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Abstract

Recent work in computational neuroscience and cognitive psychology suggests that a set of cells 

that decay exponentially could be used to support memory for the time at which events took place. 

Analytically and through simulations on a biophysical model of an individual neuron we 

demonstrate that exponentially decaying firing with a range of time constants up to minutes could 

be implemented using a simple combination of well-known neural mechanisms. In particular we 

consider firing supported by calcium controlled cation current. When the amount of calcium 

leaving the cell during an interspike interval is larger than the calcium influx during a spike, the 

overall decay in calcium concentration can be exponential, resulting in exponential decay of the 

firing rate. The time constant of the decay can be several orders of magnitude larger than the time 

constant of calcium clearance and it could be controlled externally via a variety of biologically 

plausible ways. The ability to flexibly and rapidly control time constants could enable working 

memory of temporal history to be generalized to other variables in computing spatial and ordinal 

representations.

Introduction

It has been widely accepted that memory of recent events (working memory (Goldman-

Rakic, 1995)) is represented through the maintenance of action potential firing rather than 

through anatomical changes such as synaptic modifications. If that is the case, then neurons 

that respond to stimulus presentation and then continue to fire after the presentation has 

ended could be essential for representation of the recent history (Hasselmo & Stern, 2006).

Neurons that continue to fire after the stimulus during the delay period of a memory task 

have been reported in multiple in vivo studies (Goldman-Rakic, 1996; Funahashi, Bruce, & 

Goldmanrakic, 1989; Miller, Li, & Desimone, 1993; Miller, Erickson, & Desimone, 1996; 

Romo, Hernandez, Lemus, Zainos, & Brody, 2002; Miyashita & Chang, 1988). An 

extensive literature implicates recurrent connections, especially in prefrontal cortex, in 

sustained firing (Hebb, 1949; Goldman-Rakic, 1995; Compte, Brunel, Goldman-Rakic, & 

Wang, 2000; X. Wang, 2001; M. Wang et al., 2012). However, in vitro work suggests that 

persistent activity could also be caused by processes intrinsic to single neurons. Persistent 

firing has been found in slice preparations in a number of brain regions including layers 2, 3 

and 5 of entorhinal cortex (Egorov, Hamam, Fransén, Hasselmo, & Alonso, 2002; Klink & 
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Alonso, 1997; Tahvildari, Fransén, Alonso, & Hasselmo, 2007; Jochems, Reboreda, 

Hasselmo, & Yoshida, 2013), layer 5 of prefrontal cortex (Haj-Dahmane & Andrade, 1996), 

lateral amygdala (Egorov, Unsicker, & Halbach, 2006), postsubiculum (Yoshida & 

Hasselmo, 2009), the CA1 region in hippocampus (Knauer, Jochems, Valero-Aracama, & 

Yoshida, 2013) and perirhinal cortex (Navaroli, Zhao, Boguszewski, & Brown, 2011). All of 

these studies used synaptic blockers to demonstrate that persistent firing can be sustained by 

individual neurons and does not depend on recurrent connections.

Experimental and theoretical work has been primarily focused on persistent firing with a 

stable firing frequency. Indeed, neurons can retain the information that a stimulus was 

presented by maintaining a stable elevated firing rate after the stimulus has ended. However, 

stable persistent firing cannot carry information about when the stimulus was presented. If a 

neuron fires at a constant frequency following a stimulus, then one can not deduce anything 

about the time when the stimulus occurred or about the duration of the stimulus from its 

firing rate. Imagine a cognitive experiment in which the same stimulus is repeated to the 

subject, but with different time lags, for example: “TABLE (5s lag) TABLE (5s lag) 

TABLE (1s lag) TABLE.”. One ought to be able to recognize that the delay after the third 

presentation of the stimulus was shorter than the other two. Humans and other animals are 

able to judge the time at which stimuli were presented over a range of intervals (e.g., 

Gibbon, 1977; Lewis & Miall, 2009; Roberts, Cheng, & Cohen, 1989; Lejeune & Wearden, 

2006; Wearden & Lejeune, 2008; Yntema & Trask, 1963). Stable persistent firing cannot 

account for this ability.

To account for the memory that can store approximate representation of recent stimulus 

history, we focus here on neural firing caused by a stimulus that then slowly decays. Here 

“slowly” is defined with respect to timescale characteristic for intrinsic dynamics of neural 

mechanisms, much longer than a few hundred milliseconds. Slowly-decaying firing has been 

found in many in vitro studies (see Figure 1, Haj-Dahmane & Andrade, 1996; Klink & 

Alonso, 1997; Tahvildari et al., 2007; Fransén, Tahvildari, Egorov, Hasselmo, & Alonso, 

2006; Yoshida & Hasselmo, 2009; Kulkarni, Zhang, & Kirkwood, 2011; Winograd, 

Destexhe, & Sanchez-Vives, 2008; Schwindt, Spain, Foehring, Chubb, & Crill, 1988; Hyde 

& Strowbridge, 2012).

With slowly decaying firing, if the rate of the decay is known, one can reconstruct the time 

when the stimulus was presented from the firing rate. Many neural models of timing exploit 

firing rates that change in a lawful way over relatively long periods of time to support 

behavior (e.g., Gavornik & Shouval, 2011; Simen, Balci, Souza, Cohen, & Holmes, 2011; 

Shouval & Gavornik, 2011). However, a single neuron is not able to code the entire stimulus 

history. In other words it is not possible to represent a function such as stimulus history with 

a single scalar value such as firing rate of a neuron. Consider the case in which TABLE is 

presented multiple times with different delays in between. After the first presentation of 

TABLE, the firing rate increases to some level and then decreases gradually over time. 

During the delay between the first and second presentation of TABLE, the firing rate can 

provide information about how far in the past TABLE was presented. But now what happens 

when TABLE is repeated? If the cell is unaffected by the second presentation, but continues 

to decay, then the second presentation has had no effect and cannot be coded by the neuron. 

Tiganj et al. Page 2

Hippocampus. Author manuscript; available in PMC 2015 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



If the neuron responds to the second presentation by going to the same firing rate as 

immediately after the first presentation and then decays, information about the first 

presentation is lost. Even if the neuron responds to both presentations in an additive fashion, 

this is still not sufficient to code for the history. Consider the interval after presentation of 

the first stimulus. Let’s denote the firing rate after 2.5 s have passed as x. After the second 

stimulus, the firing rate increases to some value higher than immediately after the first 

presentation of table (due to the additive effects of the two stimulus presentations). If the 

firing rate eventually decays to zero, it must at some point pass through x; if the decay 

function is smooth and monotonic, this must happen some time more than 2.5 s after the 

second presentation of TABLE. But this illustrates the problem of having a single neuron 

code for a function of stimulus history: the same value x must code for two histories, one 

history with a single presentation 2.5 s in the past, and another history with two stimulus 

presentations separated by 5 s in the past.

Shankar and Howard (2012) pointed out that, in principle, complete information about the 

history of stimulus presentations can be encoded by a set of exponentially-decaying neurons 

with different time constants. The basic idea is that whereas a single neuron cannot maintain 

a representation of a stimulus history, a set of many neurons with different time constants 

can.1 This mechanism requires the existence of a set of neurons indexed by s whose firing 

rates F (s, t) decay exponentially following the stimulus presentations f(t) across time t:

(1)

The variable α(t) is a modulatory input to the set of integrators, changing their time 

constants together as a function of time. Shankar and Howard (2012) provided a description 

of how this set of leaky integrators, with α(t) = 1, can be used to construct a scale-invariant 

representation of the history of f leading up to the present.2 The extracted estimate of history 

can be used to describe a number of behavioral findings (Shankar & Howard, 2012; Howard 

& Eichenbaum, 2013; Howard, Shankar, Aue, & Criss, in press). By choosing α(t) 

judiciously, one can code for functions of variables other than time, including spatial 

location and ordinal position (Howard et al., 2014). The resulting representation has 

correlates that resemble those of a variety of neurons in the hippocampus and related 

regions, including time cells (MacDonald, Lepage, Eden, & Eichenbaum, 2011; Pastalkova, 

Itskov, Amarasingham, & Buzsaki, 2008), boundary vector cells (Lever, Burton, Jeewajee, 

O’Keefe, & Burgess, 2009), place cells (Burgess & O’Keefe, 1996; Mankin et al., 2012), 

“splitter cells” (Wood, Dudchenko, Robitsek, & Eichenbaum, 2000), trajectory coding cells, 

and retrospective coding cells (Frank, Brown, & Wilson, 2000).

1This claim can be verified by noting that a set of integrators with different time constants encode the Laplace transform, with real 
coefficients, of the history leading up to the present moment. Because the Laplace transform is invertible, complete information about 
the history is still available in the pattern of firing rates across the neurons (see Shankar & Howard, 2012, for details).
2Briefly, the mechanism for extracting the stimulus history from Eq. 1 is essentially a lateral inhibition.
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If it could be implemented in neural circuits, Eq. 1 could provide the centerpiece of a model 

that integrates many aspects of behavior and systems-level firing properties of neurons. 

However, Eq. 1 presents two major challenges for a biological circuit::

1. In order for the model to describe neural firing and behavioral effects up to long 

time scales, there should be neurons with time constants on the order of that time 

scale. The time constant of each unit in Eq. 1 is 1/s.

2. Rapid external control of the time constants of the exponential decay is necessary 

for an external signal α(t) to modulate Eq. 1.

The primary purpose of this paper is to develop a biologically plausible hypothesis for how 

these two properties could be implemented. Although it is possible that these properties 

could result from recurrent network connections (see Major & Tank, 2004; Brody, Romo, & 

Kepecs, 2003, for reviews), we focus here on the possibility that intrinsic currents could be 

used to implement these two properties.

Overview

The calcium-activated non-specific cationic (CAN) current has been demonstrated to be 

crucial for persistent firing in some in vitro preparations. When CAN current was blocked, 

or in the absence of calcium, persistent firing did not occur (Egorov et al., 2002; Tahvildari, 

Alonso, & Bourque, 2008; Yoshida & Hasselmo, 2009; Zhang, Reboreda, Alonso, Barker, 

& Séguéla, 2011; Navaroli et al., 2011). Moreover, activation of muscarinic acetylcholine 

receptors, which leads to CAN current activation, has been shown as necessary for induction 

of persistent firing in some cases (Egorov et al., 2002; Navaroli et al., 2011; Yoshida, 

Knauer, & Jochems, 2012). Computational modeling studies have been successful in 

proposing detailed mechanisms based on the interplay between CAN current and 

intracellular calcium concentration that could account for stable firing (Fransén, Alonso, & 

Hasselmo, 2002; Fransén et al., 2006), linearly growing firing (Durstewitz, 2003) and firing 

during an interval of learned duration (Shouval & Gavornik, 2011).

Here we propose a simple model for exponentially decaying after-discharge firing that 

depends on CAN current. Graded persistent firing (Egorov et al., 2002; Fransén et al., 2006) 

reflects a perfect integrator with an infinite time constant; the basic idea of this paper is to 

use a similar approach to generate leaky integrators with a range of finite time constants. We 

show that for a realistic choice of the parameters the firing rate decays approximately 

exponentially. The time constant of the decay is defined by a set of parameters several of 

which could be externally tuned, either through synaptic inputs or neuromodulation.

Figure 2 illustrates the proposed feedback loop. After the stimulus presentation, relatively 

high calcium concentration decays, but also drives the CAN current which depolarizes the 

cell causing a spike that brings more calcium in the cell effectively prolonging the calcium 

decay. The rate of the decay is mediated through several mechanisms (Figure 2a).

Stage 1: Stimulus causes calcium accumulation

We start from the moment when the stimulus that will trigger the exponentially decaying 

firing is presented (number 1 in Figure 2). We assume that the neuron fires in response to 
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the stimulus, leading to an increase of the intracellular calcium level, since during the 

stimulus calcium enters the cell through voltage gated calcium channels.

Stage 2: While calcium decays, the CAN current slowly depolarizes the cell causing a 
spike

After the stimulus presentation has ended the CAN current, which depends on calcium 

concentration, is relatively strong since calcium concentration is high (Figure 2b at time t0 = 

0). The CAN current depolarizes the cell (number 2 in Figure 2) eventually reaching the 

threshold level so an action potential is fired. During the interspike interval intracellular 

calcium concentration decays due to the activity of generally present calcium clearance 

mechanisms, which pump calcium out of the cell or into internal calcium buffers.

Stage 3: During the spike calcium enters the cell

During the action potential voltage gated calcium channels open again allowing additional 

calcium influx (number 3 in Figure 2) kCa, which is constant per spike. If this influx is 

smaller than the amount of calcium pumped out of the cell during the interspike interval then 

the amplitude of the CAN current will be smaller than at the moment when the stimulus 

presentation has ended at the beginning of the decay (see Figure 2b).

The CAN current will now continue again to depolarize the cell, but since its new starting 

amplitude is lower than at the start of the previous depolarization it will take more time for 

the cell to reach the threshold level, which will result in an increase of the interspike 

interval. This process will continue iteratively while the CAN current is strong enough to 

depolarize the cell to the threshold level. Each successive interspike interval will be longer 

than previous, meaning a firing rate will decay. In the following section we will analytically 

show that for a range of parameters, decay of the firing rate is approximately exponential.

Model

For analytic tractability, we use a simple integrate and fire model. During interspike 

intervals membrane potential as a function of time vm(t) is modeled as:

(2)

Note that in this extremely simple model iCAN is the only current; there are no other inputs 

nor a leak current. When the membrane potential reaches the threshold level vt, an action 

potential is fired and the membrane potential is reset to the reset potential vr, which is equal 

to the initial value of the membrane potential vm(0). Here Cm is the membrane capacitance, 

defined by geometric properties of the cell and the specific capacitance of the cell 

membrane.

Because calcium controls the CAN current, changes of the membrane potential are 

determined by calcium dynamics. The calcium concentration is assumed to be affected by 

two mechanisms. 1) Calcium clearance that constantly drives calcium out of the cell with 

time constant τp. 2) A voltage-gated calcium current which contributes meaningfully only 
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during spikes. Calcium clearance is present all the time and calcium influx is present only 

when the cell is firing an action potential.

We model the change of calcium at each moment as a clearance process that only depends 

on the instantaneous intracellular calcium concentration Ca(t):

(3)

this results in exponential decay of the intracellular calcium concentration with the time 

constant τp. As mentioned earlier, we assume that Ca(0) ≫ 0 due to some external stimulus 

presentation prior to time zero. For the calcium influx we assume that each spike causes the 

same change in calcium concentration, thus each time when the neuron fires we increase 

calcium concentration by a fixed amount: kCa.

Finally, let us describe the relationship between calcium concentration and the CAN current. 

It will turn out that under certain assumptions the CAN current is approximately 

proportional to calcium concentration, and depends on the membrane potential vm. In the 

form of standard Hodgkin-Huxley model we can express the CAN current as follows:

(4)

Here ḡCAN is the maximal value of the ion conductance measured in , ECAN is the 

reversal potential of the CAN current ion channels and m is a dimensionless quantity 

between 0 and 1 that is associated with activation of the CAN current ion channels. 

Following previous computational work (Traub, Wong, Miles, & Michelson, 1991; Fransén 

et al., 2002), we let the value of m change from moment to moment according to

(5)

where a and b are free parameters. From Eq. (5) we can see that in general the value of m at 

a particular moment is a function of both time per se as well as the history of calcium 

concentration.

In the next section, we will show analytically that under appropriate circumstances, the 

calcium concentration and firing rate decay approximately exponentially. We will derive an 

expression for this time constant of this exponential decay. In the following section, we will 

verify the approximation using a computer simulation of the same model.

Analytical approach

The analytic solution, which results in calcium concentration that decays exponentially, 

requires that three conditions hold. First, in order for calcium concentration to decay over 

time it is essential that the amount of calcium that enters the cell during spikes is smaller 

than the amount of calcium that clears the cell during an interspike interval. Second, the 

ratio between an interspike interval and τp has to be much lower than one. Third, the CAN 
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current should be proportional to the calcium concentration: iCAN ∝ Ca. This third condition 

is met when aCa(t) ≪ b and . This last condition requires a little bit of 

discussion.

Starting from Eq. (5), it is easy to show that m(t) ∝ aCa(t) holds for a wide range of 

parameters for the model.3 Given that the conductance is proportional to Ca, it remains to be 

shown that the current is also proportional to Ca. At each moment, the current will depend 

not only on the conductance, but also by the difference between the membrane voltage and 

the reversal potential of iCAN, ECAN. However, because there is no leak current, the total 

charge necessary to cause a spike in a given interspike interval is always the same. This can 

be estimated from the average current, which can be estimated from the average voltage 

over the interspike interval v̄m. When these conditions hold, the approximation iCAN ∝ Ca 

emerges from Eq. (4). Simulations to follow will justify these approximations.

We focus on how change of the CAN current amplitude affects the firing rate. Obviously, 

decaying CAN current will result in decaying firing rate, but we will show that the 

relationship between CAN current and firing rate is linear. This implies that CAN current 

that decays exponentially slowly over time will result in exponentially decaying firing rate. 

To get a further intuition behind the derivations below, one can think that exponential decay 

of calcium is interrupted by calcium influx every time a spike is generated. Since the time 

for which each spike prolongs the calcium decay can be well approximated as a linear 

function of time (under the assumption that new spikes are arriving rapidly with respect to 

the calcium clearance time constant) the overall calcium decay turns out to be approximately 

exponential. Since overall calcium concentration and the firing rate are coupled, they will 

decay in a same way. The time constant of the exponential decay depends on the calcium 

time constant on one side (larger time constant makes the overall decay slower) and strength 

of CAN current on the other (larger current makes the overall decay slower).

Let us first consider relationship between the CAN current and duration of a single 

interspike interval. Observe that constant amount of charge, call it Q, is needed to depolarize 

the cell from the reset potential vr to the threshold potential vt: Q = Cm (vr − vt). Because 

there is no leak current, this amount is the same for every interspike interval (see Figure 2b) 

and satisfies

(6)

where δi is duration of the ith interspike interval.

We consider now two consecutive intervals, such that the first interval starts at t0 = 0. To 

find the dynamics of the firing rate we note that Q is the same for both spikes and

3If Ca(t) is changing slowly with respect to m, then the stationary state for Eq. (5) can be expressed as: . By changing 
variables to m′ ≡ m − m∞, it is easy to show that the relaxation time to reach that stationary state is τm = 1/(aCa + b). It is evident 
that for aCa ≪ b, m∞ ∝ Ca. This approximation requires that the effective time constant of Ca is much slower than the relaxation 

time for m. That is, it requires that .
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(7)

where:

(8)

and

(9)

As we will not focus on separately investigating the roles of a, v̄m and ECAN, for simplicity 

we gather them in a single constant γ:

(10)

We define δ1 ≡ t1 − t0 and δ2 ≡ t2 − t1. After solving the integrals in Eq. (7) we have

(11)

Under the assumption δi/τp ≪ 1, keeping first order terms we find . From 

Eq. (6) it follows that . Now we can write the ratio of two consecutive interspike 

intervals as follows:

(12)

We define firing rate R as a discrete function computed from the interspike intervals δi in a 

following way: R(ti) ≡ 1/δi+1, ∨i ≥ 0.

(13)

Equation (13) implies that the firing rate changes exponentially, with a rate constant that can 

be computed from Eq. (13). In general, if the firing rate R changes exponentially with time 

constant τR, then for t0 = 0 we can write the ratio R(t0)/R(t1) as follows:

(14)

When the interspike interval is small relative to the time constant of the firing rate we can 

use a linear approximation: , which gives
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(15)

Now Eq. (13) and (15) are easily comparable. For the regime where the approximations hold

1. After a depolarizing input that causes spiking the firing rate decays approximately 

exponentially

(16)

2. The time constant of the decay, τR satisfies

(17)

Eq. (17) conveys a great deal of information. If there is no calcium influx during spikes (if 

kCa = 0) the time constant of the firing rate decay will be equal to the time constant of the 

calcium clearance (τR = τp). The last term in Eq. (17),  can not be negative, thus 

the minimum possible value of the time constant of firing rate decay τR is the value of the 

time constant of calcium clearance τp. Increasing the calcium influx (kCa), the CAN current 

maximal conductance (ḡCAN) or decreasing the amount of charge required for spike 

generation (Q) results in increasing the time constant of the firing rate decay τR. Figure 3 

shows the rate constant 1/τR for varying τp and ḡCAN—similar results would be obtained for 

kCa or Q. When the right hand side of Eq. (17) is equal to zero the time constant is equal to 

infinity (this value is marked with the black line on Figure 3). This is an important result; as 

long as the assumptions used in the derivation hold, there is no upper limit to the time 

constant of decay.

The findings above provide a means to implement Eq. 1 with long time constants. Because 

there are several parameters that control the time constant, neurons with a different values 

for any of the parameters on the right hand side of Eq. 17 will have different time constants. 

To the extent the values of these parameters can be manipulated rapidly, rapid changes in 

the time constant are possible as required to implement α(t) in Eq. 1. In the following 

section we will perform a set of simulations to confirm that the full model exhibits 

exponential decay, with a time constant specified by Eq. (17), for a wide range of plausible 

parameters.

Simulations

We performed a set of simulation, using Matlab (version R2011a), with the integrate and 

fire single-compartment model described above. We used the full biophysical model of the 

CAN current, as in Eq. (4) and (5) (Traub et al., 1991; Fransén et al., 2002). Through the 

simulations we will confirm that the simplifications are reasonable. Additionally, the 

simulations will allow us to explore the parameter space and closely observe how changing 

calcium clearance time constant τp, calcium influx kCa, the CAN current maximal 
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conductance ḡCAN, or the amount of charge required for spike generation Q affect firing rate 

time constant τR.

Unless otherwise specified, values of the parameters of the model were as follows. Discrete 

time step was set to 0.1 ms (testing with lower time step did not change the results 

significantly). Calcium influx during each spike was set to 4% of the initial calcium 

concentration (presumably corresponding to a calcium microdomain related with the CAN 

current, not to the overall calcium concentration). The calcium clearance time constant τp 

was set to 1 s, consistent with previous studies4. The value of ḡCAN, the maximal value of 

the CAN current ion conductance which determines the CAN current maximal amplitude 

was set to 1 . This choice is also supported by results from other studies (e.g., 

Sidiropoulou & Poirazi, 2012). As in Fransén et al. (2002) parameters a and b from Eq. 5 

were set to 0.02 and 1 respectively. We set the spiking threshold vt = −40 mV, the reset 

potential vr = −70 mV, specific membrane capacitance to a value of 1 , and used a 

cylindrical compartment with surface of 10−4 cm2. Results to follow will suggest that choice 

of these values was not critical—the approximations used in the derivation are reasonable 

for a wide range of parameters.

The four panels of Figure 4 shows the firing rate as a function of time for different values of 

four parameters on the right hand side of Eq. 17, τp, ḡCAN, kCa and Q. As the analytical 

results in the previous section suggest (see Eq. (13)), when observed on a large time scale 

the overall calcium decay can be well approximated with an exponential function. Figure 4 

suggests that by changing any of the four parameters from Eq. (17) (τp, ḡCAN, kCa and Q) 

we can obtain approximately exponential decay with a wide range of time constants τR. By 

tuning the parameters appropriately, we can achieve a firing rate with virtually any time 

constant.

To get a sense of the error in the analytic results resulting from the various approximations, 

we directly compared simulated and analytically computed time constants τR for different 

values of τp and ḡCAN (Figure 5). Analytical results correspond well to the values obtained 

through the simulations, especially for large time constant τR. When τR is small, its 

estimation from the simulations becomes more difficult, since only a few spikes are 

available. Thus the red dots which denote simulated results on Figure 5a and Figure 5b 

oscillate around the blue curves which denote analytical results. This is due primarily to 

error in the estimation of the time constant as an additional spike becomes available before 

firing terminates entirely.

Discussion

The aim of the proposed study was to demonstrate that exponentially decaying firing with 

externally controlled time constants that range up to several minutes is biologically 

plausible. This result is important to illustrate plausibility of a framework for scale-invariant 

4see e.g., Romani et al. (2013); Sidiropoulou and Poirazi (2012) where τp was set to 1.4 s, Mainen and Sejnowski (1996) where value 
of 0.2 s was used or Royeck et al. (2008) where two clearance mechanisms were used, one with time constant of 0.1 s and the other 
with time constant of 1 s
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representation of stimulus history (Shankar & Howard, 2012; Howard et al., 2014). This 

paper provides a proof of concept, rather than a biophysically detailed model. A simple 

combination of well known neural mechanisms can account for exponential decay of the 

firing rate. Variation across cells of any of the quantities on the right hand side of Eq. 17 

would result in a variety of time constants across cells. Rapid manipulation of any of the 

quantities on the right hand side of Eq. 17 would enable an external signal to rapidly 

modulate the time constant, as required to implement time-varying α(t) in Eq. 1.

Potential mechanisms for rapid external manipulation of time constants

The simplicity of the proposed model allowed us to find an analytical solution for the time 

constant of the firing rate decay, which pointed out mechanisms to control it. The time 

constant of the decay depends on the time constant of calcium clearance, the maximum 

conductivity of the CAN current channels, the amount of calcium influx during spikes and 

the charge needed to cause each spike. Each of these four parameters could be externally 

controlled, either through synaptic connections or neuromodulators.

A range of experimental data support a potential role of acetylcholine in regulating the time 

constants of exponential decay of persistent spiking. Maximal conductivity of the CAN 

current can be modulated by changing the acetylcholine level (Klink & Alonso, 1997; 

Egorov et al., 2002; Fransén et al., 2002, 2006; Yoshida & Hasselmo, 2009; Yoshida et al., 

2012). Cholinergic modulation will also influence the amount of charge necessary to 

generate a spike by altering potassium conductances including the leak potassium current 

and calcium-sensitive potassium currents (Klink & Alonso, 1997; Fransén et al., 2002, 

2006). This functional role of acetylcholine is consistent with data showing that blockade of 

muscarinic cholinergic receptors causes a reduction of persistent activity during a working 

memory task (Schon et al., 2005; Hasselmo & Stern, 2006) and blockade of muscarinic 

receptors impairs learning of conditioning stimuli that must be remembered across a trace 

interval (Bang & Brown, 2009; Esclassan, Coutureau, Di Scala, & Marchand, 2009). The 

time course of cholinergic modulation depends on how fast the concentration of 

acetylcholine can change and on the time course of muscarinic receptor activation. It has 

been shown that the levels of acetylcholine measured by amperometry in cortex can increase 

and decrease within 1 or 2 seconds, so the time constant of the change in acetylcholine 

concentration at the receptor could be on the order of hundreds of milliseconds (e.g., Parikh, 

Kozak, Martinez, & Sarter, 2007). It could possibly be faster as the amperometry 

measurement technique might have time limits. Regarding the time course of muscarinic 

receptor activation, even though some earlier work showed that its time course to be of the 

order of seconds in vitro (Hasselmo & Fehlau, 2001; Cole & Nicoll, 1984), in vivo work 

suggests that it could be faster in vivo (Linster & Hasselmo, 2000).

Any mechanism that can deliver a constant amount of charge per spike into the cell will 

effectively change the amount of charge necessary to generate a spike. One could imagine a 

number of simple circuits that might do this in an externally modulated way. For instance, a 

circuit where the output of an exponentially decaying neuron is connected to the input of 

some control neuron which fires a burst of spikes each time the exponentially decaying 

neuron fires a spike and is connected with the input of the exponentially decaying neuron 
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closing the feedback loop. This control neuron will deliver charge to the exponentially 

decaying neuron each time the exponentially decaying neuron fires. If the number of spikes 

within each burst of the control neuron is modulated by some control signal then the amount 

of charge delivered to the exponentially decaying neuron will be controlled by the same 

signal, consequently controlling the time constant of the decay as well.

The slope of the f-I curve is determined by the amount of charge necessary to generate a 

spike. Mechanisms that result in change of the slope might be useful for controlling the time 

constant, as long as they do not perturb the exponential decay. One possible candidate could 

be dendritic inhibition. This mechanism is presented in a study which combines slice 

electrophysiology and computational modeling (Mehaffey, Doiron, Maler, & Turner, 2005). 

The study shows that reduction of a depolarizing afterpotential, arising from active dendritic 

spike backpropagation, by dendritic inhibition leads to change of the slope of the f-I curve. 

If it affects the slope of the f-I curve, dendritic inhibition could rapidly change the time 

constant of a neuron under external control.

Finally, the time constant of calcium clearance τp depends on the number and rate of the 

protein mechanisms that continuously eject calcium ions out of the cell. Selective 

modulation of either the number or the rate could affect the time constant of calcium 

clearance.

Experimental evidence for gradually-decaying firing

Recordings in vivo and in vitro have already revealed the existence of persistent firing and 

slowly decaying firing (see Figure 1). For slowly decaying firing, the decay is typically fast 

in the beginning and slower later, roughly resembling the exponential function. In previous 

studies, slowly decaying firing has not received as much attention as stable persistent firing. 

While the proposed model can in principle account for stable persistent firing (a time 

constant of infinity when the right hand side of Eq. 17), this is unstable. Previous 

computational models of stable persistent spiking have proposed an attractor mechanism, 

based on advanced control of calcium dynamics that could account for this stability (e.g., 

Durstewitz, 2003; Fransén et al., 2006). Stability around the stable firing rate regime has 

been obtained using the variance of the intracellular calcium as a control signal (Durstewitz, 

2003) and by creating a neutral zone insensitive to small calcium variations (Fransén et al., 

2006). Similar mechanisms could account for stable persistent firing in this framework as 

well.

Conclusions

Neurons with exponentially decaying firing rates with long time constants that can be 

externally modulated are computationally very powerful (Shankar & Howard, 2012; Howard 

et al., 2014). We developed a simple computational mechanism based on known properties 

that can generate exponentially-decaying firing with arbitrarily long time constants. This is a 

necessary condition for implementing a model for representing temporal history extending 

over behavioral time scales (Shankar & Howard, 2012). To the extent that the quantities on 

the right hand side of Eq. 17 can be externally manipulated, the time constant of exponential 

decay could be modulated by an external signal. This would allow for the representation of a 
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number of variables other than time, including spatial location and ordinal position (Howard 

et al., 2014). Systematic experimental investigation of exponential firing in vitro could 

elucidate the effect of cellular-level parameters on time constants of intrinsic firing. To the 

extent this computational framework for representing temporal histories is important in brain 

function, such studies could also inform systems-level models of neural function and even 

behavior (Howard et al., in press).
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Figure 1. 
Examples of slowly decaying firing rate in slice recordings. a. Cat layer 5 Sensorimotor 

Cortex after application of muscarine-a nonselective agonist of the muscarinic acetylcholine 

receptor (Schwindt et al., 1988). b. Acetylcholine-induced depolarization of Layer 5 

pyramidal neurons of prefrontal cortex (Haj-Dahmane & Andrade, 1996). The arrow 

indicates the time of acetylcholine application. c. Layer 3 of lateral entorhinal cortex in the 

presence of muscarinic receptor activation (Tahvildari et al., 2007): membrane potential 

trace on the top, current stimulation trace in the middle and firing rate histogram on the 

bottom plot. d. Anterodorsal thalamus (area with a high percentage of head direction cells) 

after hyperpolarizing stimulus (current trace at the bottom), (Kulkarni et al., 2011).
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Figure 2. 
Illustration of calcium and CAN current based mechanism for decaying firing. a.: Feedback 

loop that accounts for decaying firing. Stimulus causes initial accumulation of calcium 

which then drives the CAN current, which depolarizes the cell and causes a spike. Time 

needed for the depolarization can be mediated through several mechanisms: time constant of 

calcium clearance τp maximal conductivity of CAN current channels ḡCAN and charge 

needed to cause each spike Q. The resulting spike causes calcium influx, with the amount 

defined by kCa, which closes the loop. b.: Illustration of how calcium influx slows down the 

overall calcium decay. iCAN(t) is approximately proportional to calcium concentration. 

When the cell is not firing, calcium concentration decays, but iCAN(t) still slowly 

depolarizes the cell (bottom plot) and after it brings enough charge into the cell (Q1) an 

action potential is fired (top plot). During the action potential inward calcium currents cause 

an increase in calcium concentration. The process repeats. Calcium influx is the same for 

each spike and is set to be small enough so it does not exceed the value of calcium during 

the previous spike (i.e. Ca(t0) > Ca(t1) > Ca(t2)). We show analytically that the calcium 

decay is, under the right circumstances, approximately exponential with a time constant 

much longer than τp.
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Figure 3. 

Rate constant of the firing rate (inverse of the time constant ) as a function of  (inverse 

of the calcium clearance time constant) and ḡCAN (maximal conductance of the CAN 

current ion channels). By controlling any of these two parameters we can theoretically 

obtain arbitrarily value of the rate constant of the firing rate decay. Notice that for some 

combinations of the two parameters the firing rate starts to grow - the solid black line 

indicates the zero values of the rate constant (time constant equal to infinity), below which 

the firing rate grows exponentially. Similar results would be obtained if ḡCAN was 

substituted by kCa (calcium influx during spikes) or Q (the amount of charge required for 

each spike).
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Figure 4. 
Simulated firing rate decays exponentially with various time constant for different values of 

calcium clearance time constant τp, conductivity of the CAN current channels ḡCAN, 

calcium influx during spikes kCa and the charge required for spike generation Q. Top plot on 

each of the four figures shows firing rate in linear scale, while bottom plots show firing rate 

in log scale. Approximately straight lines in the log-plots confirm that the overall decays can 

be well approximated as exponential. For low firing rates (< 1Hz), the decay deviates from 

exponential due to increased inaccuracy in the time constant estimation. In each plot, the 

parameter manipulated is displayed. The arrow shows the ordering corresponding to 

increasing values of the parameter. a. Influence of τp on the firing rate. Following values of 

τp were used: [1.4, 1.9, 2.1, 2.2, 2.25, 2.28]s. b. Influence of ḡCAN on the firing rate. The 

following values of ḡCAN were used: . c. Influence of 

kCa on the firing rate. Following values of kCa were used: [0.5, 1.4, 1.9, 2.1, 2.2, 2.25, 

2.28]/25. Calcium concentration is given as unitless such that initial calcium concentration is 

normalized to value 1. d. Influence of Q on the firing rate. To change Q we changed specific 

membrane capacitance cm, so it took the following values: 1/[0.5, 1.4, 1.9, 2.1, 2.2, 2.25, 

2.28]μF/cm2.
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Figure 5. 
Comparison between simulated and analytically obtained time constants. The analytic 

expression approximates well the simulation over a wide range of parameter values. Inverse 

of the time constant of the firing rate 1/τR is given as a function of: a. the inverse of the time 

constant of calcium clearance τp and b. maximal conductance of the CAN current ion 

channels ḡCAN.
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