onset of infections and DCI events were prospectively adjudicated and 

documented by the clinical team. Continuous ECG was collected at 240 Hz using a high-

resolution data acquisition system. The Tompkins Hamilton algorithm was used to identify R-R 

intervals excluding ectopic and abnormal beats. Time, frequency, and regularity domain 

calculations of HRV were generated over the first 48 hours of ICU admission and 24 hours prior 

to the onset of each patient's first complication, or SAH day 6 for control patients. Clinical 

prediction rules to identify infection and DCI events were developed using bootstrap aggregation 

and cost sensitive meta-classifiers.

Results—The combined infection and DCI model predicted events 24 hours prior to clinical 

onset with high sensitivity (87%) and moderate specificity (66%), and was more sensitive than 

models that predicted either infection or DCI. Models including clinical and HRV variables 

together substantially improved diagnostic accuracy (AUC 0.83) compared to models with only 

HRV variables (AUC 0.61).

Conclusions—Changes in HRV after SAH reflect both delayed ischemic and infectious 

complications. Incorporation of concurrent disease severity measures substantially improves 

prediction compared to using HRV alone. Further research is needed to refine and prospectively 

evaluate real-time bedside HRV monitoring after SAH.
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Introduction

Aneurysmal subarachnoid hemorrhage (SAH) is a major public health issue in the United 

States.1 Prevention, detection, and clinical management of secondary complications 

generates a large health care burden for SAH patients.2 Heart rate variability (HRV) 

monitoring has been shown to be an effective method for preclinical detection of sepsis in 

critically-ill patients.3,4 This work is grounded in the observation that severe infection 

produces a pro-inflammatory response 5 that results in reductions of parasympathetic 

nervous system input to the heart. This leads to reductions in heart rate variability 6 that 

reliably precede the onset of the systemic inflammatory response syndrome (SIRS).7,8

Acute brain injury may also produce a strong pro-inflammatory response.9 SAH patients 

commonly develop SIRS even in the absence of an infection.10 Systemic inflammation has a 

crucial and unifying role in the pathogenesis of delayed cerebral ischemia (DCI) from 

vasospasm after SAH.9-12 DCI has been shown to be the strongest predictor of poor 

outcome in SAH after the impact of the initial bleeding event and rebleeding.13 The severity 

of the SIRS response predicts DCI development,10 and monitoring HRV has shown 

potential for detecting secondary complications after SAH.14 The purpose of this study was 

to determine whether heart rate variability monitoring of SAH patients can provide 

preclinical detection of nosocomial infections and DCI a day in advance of symptom onset.
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Methods

Study Design

Patients were selected from the Columbia University SAH Outcomes Project, a prospective 

observational cohort study designed to identify novel risk factors for secondary injury and 

poor outcome. Subjects for the current analysis were enrolled between April 2006 and June 

2011. The study was approved by the Columbia University Medical Center Institutional 

Review Board; in all cases written informed consent was obtained from the patient or a 

surrogate. The diagnosis of SAH was established by admission CT or by xanthochromia of 

cerebrospinal fluid if the initial CT scan was nondiagnostic. Patients with secondary SAH 

related to trauma, rupture of an AVM, or other causes and age < 18 years are not enrolled in 

the study.

Patient Selection

Classifiers generally perform poorly when there is an imbalance between the number of 

positive and negative cases. In the more common instance of many more negative cases than 

positive, classification results become biased towards labelling almost all instances as 

negative.15 To counter this we created a dataset with roughly equal numbers of patients with 

and without complications. Candidates for inclusion were required to have been admitted to 

the ICU within 48 hours of SAH onset, treated in the ICU until at least SAH bleed day 5, 

and have continuous high-resolution electrocardiogram (ECG) data available for analysis. 

Of 447 patients enrolled during the five year screening period, 295 patients met all of these 

criteria. Among these patients there were 127 good-grade (Hunt-Hess Grade ≤ 2) and 168 

poor-grade patients (Hunt-Hess Grade ≥ 3). Roughly half (46%) of poor-grade patients had a 

documented complication (infection or delayed cerebral ischemia [DCI]) and we included 

all of these patients in the dataset for analysis. By contrast only a quarter (27%) of good-

grade patients had a documented complication. To ensure a relatively balanced dataset for 

analysis, all 34 good-grade patients with a complication were included and an additional 34 

good-grade patients that did not have documented complication were selected at random. 

The final dataset contained 236 patients with 111 cases and 125 controls.

Clinical Management

Management algorithms for SAH patients at Columbia University Medical Center have been 

described previously 13 and conforms to guidelines set forth by the American Heart 

Association.16 All patients were followed with daily or every-other-day with transcranial 

Doppler (TCD) sonography and received oral nimodipine and intravenous hydration with 

0.9% saline with supplemental fluids as needed to maintain equal fluid balance and a normal 

central venous pressure (5-10 mm Hg). Hypertensive hypervolemic therapy (HHT) was 

initiated for symptomatic vasospasm or when severe angiographic vasospasm was diagnosed 

in poor grade patients by increasing systolic blood pressure (SBP) from 180 to 220 mmHg 

as required to reverse the neurological deficit.17 CT was performed serially when clinically 

needed. All patients with clinical deterioration underwent CT or MRI scanning to identify 

causes of deterioration other than vasospasm whenever clinically feasible. When clinical 

evidence of DCI persisted for more than 2 hours despite HHT, cerebral angiography was 
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used to identify vasospasm and balloon angioplasty or intra-arterial administration of 

verapamil was performed whenever feasible.

Complication Definitions

We recorded demographics and past medical history, baseline clinical status, imaging 

results, and treatment and complications during hospitalization as described previously.13 

The presence and timing of infectious complications and DCI were adjudicated and 

documented prospectively in weekly meetings by the clinical team. Infectious complications 

were classified as pneumonia (new infiltrate on CXR with fever or purulent sputum), urinary 

tract infection (urine white cell count >5/hpf and positive urine culture), and bloodstream 

infection (positive blood cultures with local IV erythema or SIRS).

Delayed cerebral ischemia (DCI) was defined as (1) clinical deterioration (i.e. a new focal 

deficit, decrease in level of consciousness, or both), and/or (2) a new infarct on CT that was 

not visible on the admission or immediate postoperative scan, when the cause was thought 

by the research team to be vasospasm. Other potential causes of clinical deterioration or CT 

lucencies, such as hydrocephalus, rebleeding, cerebral edema, retraction injury, ventriculitis, 

metabolic derangements, and seizures were rigorously excluded. DCI and cerebral infarcts 

due to spasm were diagnosed by the treating study neurointensivist, and confirmed in a 

weekly review of each subject's clinical course by the study team. In each patient with DCI, 

symptomatic territories were identified, and clinical deficits, angiographic, and CT findings 

were recorded. Evidence of arterial spasm by transcranial Doppler (TCD) ultrasonography 

(mean flow velocity >120 cm/s) or angiography was used to support the diagnosis but was 

not mandatory.

Feature Construction

Continuous ECG data was collected at 240 Hz using a high-resolution data acquisition 

system (BedmasterEx, Excel Medical, Jupiter, FL). The Tompkins Hamilton algorithm was 

implemented on a streaming analytic platform (InfoSphere Streams version 3.1, IBM, 

Armonk, NY) to identify valid R-R intervals while excluding ectopic and abnormal beats.18 

Time, frequency, and regularity domain calculations of heart rate variability were generated 

(Table 1). HRV calculations during the 48-hours post bleed onset were averaged to 

determine a baseline for each HRV measurement. HRV calculations during the day 

preceding complication onset or SAH bleed day 6 for control patients were also averaged. A 

difference score between baseline and event was generated resulting in three HRV features 

for each metric including baseline, event, and the difference between baseline and event 

measurements. The highest measured TCD velocity and white blood cell count prior to the 

onset of a first complication, or by SAH day 6 in the case of control patients, was recorded. 

In 4 patients the first observed complication was adjudicated as clinically-silent cerebral 

infarction due to cerebral vasospasm. Due to the inability to determine the absolute timing of 

infarction in these patients, we took a very conservative approach and defined the event time 

as 4 days prior to the emergence of new infarct on CT (mean SAH day = 11).
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Predictive Models

All measurements were normalized to a mean of 0 and standard deviation of 1, and strongly 

skewed features were either log transformed to normal or categorized. Bootstrap aggregation 

(i.e., boosting) and cost sensitive meta-classifiers were implemented to build and evaluate 

standard random forest, decision tree, back propagation neural network, support vector 

machine, and logistic regression models. Higher costs (1.5) were assigned to missed 

detection compared to false alarms (1.0). Tenfold cross-validation was used to evaluate each 

model whereby the sample was partitioned into ten approximately equally sized disjoint 

subsamples. Nine subsamples were used as training data and validated against the tenth 

subsample with the process repeated until each of the ten subsamples was used for 

validation exactly once. The ten results from each of the repetitions were then averaged to 

produce a single estimation for the model. The computation was performed using Weka 

(Weka, version 3.7, the University of Waikato, New Zealand).

Statistical analysis

Univariate data analyses of patient characteristics were performed with R statistical software 

(R, version 2.12.2, R Project). P ≤ 0.05 was considered significant. The discrimination 

ability of each model was determined by measuring the accuracy, sensitivity, specificity, 

positive predictive value (PPV), negative predictive value (NPV), likelihood ratios for 

positive and negative predictions, and the area under the receiver operating characteristic 

(ROC) curves (AUC). A cut-off value corresponding to the minimal false negative and false 

positive results was selected to report the sensitivity and specificity of each prediction 

model. The Delong-Delong method was used to compare model performance on AUC 

whereas bootstrapping was used to compare partial AUC (pAUC).19

Results

A total of 111 (47%) of 236 SAH patients in this dataset experienced an infection, DCI, or 

both. Of these 111 patients, the first complication documented was an infection in 77 

patients (median day 6, IQR 4 to 9) and DCI in 34 (median day 6, IQR 5 to 8). Of the 

patients that experienced both complications types, 8 infection patients went on to have DCI 

whereas 10 DCI patients went on to have an infection later in their course. Compared to 

controls, patients that experienced infections or DCI were more likely to have hydrocephalus 

treated with CSF diversion, have their aneurysm secured by a clipping procedure, 

experience a fever, require an external ventricular drain, and have an abnormal white blood 

cell count; DCI patients were more likely to have a maximum TCD flow velocity greater 

than 120 cm/sec. DCI patients were more likely to be on vasopressor support (Table 2).

We sought to minimize the number of attributes (i.e., variables) that would require manual 

data entry (e.g., location of blood or edema presence on CT, Apache-II score) at the bedside 

if deployed. A supervised gain ratio attribute evaluator was utilized to identify the best 

attributes for model building. This process is akin to performing univariate analysis to 

identify candidate variables for a multifactorial model. The worth of an attribute is reported 

as a value whereby higher values represent greater relatedness to the outcome class, which 

in this case is complication status. VLF power, standard deviation RRIDX, and total power 
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HRV measurements provided the most worth to classify complication status over white 

blood cell count, transcranial Doppler measurements, ventilation changes, aneurysm 

clipping procedure, and fever (Table 3). The models utilizing random forest classification 

were the most accurate and are reported. Performance of the models comparing a combined 

complication category (i.e., both infection and DCI), DCI alone, or infection alone are 

compared using the ‘best’ threshold (Table 4). The overall area under the curve for the three 

models did not differ significantly but the combined complication model was the most 

sensitive of the three (Figure 1). To determine if HRV variables would be sufficient to 

identify patients we removed clinical variables from the combined complication model. 

Statistical comparison of the ROC curves revealed that the HRV only model performed 

significantly worse (AUC: 0.83 versus 0.61, Z=5.74, P<0.001). Model performance statistics 

suggest that HRV is sensitive but not specific for secondary complications without the 

addition of clinical variables (Table 5).

Discussion

There is currently great interest in the development of ICU-based early warning systems that 

can more effectively process standard physiological monitoring data to predict life-

threatening complications. This study demonstrates that HRV monitoring in SAH patients 

may be beneficial for preclinical detection of nosocomial infections and DCI at least up to 

the day prior of symptom onset. Classification models performed best when nosocomial 

infections and DCI were combined into a single complication category, rather than trying to 

predict either complication alone. Gain ratio attribute evaluation methods identified several 

HRV variables that were predictive of these complications, but these will require further 

testing in other patient populations before they can be generally applied. HRV measures 

were highly sensitive for secondary complications but lacked sufficient specificity without 

incorporating standard clinical measures of illness severity, such as sedative use, TCD 

findings, white blood cell count, and fever. HRV monitoring for preclinical detection of 

complications after SAH will not be able to differentiate ischemic from infectious 

complications, and will require automated incorporation of additional clinical inputs for 

maximal effectiveness.

This work is grounded on the observations that pro-inflammatory responses 5 result in 

reductions in parasympathetic nervous system activity. The heart rate variability 

measurements that were most important to the predictive model in this study were VLF 

power and its time domain surrogate measurement, standard deviation RRIDX. Although 

mechanisms for VLF are poorly understood 20 it has been connected to parasympathetic 

modulation of heart rate.20-22 Sympathetic blockage has little effect while parasympathetic 

blockage totally abolishes VLF power.21 It has been suggested that VLF power may reflect 

parasympathetic modulation of heart rate without being confounded by nonrespiratory sinus 

arrhythmia.23 Changes in RMSSD, which reflects high frequency parasympathetic outflow 

to the heart,24 has previously shown promise to predict complications in SAH.14 It remains 

unclear what measures of parasympathetic activity best discriminate patients with 

complications and this should be studied further.
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Utilizing heart rate variability monitoring for preclinical detection of complications in SAH 

patients poses unique challenges. SAH patients often develop a pro-inflammatory response 

from the bleeding event itself 9 and commonly develop SIRS even in the absence of an 

infection.10 In our study HRV abnormalities were present for many SAH patients that did 

not develop secondary complications. While we found that HRV was highly sensitive for the 

development of secondary complications, it was not a specific marker and inclusion of 

clinical variables was essential to improving overall model performance. Further, DCI from 

cerebral vasospasm, and not sepsis, poses the greatest risk to morbidity and mortality after 

SAH.25 Analyses of non-specific inflammatory markers after SAH have found higher levels 

in patients with ischemic complications from vasospasm, even after correcting for the 

presence of infectious complications.26-28 Although sepsis is rare after SAH, pneumonia and 

urinary tract infections are common, and frequently patients that experience DCI have 

infections during their intensive care.25

Our data suggest that DCI cases are difficult to discriminate pre-clinically from infectious 

cases using HRV even when including TCD sonography, white blood cell count, and other 

predictive factors. The AUC for models predicting either DCI or infection alone was 

artificially boosted by the relative increase of true negatives compared to positive cases. 

Testing the sensitivity of the models showed the combined complication model significantly 

outperformed the single complication DCI or infection models. The DCI model missed 

nearly two times as many cases as it accurately identified either in the form of false alarms 

or false negative regardless of the threshold used. The infection model was better, 

identifying about as many cases as it missed. The combined model clearly performed best 

identifying almost twice as many positive cases as it missed. For every 10 positive cases 1 to 

2 cases were not identified and 2 positive cases were identified for every false alarm. The 

clinical value of the combined prediction model would be to alert clinicians to examine a 

patient for possible early stages of a complication rather than quantifying risk for any one 

type of problem.

A validation study using a new cohort of patients is needed to confirm the findings of this 

study in which several model enhancements may be possible. Clinical protocols for DCI and 

infections are fundamentally different and the practical clinical utility of this work would be 

enhanced by the capability to discriminate between such cases. A larger pool of patients will 

allow multiclass or tiered model approaches to be explored that may prove better at 

discriminating each patient group. Additional patients would also enable the use of methods 

more amenable to real-time implementation to be employed.

We limited the number of factors in the model that would require manual entry at the 

bedside. As electronic patient data becomes more available in real-time from the electronic 

health record and other digital sources it may also be possible to deploy models that 

integrate a complex combination of high resolution physiology, patient characteristics, 

intervention information, and laboratory test values. In this case a model could incorporate a 

multitude of risk factors for nosocomial infections and DCI without increasing the burden on 

nursing staff to manually enter this information into a separate computer or device.
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Conclusions

Heart rate variability monitoring may be a viable method to help identify SAH patients in 

the preclinical stage of infectious complications and delayed cerebral ischemia. The pro-

inflammatory response to SAH that is known to contribute to the development of DCI is 

difficult to discriminate from the pro-inflammatory response to nosocomial infection using 

heart rate variability measurements. A validation study is needed to confirm these findings 

and to explore methods that would enhance the clinical utility of such a model by enabling 

the discrimination of DCI from infection patients.
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Figure 1. 
Receiver operating characteristic curves of the predictive models. Depicts 80%-100% partial 

AUC for combined DCI and infection model (pAUC = 76.3%) versus infection alone 

(66.9%) and DCI alone (68.0%). The combined model was significantly more sensitive than 

the infection alone model (P=0.017) and DCI alone (P=0.004) models. Infection alone was 

not significantly more sensitive than the DCI alone model (P=0.734).
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Table 1
Heart Rate Variability Measurements

Measurement Unit Definition

Very Low Frequency (VLF) ms2 Power in VLF (≤0.04 Hz) range

Normalized Low Frequency (nLF) nu LF (0.04-0.15 Hz) Power in normalized units (LF/(total power – VLF) × 100

Normalized High Frequency (nHF) nu HF (0.15-0.4 Hz) Power in normalized units (HF/(total power – VLF) × 100

LF/HF Ratio Ratio LF [ms2]/HF[ms2]

RMSSD ms The square root of the mean of the sum of the squares of differences between adjacent RR 
intervals

Standard Deviation RRIDX ms Mean of the standard deviations of all RR intervals for all 5-minute segments of the recording 
period

Sample Entropy Measure of time series complexity that is small for low variability and large for high variability 
sequences

1 / f Slope of the linear interpolation of the spectrum in a log-log scale (≈≤0.04 Hz)
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Table 3
Supervised Gain Ratio Feature Evaluation for Complication Status

Gain Ratio Feature

0.2049 Log transformed VLF power (60 min window) at baseline

0.2012 Log transformed VLF power (30 min window) at baseline

0.1934 Increase in propofol from Baseline

0.1902 Log transformed Total Power (5 min window) at baseline

0.1864 Log transformed VLF (30 min window) 24 hours prior to event

0.1826 Standard deviation RRIDX 24 hours prior to event

0.1826 Standard deviation RRIDX Baseline

0.1786 Maximum white blood count 24 hours prior to event

0.1582 Maximum TCD Lindengaard Ratio: Mean Velocity

0.1582 Maximum TCD Lindengaard Ratio: Peak Velocity

0.1440 Propofol dosage at baseline

0.1212 Change in ventilation status

0.0877 Clipping aneurysm repair procedure

0.0845 Maximum TCD Mean Velocity: any vessel

0.0838 Temperature > 38.3

The gain ratio is the worth of an attribute whereby higher values represent greater relatedness to the presence of a complication.
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Table 5
Random Forest Classification Performance: Clinical and HRV Variables versus HRV 
Variables Alone

Performance Metric Clinical + HRV HRV alone

AUC 0.83 (0.77-0.88) 0.61 (0.54-0.68)

Accuracy (%) 75.8 58.9

Sensitivity (%) 86.5 (71.3-94.2) 95.5 (75.7-99.1)

Specificity (%) 66.4 (54.1-75.6) 26.4 (15.7-33.6)

LR + 2.6 (2.2-3.0) 1.3 (1.1-1.6)

LR - 0.2 (0.1-0.4) 0.2 (0.1-0.4)

PPV 69.6 (61.9-77.2) 53.5 (46.6-60.5)

NPV 84.7 (77.6-91.8) 86.8 (76.1-97.6)

 Classified as --> No Yes No Yes

 Actual No 83 42 46 79

 Actual Yes 15 96 26 85

AUC, area under receiver operating curve; LR + an LR -, positive and negative likelihood ratios; PPV, positive predictive value; NPV, negative 
predictive value
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