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Abstract

Steroid hormone receptors are multi-domain proteins composed of conserved well-structured 

regions, such as ligand (LBD) and DNA binding domains (DBD), plus other naturally 

unstructured regions including the amino-terminal domain (NTD) and the hinge region between 

the LBD and DBD. The hinge is more than just a flexible region between the DBD and LBD and 

is capable of binding co-regulatory proteins and the minor groove of DNA flanking hormone 

response elements. Because the hinge can directly participate in DNA binding it has also been 

termed the carboxyl terminal extension (CTE) of the DNA binding domain. The CTE and NTD 

are dynamic regions of the receptor that can adopt multiple conformations depending on the 

environment of interacting proteins and DNA. Both regions have important regulatory roles for 

multiple receptor functions that are related to the ability of the CTE and NTD to form multiple 

active conformations. This review focuses on studies of the CTE and NTD of progesterone 

receptor (PR), as well as related work with other steroid/nuclear receptors.
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1. Introduction

Progesterone receptor (PR) mediates the transcriptional effects of the steroid hormone 

progesterone, which plays a key role in development, differentiation, and maintenance of 

female reproductive tissues (Li and O’Malley, 2003). PR is expressed as two isoforms, PR-

A and PR-B, which arise from the same gene by utilization of two promoters (Kastner et al., 

1990; Li and O’Malley, 2003). The two receptors are identical in the C-terminal ligand 

binding domain (LBD) and DNA binding domain (DBD) and most of the amino-terminal 

domain (NTD) except for an extension of the NTD unique to PR-B (Figure 1). PR has two 

transcriptional activation functions (AFs) within the broader domains, AF1 in the NTD and 

AF2 within the LBD. Depending on the cell and target gene context, AF1 and AF2 can 

function independently or they can synergize through an intra-molecular interaction between 

the N- and C-termini (Dong et al., 2004; Meyer et al., 1990; Meyer et al., 1992; Takimoto et 

al., 2003; Tetel et al., 1999; Tung et al., 2006). Highly conserved AF2 binds short LXXLL 

amphipathic helix motifs of co-activators including the p160 family steroid receptor co-

activators (SRCs), RIP140 and DRIP/TRAPS (Beato and Klug, 2000; Li and O’Malley, 

2003; Lonard and O’Malley B, 2007). The unique amino acids in PR-B NTD contain an 

additional activation function (AF3), that operates by synergizing with AF1 and AF2 

(Takimoto et al., 2003; Tung et al., 2006). For most gene targets PR-B is a stronger 

transcriptional activator than PR-A, while PR-A can act to suppress PR-B and other nuclear 

receptors (Tung et al., 1993; Vegeto et al., 1993). Functional differences between the two 

isoforms are evident from knockout studies in mice, which showed that PR-A null mice 

have normal mammary gland development while PR-B null mice displayed reduced 

mammary gland development, indicating the importance of PR-B, but not PR-A, in the 

mouse mammary gland. In contrast, PR-A has been shown to be critical in the uterus and the 

ovary (Fernandez-Valdivia et al., 2005). Microarray analysis of breast cancer cells has 

shown that 65 of 94 PR regulated genes were regulated by PR-B alone, 25 were regulated by 

both isoforms, and only four were regulated by PR-A alone (Richer et al., 2002). PR-A and 

PR-B can act as both homodimers and heterodimers and are co-expressed at equivalent 

levels in the same cell in normal human epithelial cells. In breast cancer, the equivalent 

expression of PR-A and PR-B is often disrupted resulting in a predominance of one form, 

usually PR-A (Mote et al., 1999; Mote et al., 2002). PR can also mediate non-genomic 

responses to progesterone through its ability to recruit and activate c-Src tyrosine kinase. A 

polyproline motif (aa 421- PPPPLPPR-428) in the NTD of PR (Figure 1) binds directly with 

the SH3 domain of c-Src resulting in the activation of Src dependent phosphorylation 

signaling cascades in mammalian cells (Boonyaratanakornkit et al., 2001). These include the 

proliferative Ras/Raf/MEK/MAK kinase and JAK-1/-2/Stat3 signaling pathways and the 

PI3K/Akt cell survival pathway (Ballare et al., 2003; Boonyaratanakornkit et al., 2007; 

Proietti et al., 2005; Saitoh et al., 2005; Skildum et al., 2005).

Because they are conserved domains, high resolution structures have been determined for 

isolated LBDs and DBDs of numerous steroid/nuclear receptors. This information has 

provided important insights into mechanisms of sequence specific DNA binding, ligand 

binding and how steroid hormone agonists and antagonists regulate interaction of co-

activators or co-repressors with AF2. This paper will focus on studies of two naturally 
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unstructured regions of PR, the NTD and hinge region located between the DBD and LBD. 

These non-conserved domains are less well studied and understood than other domains, yet 

they are important multi-functional regions essential for the activity of the receptor in their 

full-length context. We will review work from our laboratories and others on the NTD and 

hinge of PR as well as related studies with other steroid/nuclear receptors.

2. Ligand binding domain (LBD)

The ligand binding domain (LBD) of steroid/nuclear receptors consists of a common fold 

comprised of up to 12 helices and a short β-turn arranged in a three layer anti-parallel helical 

sandwich. The numerical convention of helices 1–12 is based on the first LBD structure 

RXRα (Bourguet et al., 2000). The GR subfamily of steroid receptors that includes GR, PR, 

AR and MR, lacks helix 2. Some additional structural features of PR that differ from other 

receptor LBDs are: helices 10 and 11 are contiguous and therefore are classified as a single 

helix, the dimer interface is less extensive than other LBDs, and the C-terminal helix 12 has 

additional residues that pack against helix 10/11 as a loop structure (Madauss et al., 2007; 

Raaijmakers et al., 2009; Williams and Sigler, 1998). As a general mechanism, helix 12 is 

dynamic and stabilizes in a position with the other helices to form a hydrophobic cleft that 

binds LXXLL motifs of SRC family co-activators when occupied by hormone agonist 

(Bourguet et al., 2000; Nettles et al., 2007). Antagonists bind to the LBD in a conformation 

that displaces helix 12 and disrupts or prevents formation of the AF2 interaction surface 

(Brzozowski et al., 1997; Shiau et al., 1998). Early biochemical experiments supported this 

model for PR. PR bound to agonist adopted a distinct conformation in the C-terminal tail 

from that of PR bound to the antagonist RU486. This was shown by distinct limited protease 

digestion patterns and by a monoclonal antibody to the C-terminal tail of PR that only 

recognizes PR bound to RU486 and not to progesterone (Allan et al., 1992; Vegeto et al., 

1992; Weigel et al., 1992). Also, truncation of the C-terminal tail of PR, as well as point 

mutations, resulted in loss of progesterone binding while RU486 binding was retained, but 

now acted as a strong agonist (Vegeto et al., 1992; Xu et al., 1996). More recently crystal 

structures of the PR LBD bound to the antagonists asoprisnil and RU486 (mifepristone) 

have been reported (Madauss et al., 2007; Raaijmakers et al., 2009). In the asoprisnil 

structure, helix 12 was displaced and the LBD was bound to a peptide derived from the co-

repressor SMRT, resulting in stabilization of helix 12 in the antagonist conformation 

(Madauss et al., 2007). The RU486 structure was determined by exchange of RU486 with 

progestin agonist in an existing PR LBD crystal. The crystal packing forces restricted the 

position of helix 12, resulting in RU486 binding to the PR LBD in an agonist conformation, 

demonstrating that displacement of helix 12 is not required for binding RU486 (Raaijmakers 

et al., 2009). Data analysis also showed that helix 12 was more flexible with RU486 bound. 

These results indicate that RU486 does not induce a single fixed antagonist conformation of 

helix 12 but rather alters a dynamic equilibrium of helix 12 resulting in destabilization of the 

agonist conformation.

3. DNA binding domain (DBD)

The DNA binding domain is bipartite, consisting of a conserved zinc finger core of 66 

residues and a variable C-terminal extension (CTE) of ~40 amino acids. A boundary 
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between the core PR DBD and CTE is marked by a Gly631, Met632 sequence that is 

conserved across all nuclear receptors (Figures 3 and 5). The core DBD contains two α-

helices and two zinc-binding modules that stabilize the globular structure of the domain 

(Khorasanizadeh and Rastinejad, 2001; Zilliacus et al., 1995). Three residues at the 

beginning of the DNA recognition helix 1 (P box) play an important role in sequence 

recognition and discrimination between HREs. The C-terminal zinc-binding module 

contains a D box which is important for mediating DNA binding-dependent dimerization of 

the DBD. The consensus recognition hormone response element (HRE) for the 

glucocorticoid receptor (GR) subgroup of steroid receptors (GR, AR, MR and PR) contains 

an inverted repeat hexanucleotide sequence 5′-AGAACA-3′ separated by a 3 nucleotide 

spacer. ER binds to a slightly different consensus hexanucleotide HRE sequence, 5′-

AGGTCA-3′ (Umesono and Evans, 1989).

In the PR crystal structure the DBD core was bound to a consensus inverted repeat 

progesterone response element (PRE) as a head-to-head dimer with helix 1 of each subunit 

making base specific contacts in the major groove of the PRE hexamers (Roemer et al., 

2006) (Figure 2). Base specific contacts are nearly identical to those reported for GR and 

AR and include hydrogen bonding of Lys588 and Arg593 with Gua6-6-N7 and Gua3-N7 and 

- O6, and Van der Waals interactions of Val589 with the Cγ methyl of Thy4-C5 in the PRE 

(Luisi et al., 1991; Shaffer et al., 2004). These contacts are stabilized by a number of direct 

and water mediated phosphate backbone interactions. Similar to core DBDs of other steroid 

receptors, helix 2 is perpendicular and above helix 1 and contributes to the overall folding of 

the domain. The PR DBD contains a short unique helix 2′ that extends from the C-terminus 

of helix 2. Helix 2′ contributes to the dimer interface and mediates protein-DNA interactions 

with the phosphate backbone (Roemer et al., 2006). The dimer interface consists of direct 

and water mediated contacts between residues in the D box (aa 604 to 608) and AR 

structures, and is further enhanced by interactions outside of the D box including a unique 

water-mediated contact between Lys617 in helix 2′ of the opposing dimer subunits (Roemer 

et al., 2006). DNA bound to PR resembled B-form DNA except for the width of the minor 

groove across the 3N spacer (3.6Å) that was well below the mean (9.6Å) for B-form DNA 

(Roemer et al., 2006). Other steroid receptor DBD-DNA structures have also exhibited a 

compressed minor groove width but this is most distorted in the PR-DNA complex. Whether 

differences in minor groove width reflect intrinsic abilities of different steroid receptors to 

distort DNA structure is not known. Receptor-induced distortion and directional bending of 

DNA has been detected for different steroid receptors in solution by circular permutation gel 

shift assays (Petz et al., 1997; Prendergast et al., 1996; Schultz et al., 2002). An effect on 

DNA conformation appears to be a general property of steroid receptor-DNA binding that 

may have a functional role in facilitating the assembly of multi-protein complexes at 

enhancers or promoters of target genes.

4. C-terminal extension (CTE) of the DNA binding domain

4.1. Binding to the minor groove flanking HREs of target DNA

The region between the DBD and the LBD, traditionally known as the hinge (Figure 1), is 

poorly conserved at the primary amino acid sequence level but shares common features 
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among steroid receptors including an enrichment of basic residues and a nuclear localization 

signal (NLS) for translocation of receptors from the cytoplasm to the nucleus. Work from 

our lab and others has shown the hinge is much more than a flexible linker containing an 

NLS. This is a multifunctional region that participates in DNA binding, mediates interaction 

with co-regulatory proteins and dimerization of receptors, and is a site for post-translational 

modifications including phosphorylation, acetylation and methylation (Claessens et al., 

2008; Daniel et al., 2010; Faus and Haendler, 2006; Fu et al., 2003; Fu et al., 2000; Haelens 

et al., 2007; Haelens et al., 2003; Hill et al., 2009; Kim et al., 2006; Le Romancer et al., 

2010; Melvin et al., 2004; Melvin et al., 2002; Roemer et al., 2008; Roemer et al., 2006; 

Tanner et al., 2010; Ward and Weigel, 2009). The hinge has been more aptly termed the 

carboxyl terminal extension (CTE) of the DBD because it directly participates in receptor 

DNA binding. Structure studies with class II nuclear receptors for non-steroidal ligands, and 

orphan nuclear receptors, were the first to observe that the CTE interacts with the minor 

groove outside the HRE to extend the protein-DNA interface beyond the core DBD 

interactions (Khorasanizadeh and Rastinejad, 2001). Mutational analysis further 

demonstrated that CTE–DNA interactions enhance stability and DNA binding affinity. The 

CTE of receptors for thyroid hormone (TR), retinoids (RAR, RXR) and vitamin D (VDR) 

form a single α-helix, termed a T or A box, which can bind to DNA in two different modes. 

In crystal structures of TR and VDR, the CTE forms a single α-helix that projected across 

the DNA minor groove between HRE half-sites and makes extensive non-specific contacts 

with the DNA backbone (Hsieh et al., 1995; Hsieh et al., 1999; Quack et al., 1998; 

Rastinejad et al., 1995; Shaffer and Gewirth, 2002). In NMR structures of retinoid X 

receptor (RXRα) in the absence of DNA the CTE is an α-helix, but when complexed to 

DNA forms an extended structure indicating the CTE under these conditions unfolds when it 

interacts with DNA(Lee et al., 1993; Zhao et al., 2000). The CTE of the orphan receptors 

RevErb, NGF1-B and ERR-2 lie along the floor of the minor groove in an extended loop 

conformation and contain a short conserved sequence termed the GRIP box (VRXGRIPK, 

where X is a Phe, Arg or Gly), which makes minor groove contacts with 5′ flanking 

sequences of each HRE half-site (Zhao et al., 1998). Interaction of the GRIP box appears to 

provide additional specificity for orphan receptors that bind to extended HRE half-sites 

enabling them to distinguish 5′ flanking trinucleotide sequences (Gewirth and Sigler, 1995; 

Zhao et al., 1998). As further indication that the CTE can undergo a conformational change 

when bound to DNA, the CTE of ERR-2 in the absence of DNA is unstructured (Gearhart et 

al., 2003; Sem et al., 1997) but makes stabilizing intra-molecular interactions with the core 

DBD when bound to the minor groove. The structure of the full length PPAR-γ-RXR-α 

heterodimer complexed with DNA revealed previously unknown interactions between the 

LBD and DBD and also emphasized the importance of the CTE (Chandra et al., 2008). The 

CTE of the PPAR-γ subunit of the heterodimer interacts with DNA and is a major 

determinant of 5′-3′ polarity of the heterodimer while the CTE of the RXR-α subunit 

mediates protein contact with the PPAR-γ DBD.

The CTE present in the crystal structure of the PR DBD formed an extended loop that 

interacted with the minor groove flanking either side of the PRE half-sites (Figure 2). The 

PR CTE resembled that of class II and orphan nuclear receptors by extending the protein 

DNA interface formed by the core DBD. Arg637 of the CTE was inserted into the minor 
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groove and made a base specific contact through hydrogen bonding to a cytosine flanking 

the PRE. The next residue, Lys638, hydrogen bonded with Arg637 resulting in the side chain 

of Lys638 making phosphate contacts that stabilize the CTE-DNA interaction (Roemer et al., 

2006). Mutational analysis confirmed the functional importance of these minor groove 

interactions. Double alanine substitutions for Arg637/Lys638 reduced the binding affinity of 

PR DBD dimers for palindromic PRE DNA by several fold, but eliminated binding of PR 

DBD monomers to PRE half-sites (Roemer et al., 2006). This requirement for binding to 

PRE half-sites suggests that the CTE plays an important role in receptor recognition of 

natural target genes that frequently contain multiple weak PRE half-sites. We propose that 

the CTE interface with the minor groove flanking the PRE may be essential for recognition 

of the full repertoire of target genes regulated by PR in vivo.

Although the CTE is not conserved, Arg637/Lys638 of PR that interacts with the minor 

groove is conserved in position of all steroid receptor CTEs, except for ERβ (Figure 3). 

Recent crystallography structures of the GR DBD/DNA complex also observed an 

interaction of the GR CTE with the minor groove flanking the GRE. Interaction is mediated 

by Arg510 located in the same position as Arg637 in the CTE of PR, and occurs in a similar 

manner with the minor groove except that the CTE formed a short α-helix (termed helix 3) 

rather than an extended loop to orient the position of Arg510 (Meijsing et al., 2009). Similar 

to results with PR, R510A mutation reduced the GR-DBD binding affinity for GRE DNA 

(Meijsing et al., 2009). Additional lysine residues in the GR CTE structure projected across 

the minor groove made additional phosphate backbone contacts that were not present in the 

PR CTE structure. The GR subgroup of receptors that recognize the same hexanucleotide 

HRE, contain a conserved RK sequence within an RKXKK basic motif. Deletion of the 

motif and double mutations of RK in AR also reduced DNA binding in vitro, and this motif 

was shown to be essential for binding to direct repeat AREs that are present on endogenous 

AR target genes (Tanner et al., 2010). Domain swapping of the CTE between ERα and ERβ, 

and deletion mutation experiments have shown that the CTE is important for the higher 

binding affinity of ERα than ERβ for consensus inverted repeat EREs, and is essential for 

both ER subtypes to bind to weak ERE half-sites (Melvin et al., 2004). These data taken 

together suggest that steroid hormone receptors contain a common RK sequence within a 

basic motif in the CTE that interacts with the minor groove flanking the HRE.

4.2. CTE is a binding site for co-regulatory proteins

Although the most widely studied transcriptional co-regulatory proteins are those that bind 

with AF2 in the LBD, several co-regulatory proteins have been identified that interact with 

the DBD of steroid receptors in a manner dependent on the CTE. These include the small 

nuclear RING finger protein (SNURF), the UBc9 and PIAS proteins responsible for 

sumolyation of AR, the BAF57-containing SWI/SNF chromatin remodeling complex, and 

the histone acetyltransferase pCAF (Blanco et al., 1998; Link et al., 2005; Poukka et al., 

2000a; Poukka et al., 2000b). Novel ERα co-regulatory proteins have also been identified 

through biochemical isolation of ERα-ERE complexes including proteins involved in DNA 

replication, protein folding, translation initiation and elongation, apoptosis, oxidative stress 

response and base excision DNA repair (Schultz-Norton et al., 2008). Co-repressors have 

also been identified that interact with the CTE of AR including SMRT, ARR19 and Pod-1 
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that act by recruitment of histone deacetylases to target genes in vivo (Hong et al., 2005; 

Jeong et al., 2004; Liao et al., 2003).

Post-translational modifications in the CTE have been identified to be involved in 

modulating protein interactions with steroid receptors. Methylation of Arg260 in the CTE of 

ERα, by protein arginine methyltransferase PRMT1, was shown to be required for physical 

interaction of ER with the p85 subunit of PI3K and with the c-Src tyrosine kinase and for 

mediating estrogen-induced activation of Src/FAK and p85/Akt signaling pathways involved 

in proliferation and cell survival (Le Romancer et al., 2010). Acetylation of lysine residues 

in the CTE of AR has been reported to facilitate or impair AR recruitment of transcriptional 

activators or repressors (Fu et al., 2003; Fu et al., 2000). Acetylation of Lys266 and Lys268 in 

the CTE of ERα by p300 was shown to enhance sequence specific DNA binding activity in 

vitro and estrogen-dependent transcriptional activity of ERα (Kim et al., 2006). Whether 

acetylation acts by modulating ER interaction with other co-regulatory proteins was not 

reported (Kim et al., 2006). Two co-regulatory proteins have been identified that enhance 

PR transcriptional activity through interaction with the CTE including chromatin associated 

high mobility proteins-1 and 2 (HMGB1/2) and Jun dimerization protein 2 (JDP-2).

4.2.1. High mobility group B proteins (HMGB)—The HMG proteins are a family of 

functionally related non-histone chromosome associated proteins that contain a structurally 

conserved HMG box that binds to DNA structures without sequence specificity and can 

induce distortions in DNA from B-form conformation (Bianchi and Agresti, 2005; Hock et 

al., 2007). Interaction partners and protein interaction motifs for HMGB proteins have also 

been defined (Dintilhac and Bernues, 2002). HMGB1 and closely related HMGB2 have 

been implicated to have a regulatory role in several nuclear processes including V(D)J 

recombination, DNA replication, transcriptional enhancesome assembly, nucleosome 

remodeling, transcription elongation and enhancement of sequence specific transcription 

factor binding to target DNA response elements (see reviews) (Bianchi and Agresti, 2005; 

Hock et al., 2007). Enhancement of sequence specific DNA binding has been described for 

Hox proteins, octamer factors, p53 and p73, rel family members and all classes of steroid 

hormone receptors (Bianchi and Agresti, 2005; Boonyaratanakornkit et al., 1998; Verrijdt et 

al., 2002). HMGB1 knockout mice die shortly after birth primarily due to glucose 

metabolism deficiencies; thus, whether HMGB1 has a role for sex steroids in reproduction 

in vivo cannot be tested by this approach. However, thymocytes from HMGB1 null mice 

have an impaired glucocorticoid induced apoptosis response indicating a role of HMGB1 for 

GR function in vivo (Calogero et al., 1999). As further evidence of a role for HMGB1 in 

steroid hormone receptor action in vivo, interaction of HMGB1 and GR in response to 

glucocorticoids has been shown to occur on chromatin and on the promoter of an MMTV 

target gene array in live cells as detected by FRET analysis (Agresti et al., 2005).

The CTE of PR is a protein interaction site for HMGB1 and this interaction has been shown 

to be essential for HMGB-induced enhancement of PR binding affinity for PREs in vitro and 

for stimulation of transcriptional activity of PR in intact cells (Melvin et al., 2002; Roemer 

et al., 2008). A CTE peptide in a sequence specific manner inhibited binding of HMGB1 to 

PR indicating the CTE alone is sufficient for binding. A minimal region of the CTE required 

for binding was mapped by mutational analysis to aa 641–651 (Roemer et al., 2008). 
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HMGB1 does not interact with the CTE of class II nuclear receptors for non-steroidal 

hormones such as TR, RXR, and RAR and does not enhance their DNA binding affinity or 

transcriptional activity (Boonyaratanakornkit et al., 1998; Melvin et al., 2002; Verrijdt et al., 

2002). As further evidence of the essential nature of the CTE for physical and functional 

interaction of PR with HMGB1, domain swapping of the CTE between PR and class II 

nuclear receptor resulted in a switch of functional response to HMGB1 (Melvin et al., 2002). 

HMGB1 did not interact with or stimulate DNA binding activity of a chimeric PR 

containing the CTE of TR, whereas a chimeric TR containing the CTE of PR exhibited a 

gain of functional response to HMGB1. Domain swapping and deletion mutation 

experiments also revealed that class II nuclear receptor DBDs have a higher intrinsic DNA 

binding affinity than steroid receptors for their respective DNA response elements that is 

attributable to the CTE. The lower DNA binding affinity of steroid receptor DBDs can be 

increased to that of class II receptors by addition of HMGB1, indicating that high affinity 

binding of steroid receptor DBDs requires an auxiliary protein such as HMGB1 (Melvin et 

al., 2002).

The mechanism by which HMGB1 increases the DNA binding affinity of PR for specific 

DNA has been explored but remains incompletely defined. HMGB1 is not a stable 

component of the enhanced high affinity PR/DNA complex in vitro indicating that its 

interaction is too transient to be detected by biochemical methods. This is a common 

observation with other steroid receptors and sequence specific transcription factors that 

exhibit enhanced DNA binding in the presence of HMGB1 (Das et al., 2004; Melvin et al., 

2004; Melvin et al., 2002). Point mutations in hydrophobic residues in HMGB1 that reduced 

binding to non-specific DNA and eliminated DNA bending activity, had no effect on protein 

interaction of HMGB1 with the PR CTE, or on the ability of HMGB1 to stimulate DNA 

binding activity of PR in vitro (Roemer et al., 2008). Thus, HMGB1 does not appear to 

affect PR-DNA binding affinity by manipulating structure of the target DNA, but requires 

protein interaction with the CTE. Binding of HMGB1 to the PR CTE was inhibited by 

addition of PRE probes but not by unrelated DNA in vitro indicating that interaction of the 

CTE with DNA and HMGB1 is mutually exclusive (Roemer et al., 2008).

In addition to these interactions, the CTE appears to mediate a repressive effect on the DNA 

binding activity of the core DBD. Truncation of the CTE in the context of a PR DBD 

construct resulted in an increased DNA binding affinity while addition of a peptide 

corresponding to sequences in the CTE also enhanced DNA binding affinity in a manner 

dependent on the presence of the CTE in the PR DBD construct (Melvin et al., 2002; 

Roemer et al., 2008). The CTE peptide had no effect on DNA binding activity of the core 

DBD alone. These results are consistent with the CTE exerting a repressive effect through 

an intra-molecular interaction with the core DBD that can be relieved by its removal, or by 

an external CTE peptide that competes for the interaction (Roemer et al., 2008). In the 

crystal structure of the orphan receptor ERR-2, the CTE that extends beyond (more C-

terminal) the interface with the minor groove formed a loop that interacted with a 

hydrophobic patch on the core DBD (Zhao et al., 1998). A similar intra-molecular 

interaction between the CTE and core DBD could occur with PR and account for the 

increased DNA binding activity caused by deletion of the CTE, or by the addition of a CTE 
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peptide. PR structures with additional CTE sequence will be needed to confirm this 

hypothesis. A repressive effect of the CTE on DNA binding has similarly been observed for 

the androgen (AR) and estrogen receptors (Haelens et al., 2007; Melvin et al., 2004).

Since HMGB1 is not stably associated with the receptor/DNA complex, the increase in PR-

DNA binding affinity is most likely mediated through additional PR-DNA contacts. We 

propose that the CTE is in dynamic equilibrium between different conformations and can 

interact with the core DBD, other proteins or the minor groove of DNA. Transient protein 

interaction with HMGB1 shifts the equilibrium to favor a conformation of the CTE that is 

optimal for interaction with DNA minor groove flanking the PRE (Figure 4). Although 

HMGB1 did not alter sites or the region of protection in an ER/ERE complex by DNase I 

and exonuclease footprinting, these methods are not expected to detect additional 

interactions in the minor groove (Das et al., 2004).

What is the physiological role for this interaction of HMGB1 with steroid receptors? Studies 

with ER demonstrated that HMGB1 had a greater fold enhancement of receptor binding to 

weak consensus ERE half-sites and divergent EREs than to consensus inverted repeat EREs 

that bind with the highest affinity (Das et al., 2004). HMGB1 raised the binding affinity for 

weak EREs to that of consensus EREs. Many, if not most, target genes identified by 

genomic screening approaches contain HRE half-sites. This occurrence indicates that 

HMGB1 and the CTE broaden the DNA binding specificity of steroid receptors and may 

have an essential role in receptor recognition of endogenous steroid receptor target genes. 

As further evidence that HMGB1 and CTE can affect target gene specificity, a randomized 

oligonucleotide binding selection assay with the PR DBD-CTE as the target, resulted in an 

enrichment of AT sequences flanking the 3′ PRE in the presence of HMGB1 as compared 

with PR alone (Roemer et al., 2008). This is reminiscent of orphan nuclear receptor binding 

to extended HRE half-sites where the CTE has a preference for AT rich flanking 

trinucleotide sequences (Zhao et al., 1998).

HMGB1 has other functions separate from its affect on facilitating receptor-DNA binding 

and recognition of non-consensus HREs. Although mutations in the DNA intercalating 

residues of HMGB1 were not required to enhance PR DNA binding in vitro, they did reduce 

HMGB1 enhancement of the transcriptional activity of PR in cells (Roemer et al., 2008). 

These same mutations also reduced interaction between GR and HMGB in chromatin of live 

cells as detected by FRET (Agresti et al., 2005). HMGB has been reported to interact with 

TBP at the initiation complex and to be a component of elongation complexes associated 

with active RNA pol II on transcribed genes (Das and Scovell, 2001; Guermah et al., 2006). 

Thus, the DNA intercalating and DNA bending activities of HMGB may be needed for steps 

of gene transcription down stream of DNA binding including initiating and elongation.

4.2.2. Jun dimerization protein 2 (JDP-2)—JDP-2 was originally identified as a 

repressor of AP-1 that functions by competing for heterodimerization of c-Jun with c-Fos, or 

by recruiting histone deacetylases (Aronheim et al., 1997; Jin et al., 2002). JDP-2 has a 

leucine zipper and a basic amino acid binding domain common to AP-1 transcription 

factors, but lacks an N-terminal activation domain. It was later identified in a yeast two 

hybrid screen as a PR interacting protein that enhances transcriptional activity of PR 
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(Edwards et al., 2002). JDP-2 has also been reported to have histone chaperone activity, to 

be involved in nucleosome assembly, and to inhibit core histone acetylation by the co-

activator p300 (Jin et al., 2006). Other bZIP proteins have been reported to function as 

steroid/nuclear receptor co-activators including XBP-1, which co-activates ERα (Ding et al., 

2003) and GT198, a tissue-specific co-activator identified to stimulate activity of several 

nuclear receptors including ERα and β, TRβ1, AR, GR, and PR (Ko et al., 2002). Interaction 

of GT198 was reported to be mediated by the DBD of steroid receptors.

Protein binding between PR and JDP-2 is directly mediated by the DBD of PR and the basic 

domain of JDP-2, and occurs independent of progesterone. This has been detected by pull-

down and co-IP assays from cells. JDP-2 does not affect PR-DNA binding and is not 

detected as a ternary complex with PR and PRE DNA in vitro. However, by chromatin 

immunoprecipitation (ChIP) assay, JDP-2 is recruited with PR to target gene promoters in a 

manner stimulated by progesterone (Wardell et al., 2002). JDP-2 enhancement of PR 

function occurs primarily by stimulating the transcriptional activity mediated by the NTD, 

with equal effects on the NTD of PR-A and PR-B (Wardell et al., 2002; Wardell et al., 

2005). Data from circular dichroism (CD) spectroscopy demonstrated that JDP-2 binding to 

a two domain PR NTD-DBD construct increased helical content in the NTD by 2 fold (~ 30 

to 60%) and the thermostability of PR from a TM of 42°C to 58°C. Partial proteolysis 

confirmed that JDP-2 binding to PR altered structural conformation in the NTD (Wardell et 

al., 2005). The effect of JDP-2 on PR NTD structure correlated with transcriptional activity. 

Other proteins including HMGB1 and closely related JDP-1 that bind to PR DBD did not 

affect structure or activity of the PR NTD (Wardell et al., 2005). Functional mutagenesis 

experiments failed to define a single minimal region of the NTD required for JDP-2 

stimulation of PR transcriptional activity. Instead, a broad region between aa 327 to 450 was 

required that appeared to consist of multiple elements. JDP-2 did not stimulate 

transcriptional activity of chimeric PR constructs consisting of the PR DBD linked to NTDs 

of other nuclear receptors, or to the GAL4 activation domain. These results indicate that a 

specific inter-domain communication between PR DBD and its own NTD is required for the 

effect of JDP-2 and that the DBD plays an active role in modulating activity of the NTD 

(Wardell et al., 2005). The AF1 of PR was initially defined as aa 456–546 of the NTD based 

on autonomous activity when regions of the NTD were linked to a heterologous GAL4 DBD 

(Meyer et al., 1992). However, this region is dispensable for JDP-2 effects on receptor 

activity when deleted in the context of full length PR (Wardell et al., 2005). These data 

taken together indicate that AF1 represents multiple elements in the NTD that require 

protein induced folding. How more ordered structure in the PR NTD induced by JDP-2 

alters transcriptional activity is not known. Because it lacks intrinsic transcriptional activity, 

JDP-2 induced folding of the NTD is presumed to produce protein interaction surfaces for 

other co-activators. Further experiments will be needed to determine the effects of JDP-2 on 

interaction of other protein or protein complexes with the NTD.

The progesterone antagonist RU486 can exhibit partial agonist activity under certain 

conditions, and this is known to require the NTD and to be mediated primarily by PR-B 

(Meyer et al., 1992). Experiments with JDP-2 provide insights into the mechanism by which 

NTD can mediate partial agonist activity of RU486. Ectopic expression of JDP-2 potentiated 
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the partial agonist activity of the antagonist RU486, enabling RU486 to induce substantial 

activation of PR that does not occur under most conditions (Wardell et al., 2010). 

Mutagenesis experiments revealed that a single region of the NTD (aa 323–427) was 

required for JDP-2 potentiation of RU486 activity and that phosphorylation of Ser400 within 

this region was also needed for maximal response. An S400A mutation of PR abrogated 

JDP-2 potentiation of RU486 agonist activity, but had no effect on agonist-dependent 

activity of PR in the presence or absence of JDP-2. An S400D PR mutation that retains 

negative charge character had minimal effect (Wardell et al., 2010). These results suggest 

that the partial agonist activity of RU486 is mediated by formation of a conformation, and 

presumably a unique interaction surface in the NTD, that is distinct from that of receptor 

bound to hormone agonist. These data also support the concept that ligand binding can affect 

the conformation and activity of the NTD. Since partial agonist activity of RU486 mapped 

to a single short element in the NTD vs. hormone agonist activity that appears to require 

multiple elements over a broader region, raises the possibility that folding between multiple 

elements of the NTD accounts for the higher activity of hormone agonists as compared to 

the weaker partial agonist activity of RU486.

NMR spectroscopy of C13-N15 labeled PR DBD-CTE and perturbation of chemical shifts 

was used as an approach to define the amino acids in PR that bind JDP-2 (Hill et al., 2009). 

The greatest change in chemical shifts occurred in the core DBD second zinc finger and in 

the CTE between aa 635–638. Point mutations revealed that Arg637/Lys638 in the CTE are 

the most critical amino acids for JDP-2 binding in vitro and for JDP-2 enhancement of 

progesterone-dependent PR transcriptional activity in cell co-transfection assays. Peptide 

competition and mutation analysis confirmed the requirement of the CTE between aa 632–

641 for binding JDP-2 and domain swapping confirmed the functional requirement of the 

CTE for transcriptional co-activation of PR by JDP-2 in cells (Hill et al., 2009). Although 

point mutations in the Arg637/Lys638 abrogated JDP-2 binding and functional co-activation 

of PR, progesterone-dependent transcriptional activity, in the absence of JDP-2, was 

increased indicating these residues have an overall repressive effect on activity of the 

receptor (Hill et al., 2009). Arg637/Lys638 are the same residues in the crystal structure that 

insert into the minor groove of DNA and are required for efficient binding of PR to weak 

PRE half-sites. A similar repressive function of the CTE on hormone-dependent 

transcriptional activity has been observed for AR, GR and was reported independently for 

PR. Substitutions for positively charged residues in the RKXKK motif in the CTE of AR 

resulted in increased transcriptional activity that correlated with an increased intra-nuclear 

mobility of the receptor and presumably a faster cycling of receptors on and off of target 

genes enhancers (Tanner et al., 2010). Similar to results with PR, an R510A mutation in the 

GR CTE increased transcriptional activity of GR towards reporters driven by selective 

endogenous target gene promoters (Meijsing et al., 2009). Lysine residues in the CTE of PR 

(K638, K640, K641) were identified to be acetylated in response to progesterone (Daniel et 

al., 2010). Furthermore, extensive mutational analysis showed that PR acetylation modulates 

the kinetics, but not the magnitude, of hormone-dependent phosphorylation of receptors, 

nuclear translocation and activation of early response PR target genes such as c-myc. 

Interestingly, acetylation of PR also dampened the magnitude of progestin activation of 

selective slow response target genes such as SGK (Daniel et al., 2010).
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These data collectively show that the CTE of PR binds DNA and co-regulatory proteins 

through overlapping as well as distinct sequences (Figure 5) and mediates a repressive effect 

on PR DNA binding and transcriptional activity that can be relieved through different 

mechanisms. To explain the multifunctional properties of this short region of receptors, the 

CTE is proposed to be dynamic and capable of interacting with multiple macromolecular 

partners in a transient fashion. Indeed, the predicted NMR structure of the PR DBD-CTE in 

solution is similar to the crystal structure of the same construct bound to DNA except for the 

an altered position of the CTE, indicating the CTE adopts a different conformation in 

solution and bound to DNA (Hill et al., 2009). The CTE has properties ascribed to naturally 

unstructured polypeptides or intrinsically disordered proteins (IDP) (see below). In multi-

domain proteins, IDPs have been proposed to facilitate allosteric coupling between domains 

propagated through energetic mechanisms as opposed to mechanical pathways (Hilser and 

Thompson, 2007). The CTE may play such a role in mediating the effects of JDP-2 binding 

on structural changes in the PR NTD.

5. Thermodynamic properties of PR dimerization and DNA binding

Knowledge of the fundamental properties of PR dimerization and DNA binding are 

important for understanding the mechanism of PR transcriptional activation. 

Thermodynamic and hydrodynamic studies of the PR isoforms have provided insights into 

the gross structural properties of full-length nuclear receptors (Connaghan-Jones et al., 2006; 

Heneghan et al., 2005). Using analytical ultracentrifugation sedimentation velocity and 

sedimentation equilibrium analysis, highly purified and functionally homogeneous PR-B 

was demonstrated to undergo self-association (Heneghan et al., 2005) with an interaction 

constant (Kd) in the micromolar range (8.8 μM). PR-A has a similar monomer-dimer self 

association, but occurs at a lower concentration than PR-B with a Kd of 1.08 μM. These data 

suggest that the additional 164 amino acid residues of the NTD of PR-B have a repressive 

effect on PR self-association. Interestingly, PR-A as a monomer has a greater frictional ratio 

than PR-B, indicating a more elongated or larger effective volume, which together with 

differences observed in limited proteolysis studies of the two receptors supports the idea that 

the N-terminal residues in PR-B influence other parts of the receptor perhaps allosterically 

to modulate PR structure and binding activities (Takimoto et al., 2003; Tung et al., 2006). 

Since PR isoforms have micromolar dimerization constants and levels of receptors in the 

cell are in the nanomolar suggests that receptors in the cell exist largely in the monomer 

form.

The energetics of PR-B and PR-A binding to DNA has been dissected using quantitative 

DNaseI footprint titrations with a single inverted repeat PRE and two tandem PREs, termed 

PRE2 (Connaghan-Jones et al., 2007; Heneghan et al., 2006). PR-B bound to single PREs 

with an apparent 12 nM affinity and intra-site cooperativity (Hill coefficient of 1.5). Higher 

apparent binding affinity (4 nM) and cooperativity (Hill coefficient of 1.8) was observed for 

inter-site binding between the two tandem PREs and was consistent with previously 

observed enhancement of binding that occurs with multiple PREs (Heneghan et al., 2006). 

Together these data were fitted to a thermodynamic binding model that revealed an intrinsic 

dissociation constant of 81 pM for PR-B dimer binding to a PRE and an intrinsic 

dissociation constant of 39 nM for PR-B monomers binding to PRE half-sites and an intra-
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site cooperativity resulting in an apparent Kd of 12 nM. These data lend support to the 

model for successive monomer binding to a palindromic PRE, as this model was 

thermodynamically favored over preformed PR dimer binding, perhaps because of 

additional energy that is required for rearrangement of the PR-B dimer or the DNA binding 

site (Heneghan et al., 2006). The strong inter-site cooperative interaction between PR-B 

bound to adjacent PREs was also found to be coupled to energetically unfavorable 

deformation of PR-B or the promoter DNA. This is in contrast to results for PR-A binding in 

the same PRE2 system, where PR-A has weaker intrinsic monomer and dimer binding as 

well as decreased intra-site and inter-site cooperativity. Therefore, amino acid residues 

unique to PR-B allosterically regulate the energetics of cooperative assembly on promoters 

(Connaghan-Jones et al., 2007).

PR binding sites on natural target genes are generally composites of near palindromic PREs 

with adjacent PRE half-sites. The mouse mammary tumor virus (MMTV) promoter, 

comprised of a single PRE with three tandemly arranged PRE half-sites and a cryptic PRE 

half-site, was used to examine the binding of PR-A (Connaghan-Jones et al., 2008). In 

contrast to the weak inter-site cooperativity observed in the PRE2 system, the apparent 

binding affinity for all MMTV sites has multiple contributions including the modest 

monomer intrinsic binding affinity, the strong inter-site cooperativity for the tandem half-

sites, and additional anti-cooperativity associated with complete saturation of the PRE half-

sites. Therefore, PR monomer binding to arrays of tandem PRE half-sites in natural 

promoters is favorable, cooperative and robust, which leads to synergistic recruitment of co-

regulators, such as SRCs that are important for transcriptional activity (Heneghan et al., 

2007).

6. Amino-terminal domain (NTD)

Study of intrinsically disordered proteins (IDP) is an emerging field with a growing 

appreciation of their importance as regulatory domains for cell signaling proteins including 

transcription factors where IDPs are most frequently located within transcriptional activation 

domains. IDPs are characterized by a low complexity amino acid composition, often 

enriched in charged residues, that does not enable spontaneous folding into a globular 

domain. Thus, IDPs exist as multiple interchanging conformers of extended random coils 

(Dyson and Wright, 2005; Ferron et al., 2006; Liu et al., 2006). IDPs have a propensity to 

fold and undergo a disorder-order transition upon binding target proteins by a “coupled 

folding and binding process,” and they are believed to adopt functionally active 

conformations by this process. This flexibility is thought to provide an adaptation advantage 

in that it enables a single regulatory protein to interact with a variety of binding partners. 

Additionally, the low affinity and high specificity of IDP binding is ideal for reversible 

transient protein-protein and protein-DNA interactions. Despite the fact that steroid receptor 

NTDs are not conserved at the amino acid sequence level, it has been proposed they share 

common structural and mechanistic features as IDPs capable of folding into an active stable 

conformation upon binding appropriate partner proteins (Kumar and Thompson, 2003; 

McEwan et al., 2007).

Hill et al. Page 13

Mol Cell Endocrinol. Author manuscript; available in PMC 2015 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Based on biophysical and hydrodynamic properties, the PR NTD is not globular but adopts 

an asymmetric elongated rod like shape (Connaghan-Jones et al., 2006; Heneghan et al., 

2005; Heneghan et al., 2006). The NTD of PR as well as other SRs is highly susceptible to 

partial proteolysis, whereas the compact globular LBDs and DBDs are resistant to 

proteolytic attack (Bain et al., 2000, 2001). Far UV circular dichroism (CD) and 

fluorescence emission spectroscopy studies have directly shown that NTDs of steroid 

receptors are largely random coil in solution but undergo cooperative folding and a gain in α 

helical content in the presence of natural organic osmolytes such as TMAO or in response to 

binding certain co-regulatory proteins (see reviews) (Kumar and Thompson, 2003; McEwan 

et al., 2007). Analysis of PR and other steroid receptors using PONDR and GlobPlot 

algorithms predicts that the NTD contains long stretches of intrinsically disordered protein 

interspersed with short underlying more structured regions that may represent binding sites 

for other proteins (McEwan et al., 2007; Tung et al., 2006).

There is a strong preference for post-translation modifications (PTMs) to occur in IDPs 

(Iakoucheva et al., 2004), and consistent with this, post-translation modifications of steroid 

receptors including phosphorylation, sumoylation, acetylation, ubiquitination and 

methylation occurs almost exclusively in the NTD and the naturally unstructured hinge 

region (or CTE) (Faus and Haendler, 2006; Ward and Weigel, 2009). The segmental 

flexibility of phosphorylation sites in proteins is required for kinase recognition and for the 

subsequent binding of phosphorylated residues to target proteins. Steroid receptors have 

multiple phosphorylation sites that reside largely within the NTD at Ser-Pro motifs (see 

reviews) (Faus and Haendler, 2006; Ward and Weigel, 2009). Ser-Pro motifs are recognized 

by the receptor co-activator Pin1, which is a peptidyl prolyl isomerase, and it has been 

suggested that in addition to causing a change in charge, phosphorylation may also alter 

receptor structure (Yi et al., 2005). Human PR contains up to10 phosphorylation sites, five 

are located in the unique PR-B specific region of the NTD, four are in the NTD common to 

PR-A and PR-B and one site (Ser676) is in the hinge (Figure 1). Although much remains to 

be learned about the role of phosphorylation of PR, studies have implicated regulation of 

several functions including receptor turnover, nuclear translocation, transcriptional activity, 

target promoter selectivity, cross-talk with growth factor signaling pathways and rapid 

effects of PR on signal transduction pathways that converge on other nuclear transcription 

factors to regulate gene expression (Daniel and Lange, 2009) and (see reviews) (Faus and 

Haendler, 2006; Ward and Weigel, 2009). Phosphorylation sites of PR are also differentially 

modulated at stages of the cell cycle. Ser162 and Ser294 are phosphorylated predominantly 

during S phase in a manner that correlates with maximal transcriptional activity of PR and 

recruitment of co-activators to PR target genes suggesting a cell cycle specific role of these 

phosphorylation events (Narayanan et al., 2005). The only phosphorylation site outside the 

NTD is Ser676 in the hinge. This is conserved in all steroid receptors and has been most 

extensively characterized in AR to be involved in regulating nuclear translocation. The 

Ser294 phosphorylation site has been the most extensively analyzed site in PR. It is located 

in the NTD common to both PR isoforms, yet phoshorylation of this site is highly 

preferential for PR-B suggesting that a distinct conformation of PR-B NTD in this region is 

required for phosphorylation (Clemm et al., 2000). The PR NTD is also modified by 

sumoylation at Lys388 mediated by the E3 ligase activity of protein inhibitor of activated 
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STAT (PIAS3). Progesterone stimulates rapid sumoylation of Lys388 and mutational 

analysis demonstrated that this post-translation modification represses transcriptional 

activity of PR on selected target genes (Abdel-Hafiz et al., 2009; Abdel-Hafiz et al., 2002; 

Daniel and Lange, 2009; Daniel et al., 2007; Man et al., 2006).

The majority of well characterized nuclear receptor co-activators interact with AF2 in the 

LBD. Fewer proteins that interact primarily with the NTD and modulate AF1 activity have 

been characterized. Some examples of AF1 co-activators include p68 (RNA helicase), a 

DNA repair protein MMS19, an RNA molecule termed SRA (steroid receptor RNA 

activator), histone acetyltransferase binding to ORC-1 (HBO1), HIC-5, Art-27, AR specific 

co-activators, and the general transcription factors TBP, TFIIB and TFIIF (see reviews) 

(Kumar and Thompson, 2003; Li and O’Malley, 2003; McEwan et al., 2007). The NTD can 

also bind co-repressors such as CHIP, RTA (repressor of tamoxifen transcription activity) 

and HDAC4 (He et al., 2004; Leong et al., 2005; Martini and Katzenellenbogen, 2003). Of 

note is the wide variety of interacting proteins and that the NTD is important for cell/tissue 

type specific activities of steroid receptors. Taken together these properties are consistent 

with a greater flexibility and range of potential protein interaction partners of the NTD as 

compared with the conserved well-structured AF2. NTDs of GR, ER and AR have been 

shown to undergo folding coupled with binding of TBP, CBP, or the RAP74 subunit of 

TFIIF, in a manner that results in greater α helical content of the NTD (Kumar et al., 2004a; 

Kumar et al., 2004b; Lavery and McEwan, 2006; Reid et al., 2002; Warnmark et al., 2001). 

A small core (aa 187–242) of the NTD of GR has been shown to be sufficient for 60–70% of 

the activity of AF1 and for binding TBP. As determined by NMR spectroscopy, TBP 

binding generated chemical shift perturbations in the GR core AF1 residues in a region with 

a propensity to form α helical segments (Kumar et al., 2004b). As evidence of the biological 

relevance of TBP interaction, an interaction between GR and TBP in live cells was detected 

by FRET and TBP enhanced the transcriptional activity of GR in cell transfection assays in a 

manner dependent on the AF1 core (Copik et al., 2006). In cell-free transcription assays with 

the AF1 of AR linked to a heterologous DBD, TFIIF binding enhanced activity of AF1 

(Choudhry et al., 2006). Recent studies to define the mechanism by which the NTD of GR 

mediates transcriptional activity revealed that phosphorylation of Ser211 in the core AF1 

induced secondary and tertiary structure formation that facilitated interaction of AF1 with 

co-regulatory proteins including TBP, SRC1 and CBP. This study for the first time 

implicates a role for site-specific phosphorylation in directly modulating the structure of the 

NTD to adopt a more ordered functionally active conformation (Garza et al., 2010).

TBP also binds to the NTD of PR and induces stable tertiary and secondary (α-helix) 

structure in a manner that correlates with increased transcriptional activity (Moure, 2009). 

As assessed by circular dichroism spectroscopy, the NTD of PR exhibited a decrease in 

random coil and an increase in helical content in response to binding TBP. It also adopted a 

more ordered tertiary structure in the presence of TBP as determined by protection at 

multiple sites against proteolysis and by fluorescence emission spectroscopy. Mapping 

experiments defined a minimal region of the NTD (aa 350–428) that folds in response to 

binding TBP and point mutations in a predicted short α-helix in this region (aa 384–410) 

disrupted TBP coupled folding and binding. Mutations in the NTD region that disrupted 

TBP coupled folding and binding, also reduced TBP enhancement of PR transcription 
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activity (Moure, 2009). These data suggest that similar to GR and AR, PR contains a short 

α-helical element embedded within the NTD that binds TBP and nucleates folding of the 

NTD to adopt a more stable structure.

In addition to the well characterized interaction between the LXXLL motif in the nuclear 

receptor (NR) box of steroid receptor coactivators (SRCs) with AF2 in the C-terminus of 

steroid receptors, interactions have also been documented between other surfaces of SRCs 

with the NTD/AF1 (Ma et al., 1999; Metivier et al., 2001; Onate et al., 1998; Webb et al., 

1998). As evidence that these interactions are functionally important, full-length SRC-1 

bearing mutations in the NR box that selectively disrupts interaction with AF2 are still 

potent coactivators of steroid receptors (Ma et al., 1999). A hormone agonist-dependent 

interaction between the amino and carboxyl termini of PR contributes to functional synergy 

between AF1 and AF2, and SRC-1 has also been demonstrated to enhance N-C terminal 

interactions (Abdel-Hafiz et al., 2009; Tetel et al., 1999). Whether the interaction of SRCs 

with AF1 affects folding of the NTD has not been explored.

The NTD is responsible for differences in transcriptional activity of the two PR isoforms 

since they differ only by unique additional sequences in the NTD of PR-B. The precise 

mechanism(s) responsible for the distinct activities of PR-A and PR-B is not known. Data 

suggests the NTD structure of the two isoforms differs and that the B-specific region exerts 

allosteric effects on conformation and functional activities of other regions of the receptor 

(Bain et al., 2000, 2001; Tung et al., 2006). Distinct structural conformations of the NTD 

may also be responsible for the preferential phosphorylation of Ser294 in PR-A (Clemm et 

al., 2000; Daniel et al., 2007). PR-B contains a third transcription activation domain AF3 

that was mapped to residues aa 54–154 in the PR-B specific region of the NTD, and three 

specific sites were identified that define the minimal AF3 activity; Trp140 and two LXLL 

motifs termed L1 and L2 (Tung et al., 2001). AF3 contains autonomous transcriptional 

activity when linked to a heterologous DBD, but its main function is to synergize with AF1 

and AF2 in the context of full length PR-B. Support for this comes from experiments where 

mutations in Trp140 and L1/L2 that abolished autonomous AF3 activity also inactivated full-

length PR-B and did not convert PR-B functionally to PR-A based on target gene regulation 

(Tung et al., 2006). Additionally, AF3 synergy required cooperative interactions of PR with 

multiple-PRE promoters, was associated with recruitment of SRC-1/p160 co-activator 

complexes, and required the sumoylation of the NTD (Takimoto et al., 2003; Tung et al., 

2006).

In addition to induced folding through protein binding, the structure of the NTD can be 

stabilized in response to binding DNA via an inter-domain allosteric mechanism. Studies of 

two domain NTD-DBD polypeptides of AR, GR and PR have shown that DNA binding 

protected areas of the NTD against proteolytic attack, and CD and fluorescence emission 

data show a cooperative folding of the NTD in response to DNA binding (Bain et al., 2000, 

2001; Kumar et al., 1999). Studies with full-length ER and GR have also shown by 

proteolysis and other methods that binding to DNA alters the conformation of receptors and 

co-activator interaction (Hall et al., 2002; Lefstin and Yamamoto, 1998; Wood et al., 2001). 

Binding to slightly different HRE sequences was observed to induce distinct conformations 

in the receptor (Hall et al., 2002; Wood et al., 2001) and to direct preferential utilization of 
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co-activators and activation domains (AF1 vs. AF2) (Meijsing et al., 2009). These data 

indicate that DNA is a sequence specific allosteric ligand that can modulate the activity of 

receptors bound to specific target genes. X-ray crystallography studies of the GR DBD, 

complexed with 13 different GRE sequences, observed that structures were indistinguishable 

except for distinct changes in the conformation of a loop (termed lever arm) that connects 

the DNA recognition helix 1 and the D box. Change in lever arm conformation has been 

proposed to be involved in transmitting signals from the DBD to other domains of receptors 

in response to binding DNA (Meijsing et al., 2009). We propose the CTE that is also 

conformationally sensitive to DNA and protein interactions may play a similar role (Hill et 

al., 2009; Roemer et al., 2008).

7. Conclusion

The carboxyl terminal extension (CTE) of the DNA binding domain and the NTD of PR are 

dynamic regions of the receptor that can adopt multiple conformations and structures 

depending on the environment of interacting proteins and DNA. Both regions have 

regulatory roles for multiple receptor functions that appear to relate to the potential to form 

multiple active conformations. Despite the lack of understanding of the structure/function of 

the NTD, it accounts for a major proportion of the total transcriptional activity of steroid 

receptors, is important for cell and target gene specific activities, and it contributes to the 

relative agonist/antagonist activities of small molecule ligand selective receptor modulators 

(SRMs). The design of SRMs for clinical use and what we know mechanistically about how 

SRMs work is based primarily on how they alter conformation and interactions of co-

regulatory proteins with AF2 in the LBD. A better definition of the structure/function 

properties of the NTD is essential for the development of improved SRMs and for advancing 

our understanding of the molecular mechanism of action of steroid receptors. A high 

resolution structure of full length steroid receptors and the NTD has eluded the field for a 

long time. This will likely require decoration of the NTD with appropriate protein and DNA 

binding partners that promote folding as a stable structure.
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• This paper reviews the structural dynamics of steroid hormone receptors.

• The hinge region and amino terminal domain (NTD) are intrinsically disordered 

regions of receptors.

• The hinge and NTD form multiple conformations upon binding co-regulatory 

proteins or DNA.

• Due to structural flexibility, the hinge and NTD are sites of post-translation 

modifications.
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Figure 1. Progesterone receptor domains and post-translational modifications
PR-B is the full-length receptor isoform; PR-A lacks 164 amino acids at the N-terminus. 

Ligand binding domain (LBD), DNA binding domain (DBD), amino terminal domain 

(NTD), hinge (h), carboxyl terminal extension (CTE), transcriptional activation functions 

AF1, AF2, AF3. Polyproline motif (as 421–427) that binds the SH3 domain of the tyrosine 

kinase c-Src, serine phosphorylations (P), sumolylation (SUMO).
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Figure 2. Structure of PR DNA binding domain and CTE complexed to DNA
Core DBDs in the dimer are in rainbow coloring from blue (N-terminus) to red (C-

terminus). The CTE is red and zinc molecules and DNA are grey. Helix 1 (H1) is green, 

Helix 2 is red and helix 2′ (light green) extends off the C-terminus of H1. The sequence of 

the PRE double stranded DNA is indicated at the bottom. Image was made in Pymol. 

(Adapted from Molecular Endocrinology 20: 3042, 2006)
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Figure 3. Alignment of the CTEs of steroid/nuclear receptors and interaction of conserved PR 
RK residues with DNA minor groove
All steroid receptors except ERβ have a conserved RK sequence in a similar position in the 

CTE as the Arg637/Lys638 residues of PR that interact in the minor groove. Crystal structure 

of PR DBD showing interaction of Arg637/Lys638 of CTE with the minor groove. View is a 

monomer subunit bound to a PRE half-site. (Adapted from Molecular Endocrinology 

20:3042, 2006)
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Figure 4. Proposed mechanism of action of HMGB1
HMGB1 (green) interacts with the CTE (red) of PR (core DBD in blue) and disrupts a 

repressive intra-molecular interaction between the CTE and core DBD. This promotes CTE 

binding to the DNA minor groove flanking the PRE. HMGB dissociates and may affect 

RNA pol II and general transcription factors in down stream steps in the process of steroid 

receptor-mediated gene transcription. Adapted from Nucleic Acids Research 36:3663, 2008.
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Figure 5. CTE is a multifunctional regulatory region able to bind DNA and proteins
Distinct as well as overlapping residues in the CTE mediate interaction with different 

partners; aa 632–641 is most important for interaction with DNA and JDP-2, aa 642–656 is 

more important for interaction with HMGB1. The CTE is capable of adopting distinct 

conformations dependent on the nature of the interacting partner, and JDP-2-induced 

structural changes in the CTE are proposed to mediate coupling with the disordered NTD of 

PR. Adapted from Journal of Biological Chemistry 284: 24422, 2009.
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