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Abstract

Determination of optical properties (absorption (U,) and scattering (ug") coefficients) in human
tissue is important when it comes to accurate calculation of fluence rate in and around tissue area.
ALA application to the tissue induces production of protoporphyrin IX when activated by red
light. Changes in the tissue optical properties can send information such as treatment outcome and
tissue drug concentration.

Patients in this study were treated with PDT for head and neck mucosal dysplasia. They were
enrolled in a phase | study of escalating light doses and oral ALA with 60mg/kg. Red light at
630nm was administered to the tumor from a laser. The light dose was escalated from 50—
200J/cm? with a measured fluence rate at tissue surface of 100mW/cm2.

We developed a light detection device for the purpose of determining optical properties in vivo
using the semi-infinite method. The light detection device consists of two parallel, placed 5mm
apart. In one of the catheters a 2 mm long linear diffusing light source is placed while in the
second catheter, a calibrated isotropic detector is placed. The detector is scanned along the length
of the light source containing catheter. Scans are done with the device placed on the treatment area
(tumor) and on the normal tissue. Optical properties were measured in-vivo before and after PDT
delivery for both normal tissue and tumor.
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1. INTRODUCTION

There are several studies reporting excellent results for patients treated with PDT for early
stage cancer of head and neck region (Biel et al., 2010). Early superficial lesions in the oral
cavity, larynx and pharynx are ideal targets for PDT (Agostinis et al., 2011). The advantage
of PDT over other conventional modalities of surgery, radiation, and chemotherapy is that is
a minimally invasive treatment technique with selective tumor destruction and normal tissue
preservation. Often, with surgery and radiotherapy control is achieved at the expense of
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functional disturbance as well as disfigurement and other long lasting complications. PDT
has little effect on underlying functional structures and has excellent cosmetic outcome,
making it a well suited treatment modality for lesions of head, neck and oral cavity.

The current study is part of a study of ALA-mediated PDT for head and neck mucosal
dysplasia the oral cavity. Patients were enrolled in this phase I light-dose-escalation study
using oral ALA with 60mg/kg. Red light at 630nm was administered to the target from a
diode laser. The light dose was escalated from 50-200J/cm?, in fractionated and non-
fractionated arms. The photosensitizer used was 5-aminolevulinic acid (5-ALA) [9, 10], an
agent with no photosensitizing properties that is converted in situ to the photosensitizer
protoporphyrin IX. ALA can be administered orally, topically or intravenously.

The success of the light therapy depends on the accuracy of the prescribed light delivered to
the tumor. By knowing the optical properties of tissue before and after light delivery we can
determine the efficacy of the treatment. The main purpose of this study was to determine the
optical properties (scattering and absorption coefficients) in vivo by superficial
measurements using a light detection device made for this purpose.

2. METHODS

2.1 Description of the measuring probe

The light detection device (fig 1a) consists of two parallel, 2mm (OD) light transmitting
catheters (Flexi-needle, Best medical International, Springfield, VA) placed 5mm apart. One
side of the device was covered with a black carbon sheet, in order to avoid detection of light
incident from the outside. The two parallel catheters hold a 2 mm long linear diffusing light
and a calibrated isotropic detector (fig 1b), respectively. The detector is scanned along the
length of the light source-containing catheter. Scans were done with the device placed on the
surface of the treatment area (fig 1c) and on the normal oral cavity tissue, with the catheters
touching surface tissue.

The detectors used in this study are optical fiber-based isotropic detectors (Rare Earth
Medical, West Yarmouth, MA) of the scattering-tip type [1]. The light collected by the
detector was digitized using a photodiode-based in-vivo light dosimetry system [2]. The
detectors were calibrated to measure absolute fluence rate in air.

2.2 Model and fitting algorithm

A diffusion theory based on light source on semi-infinite medium has been developed to
model the measured data [3]:
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where ¥(p) and j,(p) are photon fluence and flux rate respectively and are functions of p, ps’
(\) and pa(A)The parameter z,, rq, and r, are from the extrapolated boundary condition that
was adapted to solve diffusion equation of semi-infinite media. In brief, the analytical
solution of semi-infinite turbid media is equivalent to that of infinite turbid media with two

sources. One source is positioned at 1/#; below the medium surface or zb—f—]_//u; below the

‘extrapolated boundary’. The other source, or the image source, is positioned at zb—f—l/'u;
above the extrapolated boundary. rq is the distance between the source and the detector. r; is
the distance between the image source and the detector. C; and C, are constants that depend
on the relative refractive index of tissues and air [4]. In addition to the diffusion model, a
model based on the P3 approximation to radiative transport has also been developed and
implemented [5, 6].

Adapting the previously developed expressions for optical fiber-based probes requires three
modifications: First, the source term commonly used for optical fiber sources replaces the
incident pencil beam with an isotropic source placed one scattering mean free path below
the fiber. Here, the source is fundamentally isotropic, so we model it as an isotropic point
source at z=0. The image sources are placed at z=-2zb.

Second, the standard model of detection treats the detector (typically the face of an optical
fiber) as a plane detector, so the signal it collects is proportional to the cosine of the
irradiance normal to the surface. This is accounted for by including a cosine of the incident
angle in the integrals used to calculate C; and C, in equation 1. In this case, our detector is
isotropic: its response is proportional to fluence rate rather than irradiance, so the
corresponding integrals omit the cosine factor.

Third, unlike fiber-based probes or catheter-based probes in infinite media [7], it is possible
in this case for light emitted by the source to reach the detector without passing through the
diffusing medium. We refer to this component as ‘non-diffuse light’. To assess the shape of
the non-diffuse light component, we have made measurements using the probe with no
diffusing medium. The amplitude of the nondifuse light component was determined by
measuring the total detected signal in phantoms of known optical properties, and subtracting
the calculated diffuse light component. The resulting dependence of the non-diffuse light
component on optical properties was fit with an empirical formula.

The fitting algorithm (fig 2) we employ is a differential evolution algorithm modified from
that proposed by [8] implemented in Matlab as reported previously[7]. In this case, the fit
uses a model which includes both the diffuse and direct components. The free parameters in
the fit are pp and pg'. Fitting with fixed g’ is also a supported option.

2.3 Phantom measurements

To validate our theory, the optical properties were measured in liquid tissue simulating
phantoms with known reduced scattering coefficient (Us") and absorption coefficient ().

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2015 May 19.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Dimofte et al.

Page 4

The liquid phantoms were made with known optical properties, consisting of Liposyn
(Liposyn 111, 30% Abbott Lab, North Chicago, IL) — as scattering medium and black India
ink (Higgins black India ink #4418, Bellwood, IL) — as absorbing medium. The Intralipid
and Ink concentrations varied from 0.23 to 1.14% and 0.002 to 0.023%, respectively. The
phantom surface was covered by a transparent plastic foil, in order to better simulate
measurements done on tissue surface and to avoid liquid filling the space in between the two
catheters. The fluence rate was measured using a 0.5mm scattering tip isotropic detector that
was moved along the parallel catheter using the motorized probe described previously (fig
3). The optical properties were independently measured using an established method to
validate the results.

2.4 Clinical measurements

2.4.1 Patients—The patients studied here were enrolled in a phase | dose escalation study
of photodynamic therapy for the treatment of pre-malignant tumors and superficial
microinvasive disease of the head and neck. Patients were given 60mg/kg body weight of
Levulan (DUSA Pharmaceuticals, Wilmington, MA) photosensitizer orally. The prescribed
start time for light delivery after ALA administration was 4 to 6 hours. Light doses for the
treated lesions varied from 50-200 J/cm?. Light was delivered at a dose rate of 100mW/cm?.

2.4.2 Light delivery systems—Treatment light was generated by a Ceralas Series
GaAlAs diode laser (Biolitech, Inc.). This laser has a peak wavelength of 632nm and
produces up to 4W. The light was delivered by a microlens diffuser (Medlight SA) or a
balloon applicator consisting of a balloon catheter (model CDB-LB20 to CDB-LB50) and
cylindrical diffuser.

2.5 Isotropic detector calibration accuracy

2.5.1. Integrating sphere calibration accuracy—The integrating sphere was
calibrated for the light fluence rate. The variation of the calibration factor, a, over a period
of time is plotted for 630nm (Figure 4) and summarized in Table 1. The average CF is
plotted as a solid red line.

2.5.2 Angular dependence of the isotropic detectors—The angular response of the
detectors was measured in two planes: horizontal and vertical, as shown in figure 5. The
response of each detector was measured for every ten degree in each plane. Normalized
angular response to 0 degree correction factor of eleven 0.5mm isotropic detectors in the
vertical plane is shown in figure 5a and normalized angular response to 90 degrees in the
horizontal plane is shown in figure 5b. A summary of the variation of the normalized
calibration factors, a/ag,, for the eight detectors used is shown in Table 2.

3. RESULTS AND DISCUSSION

3.2. Determination of optical properties

3.2.1 Correction for non-diffuse light—To correct for the effects of non-diffuse light,
we used an empirical correction based on a comparison between the signal measured in the
detector for a phantom of known optical properties, and the corresponding predicted diffuse
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light profile. This correction takes the form of an additive component of fixed profile
(shown in figure 6 (a)) given by:

_ f(/i@ﬁ)s
a+br2+crd

(r) (4)

The intensity of this “non-diffuse” component depends on the optical properties of the
phantom, as shown in figure 6(b). This dependence is approximated by

B 0.20 fefr<3.0
f(“‘fﬁ)_{ 0.0667 - fregy  pregr > 3.0 O

In comparison, the direct light is expressed as:
(5)u=7
S ) gir  Amr? ©

3.2.2 Optical property determination in liquid phantoms—Optical properties were
determined in liquid tissue simulating phantoms with known optical properties. They were
also independently measured using vertical scans in a broad illumination beam in order to
validate the results (Figure 7). The optical properties obtained from the two methods were
than compared for accuracy. The results of the broad beam method and the parallel-catheter
method are shown in Table 3.

3.2.3 Determination of optical properties in tissue—Table 4 lists the subject
number, PDT light delivery modality, treated site, time of light delivery and tissue
information. Optical properties were measured in-vivo before and after PDT delivery for
both normal tissue and tumor whenever possible.

Typical in-vivo fluence rate profiles measured in patient tumor and normal tissues are shown
in figures 8 (a) and (b), respectively. The overall fit is indicated by the line that closely fits
the data. The fit inherently separates the diffuse and non-diffuse components, and shows the
best fit to the diffuse component, which is used to determine the tissue optical properties.
For most patient data, fits in reasonable agreement with the measured data were obtained. In
cases of high L, the majority of the signal was due to the non-diffuse component. In
extreme cases, this may lead to a low signal-to-noise ratio (SNR) in the diffuse component,
increasing the uncertainty of the fit in these cases.

The resulting optical properties are summarized in table 5.

4. CONCLUSIONS

We have proposed a method to determine the tissue optical properties using two parallel
catheters and a point source in a semi-infinite medium condition. The algorithm is validated
in phantom with known optical properties with a maximum uncertainty of 22% for p, and
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26% for |’ for the typical range of tissue optical properties: ma between 0.1 to 1 cm™! and
ms’ between 2 and 14 cm™1. We found that the effective attenuation coefficient in ALA-
mediated HN patients to be 2.1 +/- 0.9 cm™1 and 2.9 +/- 1.3 cm™1 for normal tissue and
tumor, respectively, corresponding to optical penetration depths of 0.5 and 0.34 cm, for
normal skin and tumor, respectively.
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Figure 1.
(a) Two parallel catheter light detection device, (b) Optical fiber-based isotropic detector, (c)

Light detection device placed on phantom surface for semi-infinite measurement
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Figure 3.
(a) Schematics of the semi-infinite type measurement, showing the placement of the parallel

catheter device, liquid phantom and positioning device.
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(a) Normalized profile for “non-diffuse” components obtained in optical phantoms with

known optical properties (solid lines) along with profile measured in air (air 1,2,3,4 as

shown in dotted lines). Two fits are shown: one (“non-diffuse fit”) uses Egs. 4-5, and the
other (“direct light fit”) uses Eq. 6 with r2 = (x2+0.52). (b) Non-diffuse light f/S at source
peak vs. effective attenuation coefficient. Symbols are measurements. Solid line is the fit
using Eq. 5 and dashed line is Eq. 6 with r =0.5 cm (or x = 0 cm).
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Fluence rate as a function of depth in a series of liquid phantoms illuminated by a broad

light beam. Optical properties of liquid tissue simulating phantoms of different scattering
coefficients. The phantoms were made of intralipid concentrations of (a) 0.21%, (b) 0.5%
and (c) 1.1% and variable ink concentration as indicated in the legend.
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Figure 8.
Optical properties determination for (a) normal tissue and (b) tumor post-PDT light delivery.
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