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Summary

Maintaining accurate beliefs in a changing environment requires dynamically adapting the rate at 

which one learns from new experiences. Beliefs should be stable in the face of noisy data, but 

malleable in periods of change or uncertainty. Here we used computational modeling, 

psychophysics and fMRI to show that adaptive learning is not a unitary phenomenon in the brain. 

Rather, it can be decomposed into three computationally and neuroanatomically distinct factors 

that were evident in human subjects performing a spatial-prediction task: (1) surprise-driven belief 

updating, related to BOLD activity in visual cortex; (2) uncertainty-driven belief updating, related 

to anterior prefrontal and parietal activity; and (3) reward-driven belief updating, a context-

inappropriate behavioral tendency related to activity in ventral striatum. These distinct factors 

converged in a core system governing adaptive learning. This system, which included dorsomedial 

frontal cortex, responded to all three factors and predicted belief updating both across trials and 

across individuals.

Introduction

Decisions are often guided by beliefs about states of the world that can be used to predict 

desirable or undesirable outcomes. Some states, like the location of a restaurant, are stable 

and directly observable. Conversely, other states, like the quality of that restaurant, can 

change unexpectedly and must be inferred from noisy data. In the latter scenario a key 

question is how much to adjust beliefs in response to a new observation (e.g., Rushworth 
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and Behrens, 2008). The answer to this question can be different for each new observation 

and depends critically on both the unexpectedness of the observation (“surprise”) and the 

uncertainty of the preexisting belief (“belief uncertainty”). The goal of this study was to 

identify brain activity associated with these computationally distinct influences on flexible 

belief adjustment.

Flexible belief adjustment that is sensitive to surprise and uncertainty is evident in human 

learning behavior. Under certain conditions, these factors are used to scale the influence of 

prediction errors—new observations that are inconsistent with existing beliefs—on 

subsequent changes in belief (Li et al., 2011; Nassar et al., 2012; Nassar et al., 2010; 

O’Reilly et al., 2013; see Fig. 1). This scaling can be formalized as a learning rate in a delta 

rule and can also be influenced by uninformative contextual factors such as reward and 

arousal (Hayden et al., 2009; Nassar et al., 2012).

Despite these known behavioral effects, the neural mechanisms that govern how these 

distinct factors influence belief updating are not well understood. Rather than distinguishing 

these different influences, human neuroimaging and monkey electrophysiology studies have 

focused on a common mechanism of belief updating, typically localized to dorsomedial 

frontal cortex (DMFC; Behrens et al., 2007; Hayden et al., 2009; O’Reilly et al., 2013). 

However, other lines of evidence implicate a broader system of brain regions in learning-

rate modulation or suggest that DMFC may be sensitive to only a subset of the 

computational factors that impact learning rate (Fischer and Ullsperger, 2013; Payzan-

LeNestour et al., 2013; Vilares et al., 2012).

We used functional magnetic resonance imaging (fMRI) to measure neural activity during a 

task in which belief updating can be observed directly and decomposed into factors related 

to surprise, belief uncertainty, and reward. As detailed below, we found that these distinct 

computational factors have dissociable neural representations that provide insight into how 

individual variables governing learning might be computed in the brain. We also identify the 

convergence of these factors in a core set of regions, including DMFC, which appear to 

govern adaptive learning.

Results

We used fMRI to measure blood-oxygenation-level-dependent (BOLD) signal in 32 

participants as they performed a modified predictive-inference task (Nassar et al., 2010). 

Predictions were made in the context of a video game that required repeatedly positioning a 

bucket to catch bags of money that subsequently dropped from an unseen helicopter (Fig. 1). 

We used two manipulations to affect both surprise and belief uncertainty: (1) Bag locations 

were sampled on each trial from a Gaussian distribution, with a standard deviation (noise) 

that was fixed to a high or low value in each 120-trial run; and (2) the mean of this 

distribution, representing the location of the helicopter, usually remained stable across trials 

but was occasionally resampled from a uniform distribution. In addition, each bag had either 

a high or neutral reward value (sampled with equal probability independently on each trial), 

which was revealed only after the prediction had been made. Participants could maximize 

their overall earnings by inferring the location of the helicopter and placing their bucket 
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directly beneath it. Successful inference required flexible belief updating in response to 

changes in the helicopter’s location but stable belief maintenance across trials in which the 

helicopter remained stationary.

Behavioral results

Multiple factors influenced belief-updating behavior. We measured belief updating as the 

adjustment in bucket position from one trial to the next. This update, when expressed as a 

fraction of the spatial prediction error—i.e., the difference between the previous, chosen 

bucket position and the subsequent bag position, or δ—can be thought of as a direct measure 

of learning rate (cf. Nassar et al., 2010). We analyzed behavior using linear regression 

models of belief updating. One explanatory variable was the trial-wise prediction error δ, 

which could account for a tendency to update bucket position toward the most recent bag 

location as a fixed fraction of δ (i.e., a fixed learning rate). Additional explanatory variables 

encoded trial-to-trial adjustments in learning rate based on both normative and incidental 

factors.

Two normative factors were computed by applying an approximately Bayesian learning 

model to the sequence of observations experienced by each participant (Fig. 1B; Nassar et 

al., 2012; Nassar et al., 2010). The first factor was change-point probability (CPP), which is 

elevated transiently upon observation of a surprising outcome and reflects the probability 

that the helicopter has moved (Fig. 1C). The second factor was relative uncertainty (RU), 

which reflects the uncertainty in one’s belief about the environment. RU depends inversely 

on the number of prior observations attributable to the current environmental state. It is 

maximal on the trial after a likely change point and decays gradually as a function of trials 

thereafter (see Fig. 1C). The regression also included a term for the current reward value. 

Reward value carried no predictive information and therefore played no role in our 

computational model, although reward information can, of course, be relevant in other 

situations.

Regression fits showed that participants flexibly adapted their learning rates as predicted by 

the computational model while also deviating from the model in systematic ways. Consistent 

with previous work, participants learned more when outcomes were surprising as indexed by 

CPP (median coefficient=0.53, IQR 0.40 to 0.76, signed-rank p<0.001) and when beliefs 

were more uncertain as indexed by RU (median=0.32, IQR 0.11 to 0.44, signed-rank 

p<0.001; Fig. 2C; Nassar et al., 2012). However, there was considerable heterogeneity 

across participants, with some behaving like the computational model (CPP and RU 

coefficients near one) and others less so (coefficients near zero). On average, participants 

also deviated from the model with a tendency to use less-flexible learning rates (median 

fixed learning-rate coefficient=0.39, IQR 0.22 to 0.48, signed-rank p<0.001) and to 

modulate learning based on the irrelevant factor of reward value (median reward 

coefficient=0.03, IQR 0 to 0.05, signed-rank p<0.001; Fig. 2C). The overall regression fit 

behavior very well (median r2=0.967, inter-quartile range [IQR] 0.949 to 0.979). Secondary 

analyses showed that (1) effects of CPP and RU could also be observed using single-trial 

estimates of learning rate, and (2) the effect of CPP varied adaptively with noise level across 

runs (see Fig. S1).
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fMRI results

Individual learning-rate variables—Each of the three distinct influences on learning 

rate identified from behavior—CPP, RU, and reward value—was associated with 

modulation of BOLD activity during task performance (Fig. 3 and Table S1). We included 

all three variables as amplitude modulators of trial-related BOLD responses in a general 

linear model (GLM). CPP was associated with positive effects in a large posterior cluster 

including both primary and higher-level visual regions in occipital, inferior temporal, and 

posterior parietal cortex. Positive effects also appeared in DMFC, posterior cingulate cortex 

(PCC), superior frontal sulci, and bilateral anterior insula. Negative effects of CPP were 

observed in ventral striatum, medial temporal lobes (MTL), superior temporal gyri, and left 

lateral PFC. RU was associated with positive BOLD effects in intraparietal sulci and 

posterior parietal cortex, cerebellum, DMFC, anterior and lateral PFC, superior frontal sulci, 

and bilateral anterior insula. RU had negative effects in ventromedial PFC (vmPFC) and 

MTL. Reward value had positive effects in ventral striatum, DMFC, bilateral anterior insula, 

and parietal cortex.

Selective effects of learning-rate variables—A subset of these brain regions showed 

selectivity for just one of the three learning-rate variables (Fig. 4 and Table 1). We imposed 

three criteria for selectivity: the effect had to differ from zero for that variable individually 

and had to differ in the same direction from the same region’s response to each of the other 

two variables. For example, CPP-selective regions were identified based on a three-way 

conjunction of whole-brain effects for CPP>0, CPP>RU, and CPP>reward. This approach 

can detect selective effects that are either positive or negative. For example, a region 

showing a selective negative effect of CPP would show negative modulation by CPP, and 

greater negative modulation by CPP than by RU or reward. Interpreting contrasts between 

regression coefficients requires that the predictors be comparably scaled; our approach was 

to z-score each variable across trials (within each participant) before convolution with the 

hemodynamic response function (HRF).

CPP-selective positive effects were identified in visual cortex and PCC; negative effects 

were seen in bilateral areas of lateral occipital cortex (Fig. 4A and Table 1). RU-selective 

positive effects were found in posterior parietal cortex extending to intraparietal sulcus 

bilaterally, as well as bilateral cerebellum, lateral occipital cortex, and anterior PFC (aPFC). 

RU-selective negative effects were found in regions including vmPFC, medial parietal, and 

bilateral MTL (Fig. 4B and Table 1). Reward-selective positive effects were observed in 

bilateral ventral striatum (Fig. 4E and Table 1). There were no reward-selective negative 

effects.

A key driver of regional selectivity for CPP or RU was the time course of BOLD activity 

after large change points. Although theoretical BOLD time courses for CPP and RU were 

largely uncorrelated (computing these terms from the normative model and then convolving 

with the HRF, median r=0.10, IQR 0.08 to 0.13), the two factors have a strong time-lagged 

interdependence. Points of rapid change in the environment (high CPP) tend to be followed 

by periods in which the new state has not yet been well sampled (high RU; Fig. 1C and Fig. 

S2). As a result, a useful way to visualize the distinction between these two variables is to 
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examine time courses aligned to the occurrence of large change points (Fig. 4C–D and 

Movie S1). An area will appear CPP selective if the BOLD change has a rapid onset, peaks 

around 5s after the change point, and decays quickly (Fig. 4C). Conversely, an area will 

appear RU selective if the BOLD signal rises and then falls more gradually, peaking ~10s 

after the change point (Fig. 4D).

Timing differences on this scale have often been utilized in previous fMRI research (e.g., 

Zarahn et al., 1999), and appear unlikely to emerge artificially from interregional variability 

in neurovascular response properties. HRF peak latencies can vary from approximately 2.5–

6s across individuals (Aguirre et al., 1998; Handwerker et al., 2004), but systematic 

differences across brain regions seldom exceed ~1s (Bright et al., 2009; Chang et al., 2008; 

Handwerker et al., 2004). The few observations of larger differences involve especially fast 

hemodynamic responses to respiratory manipulations in certain regions (Bright et al., 2009). 

Thus, although the temporal properties of neurovascular coupling remain an area of active 

inquiry, current evidence suggests the ~10s lags that characterize RU-selective regions are 

likely neural rather than solely vascular in origin.

Conjunction of learning-rate effects—In addition to their dissociable effects, the three 

influences on learning rate (CPP, RU, and reward) also converged on a set of common 

regions. A conjunction analysis showed three-way overlap in bilateral occipitoparietal 

regions, bilateral anterior insula, DMFC, PCC, and right lateral PFC. Control analyses 

together with a follow-up eye-tracking study ruled out the possibility of an oculomotor 

confound and confirmed that activity in each of these regions reflected adaptive learning 

(see Fig. S3–S4). We refer to these areas as common adaptive learning-rate regions. There 

were also small areas of overlapping negative effects in right posterior insula (Fig. 5 and 

Table 2).

Functional connectivity between factor-specific regions and common 
adaptive learning-rate regions—We speculated that functional connectivity between 

the common adaptive learning-rate regions and factor-specific regions might vary from trial 

to trial, depending on which factor made a greater relative contribution to the overall 

learning rate. For example, an RU-selective region might share more variance with the 

common regions when RU is high and CPP is low than when the opposite is true. We tested 

this idea using psychophysiological interaction (PPI) analysis (Friston et al., 1997). We set 

up a regression model for each participant that contained four interaction terms defined by 

crossing two psychological variables (CPP and RU) with two physiological variables (trial-

wise BOLD amplitudes from the occipital cluster selective for CPP and the right aPFC 

cluster selective for RU) and fit the model to BOLD amplitudes from the common adaptive 

learning-rate regions. Consistent with the hypothesis of task-dependent functional 

connectivity, coefficients for the matched PPI terms (CPP×Occipital, RU×aPFC) 

significantly exceeded coefficients for the mismatched PPI terms (CPP×aPFC, 

RU×Occipital; median contrast coefficient=0.031; signed-rank p=0.002; see Fig. S5 for 

details and further results).

Individual differences—Supporting the functional relevance of the common adaptive 

learning-rate regions, individual differences in these regions’ BOLD responsiveness to 
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model-derived factors (CPP and RU) predicted behavioral sensitivity to these same factors. 

Because behavioral regression coefficients for CPP and RU were highly correlated across 

participants (r2=0.64; p<0.001), we took the sum of these coefficients as a measure of an 

individual’s normative learning-rate adjustment for both the behavioral and BOLD data. 

BOLD coefficients from the seven common adaptive learning-rate ROIs, when included as 

predictors in a multiple regression analysis, collectively explained a significant fraction of 

the between-participant behavioral variance (r2=0.44, F=2.74, p<0.030). Bivariate 

correlations between individual ROIs and behavior were generally positive (Fig. 5B), 

although this positive relationship survived Bonferroni correction for 7 tests only in DMFC 

(r=0.47). We found only a marginal relationship between individual differences in the 

BOLD response to reward value and reward-related behavioral effects (r2=0.40, F=2.31, 

p=0.060). None of the bivariate correlations for reward value were significant after 

Bonferroni correction, although the effects tended to be positive across ROIs (Fig. 5C).

Residual learning-rate modulation—Two regions of DMFC correlated with the 

residual fluctuations in learning rate not captured by our behavioral model. We converted 

the residual term from our behavioral regression analysis into an additional predictor in the 

GLM analysis of BOLD effects. This term modeled BOLD modulation based on whether 

the learning rate on each trial was higher or lower than predicted by the behavioral 

regression. A whole-brain analysis showed that residual learning rate was associated with 

BOLD fluctuations in two clusters in DMFC (Fig. 6A). The more superior cluster was close 

to, but not overlapping, the DMFC cluster identified above as a common adaptive learning-

rate region. The second cluster was rostral/inferior and centered in the cingulate sulcus. 

These two residual-related clusters did not show significant effects of CPP, RU, or reward, 

even when tested as ROIs.

Residual learning-rate effects were also weakly present in the common adaptive learning-

rate ROIs. Although coefficients tended to be positive, a test against zero was significant 

only in the left parietal cluster after Bonferroni correction for 7 tests (corrected p=0.030; 

Fig. 6B).

BOLD measurements from DMFC predicted participants’ behavior over and above the 

factors identified previously. We extracted trial-specific BOLD amplitudes from residual-

learning-rate ROIs in DMFC, using an iterative leave-one-participant-out procedure to 

ensure independence. We entered these BOLD amplitudes as additional predictors in 

participant-wise behavioral regression models. A model containing the inferior DMFC ROI, 

but not one containing the superior DMFC ROI, explained a significant amount of variance 

beyond the original behavioral model (inferior ROI: median z-transformed F-statistic=0.68, 

signed-rank p=0.002; superior ROI: 0.34, p=0.096). The regression coefficient for the 

BOLD term was significantly greater than zero in each model, suggesting that either ROI 

could account for variability in behavior (inferior: median β=0.01, IQR 0.00 to 0.02, signed-

rank p=0.014; superior: 0.00, 0.00 to 0.01, p=0.010; Fig. 6C).

Similar improvement in our behavioral model could be obtained by including trial-wise 

BOLD coefficients extracted from the common adaptive learning-rate regions shown in Fig. 

5A. We added each of the seven ROIs individually to the behavioral model (all median z-
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transformed Fs>0.33; signed-rank ps<0.05 for six ROIs and p=0.08 for the right lateral PFC 

ROI). Coefficients indicated greater learning on trials with higher BOLD activity (all 

median coefficients >0) but this trend only reached statistical significance in three ROIs 

(signed-rank p<0.05 in right and left parietal and PCC; 0.06<p<0.2 for all other ROIs).

Discussion

The present study examined the neural representation of factors that the brain uses to adjust 

the influence of new observations on internal beliefs. We developed a novel task that 

allowed measurement of the specific contributions of surprise, belief uncertainty, and reward 

value to trial-by-trial adjustments in learning rate. Consistent with previous work, we found 

surprise and belief uncertainty to increase the influence of new observations on subsequent 

beliefs (Nassar et al., 2012; Nassar et al., 2010). In addition, participants showed a context-

inappropriate tendency to be more influenced by observations associated with reward.

We would expect these distinct computational factors to be linked to dissociable neural 

patterns, but also to converge in regions that drive adaptive learning. This is exactly what we 

found. We first discuss the dissociable activity patterns related to each factor, as well as 

signals associated with residual variability in belief-updating behavior not attributable to any 

of these factors. We then discuss the convergence of these influences in a core set of brain 

regions and the further evidence that this core system governs adaptive learning.

Change-point probability (CPP)

Participants exhibited surprise-driven learning, updating beliefs by a proportionally larger 

amount when observations signaled a higher probability of a change point in the 

environment. CPP is positively related to prediction error magnitude: larger error 

magnitudes would be less likely if the environment had remained stable and therefore imply 

a greater posterior probability of a change point. High CPP is expected to bring about a rapid 

and reactive increase in learning rate.

We observed CPP-specific effects in primary and higher-order visual regions (Fig. 4A), 

consistent with the notion that CPP is inferred based on the unexpectedness of new sensory 

representations. A key question for future work is to what extent this early sensory 

representation of surprise can flexibly change to account for changes in stimulus statistics.

Relative uncertainty (RU)

Whereas CPP enhances learning from surprising external events, RU drives learning based 

on the imprecision of one’s current internal belief. Unlike CPP, the level of RU is 

determined in advance of each observation. In this sense RU can be regarded as a proactive 

(rather than reactive) modulatory influence (cf. Braver, 2012). In our experimental task, RU 

is elevated for several trials after a large change point has been detected (Fig. 1C), while 

beliefs are being refined for the new environmental regime.

We observed positive BOLD effects specific to RU in parietal regions, aPFC, and 

cerebellum. This finding partly overlaps with reported effects of estimation uncertainty in 

parietal cortex in other task paradigms (Payzan-LeNestour et al., 2013) and is consistent 
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with previous studies linking learning rate with parietal mechanisms (Collins and Frank, 

2012; Fischer and Ullsperger, 2013). The involvement of aPFC is consistent with this 

region’s roles in subjective uncertainty, uncertainty-driven exploration, exploratory action 

selection, and in representing the value of alternative courses of action (Badre et al., 2012; 

Boorman et al., 2011; Cavanagh et al., 2012; Daw et al., 2006; Fleming et al., 2012). 

Similarly, our finding of RU effects in cerebellum is broadly consistent with the hypothesis 

that cerebellum plays a highly general role in maintaining and updating internal models 

(Moberget et al., 2014).

We also found that bilateral MTL and vmPFC were consistently less active during periods 

of high RU. The effects were directionally consistent with previously reported BOLD effects 

of subjective confidence in these regions (De Martino et al., 2013; Kim and Cabeza, 2007) 

and might be related to findings hinting at mutually antagonistic interactions between 

feedback-driven learning and MTL-mediated episodic memory (Foerde et al., 2013). In this 

case, MTL engagement could serve to render beliefs more resistant to noisy observations 

during periods of environmental stability.

Reward value

Behavioral learning rates were influenced by a randomized manipulation of reward value. 

This effect was not predicted by our computational model because trial-by-trial rewards 

were irrelevant to predicting the spatial locations of future outcomes. However, previous 

work involving nonhuman primates has similarly found that incentive-laden observations 

had a greater impact on subsequent behavior than neutral observations with equivalent 

predictive relevance (Hayden et al., 2009). The reward effect might be explained from a 

normative perspective as an overgeneralization from situations in which (unlike our task) 

preferential learning from potential rewards is beneficial. The reward effect also might 

reflect a more general influence of physiologically arousing events on learning (cf. Nassar et 

al., 2012); future work could assess this idea by testing whether penalties (relative to neutral 

outcomes) would also drive increases in learning.

We observed BOLD effects of the reward manipulation in ventral striatum, consistent with 

this structure’s known role in encoding subjective value and reward prediction error (Bartra 

et al., 2013; Berns et al., 2001). A reward-sensitive region would also be expected to show a 

negative effect of CPP, given that CPP was associated with large spatial error and earnings 

depended on accuracy. A negative effect of CPP was indeed observed in ventral striatum 

(Fig. 3A). By contrast, other brain regions responded positively to both CPP and reward 

value (e.g., Fig. 5A), implicating these regions in learning-rate modulation rather than direct 

registration of reward.

Common adaptive learning-rate regions

Our results provide rigorous support for the previously proposed link between DMFC 

activity and adaptive belief updating (Behrens et al., 2007; Hayden et al., 2009; O’Reilly et 

al., 2013; Payzan-LeNestour et al., 2013). By decomposing the different influences on 

learning rate, we were able to show that each of three computationally distinct influences—

CPP, RU, and reward—was associated with increased DMFC activity. However, these 
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common adaptive learning-rate effects were not confined to DMFC, but rather appeared in a 

distributed system that also included anterior insula, PCC, and occipitoparietal cortex (Fig. 

5). A question for future research is whether individual regions in this ensemble perform 

distinct roles in the neural implementation of adaptive learning, or whether, alternatively, 

their joint activity might reflect a common source of neural input such as the noradrenergic 

neuromodulatory system (Aston-Jones and Cohen, 2005; Nieuwenhuis et al., 2005; Payzan-

LeNestour et al., 2013; Yu and Dayan, 2005).

Several findings support the interpretation that these regions jointly constitute a common 

pathway governing learning rate, which can be modulated via multiple factor-specific input 

channels. First, the common adaptive learning-rate regions exhibited task-dependent 

functional connectivity with factor-specific brain regions. BOLD activity in the common 

regions was more similar to the RU-selective aPFC region when modeled learning rates 

were driven by RU but more similar to the CPP-selective occipital region when modeled 

learning rates were driven by CPP (Fig. S5). Such a pattern of functional connectivity is 

consistent with the idea that information about belief uncertainty and surprise converges in 

the common adaptive learning-rate regions to facilitate effective inference in noisy and 

changing environments. Second, BOLD activity in these regions covaried with behavior 

across participants. The more that activity in the common adaptive learning-rate regions was 

modulated by the normative factors of RU and CPP, the more a subject’s behavior exhibited 

the influence of these factors. Third, BOLD activity in these regions covaried with behavior 

across trials. Greater activity in the common adaptive learning-rate regions on a given trial 

was associated with a larger subsequent update in beliefs.

The common adaptive learning-rate region we identified in DMFC appears somewhat dorsal 

to the area of anterior cingulate cortex (ACC) that has been linked to adaptive learning in 

previous work (Behrens et al., 2007). Although effects of individual factors extended 

ventrally into the cingulate sulcus (in different locations for CPP and reward value; Fig. 3), 

the area of overlap was centered near pre-supplementary motor area (pre-SMA; Fig. 5). Pre-

SMA responds to a broad array of cognitive manipulations irrespective of motor demands, 

including belief updating (Fedorenko et al., 2013; O’Reilly et al., 2013; Payzan-LeNestour 

et al., 2013), and the cytoarchitectural locus of ACC BOLD effects can extend dorsally on 

the medial surface in many individuals (Cole et al., 2009). Given these considerations, we 

regard our results as compatible with previous demonstrations of adaptive learning effects in 

DMFC.

Arousal systems and residual updating behavior

Adaptive learning-rate modulation is thought to be influenced by physiological arousal 

systems, with previous work linking both pupillary and electrodermal arousal measures to 

rates of belief updating (Li et al., 2011; Nassar et al., 2012; O’Reilly et al., 2013). We 

obtained indirect evidence for such an association in our analysis of residual updating 

behavior. By eliciting an explicit prediction on every trial we could quantify whether 

participants updated their belief to a greater or lesser degree than predicted by our 

participant-specific behavioral regression model. These residual fluctuations in learning rate 

correlated with BOLD signal in both superior and inferior DMFC. Both of these areas are 
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part of a connectivity-defined “salience network” (Seeley et al., 2007), and the inferior area 

has additionally been implicated in sympathetic outflow as indexed by pupil diameter 

(Critchley et al., 2005). Trial-specific BOLD amplitudes in these regions provided 

incremental information about belief updating even beyond our full set of behavioral 

predictors. It is therefore appealing, albeit speculative, to interpret these residual belief-

updating effects in terms of task-unrelated fluctuations in physiological arousal. An 

important goal for future work is to examine how arousal might combine with other factors 

to influence belief updating, and how DMFC might regulate some or all of these influences 

(O’Reilly et al., 2013). Future studies with concurrent fMRI and physiological recordings 

would be well positioned to address this question.

Conclusions

We found that decision makers estimating a non-stationary feature of the environment could 

adapt the rate at which they learned from new experiences, and that adaptive learning was 

influenced by multiple computationally distinct factors. Two such factors, CPP and RU, 

were identified on the basis of an approximately Bayesian model of adaptive belief 

updating. CPP reflected a reactive response to observations signifying environmental 

change, whereas RU drove a more gradual and proactive response based on imprecision in 

one’s current belief. Learning was also affected by outcome reward value even though this 

quantity played no role in a normative model of task performance.

Using this computational decomposition of adaptive learning we were able to identify 

BOLD effects uniquely associated with each factor, suggesting that multiple distinct neural 

processes modulate belief updating. A region of visual cortex responded uniquely to CPP; 

regions of aPFC, parietal cortex, and cerebellum responded uniquely to RU; and ventral 

striatum responded uniquely to reward value. Next, we were able to identify the 

convergence of all three influences in a set of regions including DMFC, insula, parietal 

cortex and PCC. These regions showed task-dependent functional connectivity to the factor-

specific regions and their activity predicted adaptive learning both across trials and across 

participants. These findings are compatible with the idea that a common mechanism—which 

may also be influenced by physiological arousal—underlies diverse influences on learning 

in volatile settings.

Experimental procedures

Participants

Human-participant procedures were approved by the University of Pennsylvania Internal 

Review Board; informed consent was obtained from all participants. Participants were 

recruited from the University of Pennsylvania community: n=32, 17 female, mean age=22.4 

(SD=3.0; range 18–30). Two additional participants were excluded from analyses: one for 

head movement during MRI scanning (shifts of at least 0.5mm between >5% of adjacent 

timepoints), and one for trial-wise learning rates consistently >1 (median=1.19), suggesting 

a misunderstanding of the task structure. After the study concluded, all participants were 

invited to return for a follow-up eye-tracking session and 13 did so. Three participants were 
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excluded from eye-tracking analyses because of insufficient valid eye-tracking data (see Fig. 

S4 legend for details), resulting in an eye-tracking sample of n=10 (age 20–28, 6 female).

Task

Participants performed a predictive-inference task, programmed in Matlab (The MathWorks, 

Natick, MA) using MGL (http://justingardner.net/mgl) and SnowDots (http://

code.google.com/p/snow-dots) extensions. Conceptually, the task involved repeatedly 

predicting the next in a sequence of numbers (Nassar et al., 2012; Nassar et al., 2010). The 

inference problem was embedded in a cover task in which the number corresponded to the 

horizontal position at which a bag of money would drop from a helicopter concealed behind 

clouds.

The objective of the task was to catch coins in a bucket by predicting where the bag would 

land, which was equivalent to inferring the generative mean (i.e., the position of the 

helicopter) and centering the bucket at that position. For each trial we could directly observe 

the state prediction error, denoted δ and defined as the distance between the previous 

prediction and outcome. We could also observe the update, defined as the subsequent shift 

in the participant’s prediction. These two variables together provide trial-wise estimates of 

the participant’s learning rate.

Participants used a joystick to control the left/right position of the bucket. On each trial the 

participant had 3s to place the bucket, which was then locked in place as a bag dropped and 

exploded into a cloud of coins. A new trial began immediately after the outcome display was 

complete, resulting in a 4.6s trial-onset asynchrony. Bag positions were drawn from a 

Gaussian distribution whose mean usually remained fixed from trial to trial. On occasional 

change points the mean was redrawn from a uniform distribution spanning the width of the 

display. The probability of a change point was zero for the first three trials after the previous 

change point and 0.125 on each trial thereafter. Participants were told that the helicopter 

usually stayed in one place but moved occasionally. Participants also could directly observe 

the helicopter’s position during preliminary practice (see below).

At the beginning of each trial the participant had to move the joystick to a “home position” 

at the right-hand edge of the display to collect the bucket before moving it to the desired 

position. This procedure was used to decouple the degree of belief updating on each trial 

from the amplitude of the associated motor response. Motor amplitude depended on the 

selected left/right position, which had no correlation with update magnitude (median r=0.00, 

IQR −0.02 to 0.04). After each bag fell, a red bar marked the interval between the bag 

position and the participant’s previous prediction. Theoretically, the subsequent prediction is 

expected to fall within that interval (which represents a learning rate between 0 and 1), 

although participants were free to place the bucket anywhere they chose.

Left/right position was internally mapped to a value from 0 to 300 screen units to correspond 

with previous numerical instantiations of the task (Nassar et al., 2012). The Gaussian 

distribution governing bag positions had SD=10 in “low-noise” runs and SD=25 in “high-

noise” runs. “Noise” here refers to non-predictive stochasticity across observations, 

elsewhere denoted “expected uncertainty” (Yu and Dayan, 2005) or “risk” (Payzan-
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LeNestour et al., 2013). The width of the bucket was set to 3 × SD in order to equate 

earnings in the two noise conditions. Each participant performed four 120-trial runs during 

functional scanning. Runs alternated between the low-noise and high-noise conditions, with 

the order counterbalanced across participants.

As an independent manipulation of reward, the coins that issued from each bag had either 

positive or neutral monetary value, randomized independently on each trial. Participants’ 

final earnings depended on the number of positive-value coins they caught but both outcome 

types were equally informative for future spatial predictions. For half the participants, 

positive and neutral coins were colored yellow and gray, respectively, and described as 

“gold” and “rocks.” For the remaining participant the colors were reversed and described as 

“coins” and “sand.”

Each participant completed a one-hour behavioral practice session in advance of MRI 

scanning. Practice began with four 40-trial runs of a version of the task in which the 

helicopter was visible. This initial phase: (1) made explicit the structure of the task, with the 

helicopter staying stable for periods of time and sometimes randomly repositioning; (2) let 

participants observe the frequency of change points; and (3) served to emphasize that the 

best strategy was to set the prediction to the generative mean. The practice session continued 

with four 80-trial runs with the helicopter hidden. Participants were explicitly instructed 

during practice to place the bucket directly underneath the helicopter (whether visible or 

not), which was the optimal strategy. At the beginning of the MRI session (during 

anatomical scanning), participants performed two 40-trial practice runs with the helicopter 

visible.

The follow-up eye-tracking session used the same task as the MRI session and consisted of 

two 40-trial practice runs with the helicopter visible followed by four 120-trial runs with the 

helicopter hidden.

Normative model

Overview—Optimal task performance required inferring the location of the helicopter 

based on the locations of bags dropped on previous trials:

(1)

where μt is the location of the helicopter on trial t and X1:t represents the locations of bags 

dropped from trials 1 through t. Exact inference over μt is computationally costly in the 

presence of change points (Adams and MacKay, 2007; Behrens et al., 2007; Fearnhead and 

Liu, 2007; Wilson et al., 2010). However, the computational complexity of optimal 

inference can be reduced dramatically by approximating the prior distribution over possible 

means as a weighted mixture of two components: (1) a Gaussian distribution with mean and 

variance matched to the true mixture of Gaussians, and (2) a uniform distribution accounting 

for the possibility of the mean being resampled according to a change-point process (Nassar 

et al., 2012). This reduced form of the Bayesian model achieves similar performance to the 

optimal inference algorithm at a fraction of the cost, provides a parsimonious description of 
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the main features of participants’ learning behavior, and can be implemented as delta-rule 

(Nassar et al., 2012; Nassar et al., 2010):

(2)

(3)

where Bt+1 is a belief about the location of the helicopter on the next trial, δt is the error 

made in predicting the current bag location (Xt), and αt is the learning rate. Learning rate is 

determined separately for each trial and depends critically on two factors. The first factor, 

CPP, is a measure of how likely it is, given the current observation, that the position of the 

helicopter has changed since the previous time step. The second factor, RU, is the fraction of 

overall predictive uncertainty that is due to imprecise knowledge about the location of the 

helicopter. RU is analogous to the gain in a Kalman filter and is also similar to estimation 

uncertainty as formulated in choice tasks (Payzan-LeNestour et al., 2013).

In what follows we use Ωt to denote CPP on trial t, and τt to denote RU on trial t, to match 

notation used previously (Nassar et al., 2012). Trial-wise learning rate is computed as 

follows:

(4)

Thus, new data are more influential when the model believes that the location of the 

helicopter has changed or is less sure about the true location of the helicopter.

Computation of model variables—The model computes Ωt on each trial according to 

the relative likelihood of the newest observation (Xt) under either the current belief 

distribution (which is Gaussian, centered at the inferred position of the helicopter, Bt) or the 

change-point distribution (which is uniform from 0 to 300 screen units; see above):

(5)

where H is the hazard rate (the probability of a change point on each trial) and σt is the 

standard deviation on the predictive distribution over future bag locations. Thus, Ωt is higher 

when change points are expected to be more frequent (H is high) or when the observed 

datum is surprising (  is low). The model was equipped with a fixed hazard 

rate corresponding to the observed rate of change points across all trials in our dataset 

(H=0.1). Thus, in our implementation of the model, change-point probability was driven 

only by a mismatch between the newest bag location and prior expectations.

Unlike Ωt, τt does not depend on the current observation Xt. The model computes τt+1 at the 

end of trial t according to the fraction of total uncertainty about the next bag location that is 

attributable to an imprecise estimate of the helicopter location (as opposed to uncertainty 

McGuire et al. Page 13

Neuron. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



resulting from noise; i.e., the variance of the Gaussian distribution from which bag locations 

are picked, σ2
N):

(6)

where the numerator includes a weighted average of the variance on the helicopter 

distribution conditional on a change point (first term) and the variance on the helicopter 

distribution conditional on no change point (second term). In addition, it contains a term that 

accounts for variance emerging from the difference in the means of these two conditional 

distributions (third term). The denominator is the same as the numerator, but contains an 

additional term to account for uncertainty arising from noise (σ2
N). Relative uncertainty 

computed in this way factors into the learning rate computed by the model for the 

subsequent trial via Equation 4.

In contrast to previous work with this model, our implementation did not involve fitting its 

parameters directly to behavioral data. Instead, we fixed free parameters to the appropriate 

value for each noise condition (H=0.1; σN =10 or 25) and simulated behavior from this 

normative model over each sequence of stimuli observed by our participants. Trial-by-trial 

estimates of CPP and RU were extracted from these runs and used as normative 

prescriptions for surprise-driven and uncertainty-driven influences on learning, respectively. 

Participants may have had imprecise subjective estimates of H (Nassar et al., 2010) but our 

estimated CPP and RU time courses were robust to either halving or doubling the assumed 

hazard rate (median rs≥0.98 for true versus alternative hazard rates).

Behavioral analysis

Regression model—We formally tested our behavioral predictions using a linear 

regression framework, with trial-wise update (Bt+1 − Bt) as the dependent variable. 

Regression models were fit separately for each participant, with coefficients then tested 

against zero at the group level. For comparisons between nested models, z-transformed F 

statistics were computed for the model comparison within each individual, and were tested 

against zero at the group level. All behavioral regression models included an intercept 

(modeling any tendency to update preferentially leftward or rightward) and a quadratic-

weighted term modeling an observed tendency to avoid the edges of the display. Results 

showed a positive effect for the intercept term (median=0.32, IQR −0.04 to 0.73, signed-

rank p=0.004), indicating a rightward bias (toward the joystick’s home position). The edge-

effect term also received positive coefficients (median=1.37, IQR 0.42 to 3.22, signed-rank 

p<0.001). Because learning rate in the normative model is linearly dependent on CPP (Fig. 

1C), trial-wise update was modeled as a function of CPP × δ. The theoretical effect of RU 

on belief updating prescribed by the normative model was modeled as RU × (1 − CPP) × δ. 

We obtained results equivalent to those reported in the Behavioral Results section using 

variants of the model that: (1) included a main effect for each term in addition to its 

interaction with δ, (2) mean-centered the predictors before constructing the interactions, or 

(3) analyzed high-noise and low-noise runs separately.

McGuire et al. Page 14

Neuron. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MRI data acquisition and preprocessing

MRI data were acquired on a 3T Siemens Trio with a 32-channel head coil. We first 

collected a T1-weighted MPRAGE structural image (0.9375 × 0.9375 × 1mm voxels, 192 × 

256 matrix, 160 axial slices, TI=1100ms, TR=1630ms, TE=3.11ms, flip angle=15°). 

Functional data were acquired using a gradient-echo echoplanar imaging (EPI) sequence 

(3mm isotropic voxels, 64 × 64 matrix, 42 axial slices tilted 30° from the AC-PC plane, 

TR=2500ms, TE=25ms, flip angle=75°). There were 4 runs, each with 226 images (9 min, 

25s). At the end of the session we acquired matched fieldmap images (TR=1000ms, 

TE=2.69 and 5.27ms, flip angle=60°).

Data were preprocessed using FSL (Jenkinson et al., 2002; Jenkinson et al., 2012; Jenkinson 

and Smith, 2001; Smith et al., 2004) and AFNI (Cox, 1996; Cox, 2012) software. Functional 

data were temporally aligned to midpoint of each acquisition (AFNI’s 3dTshift), motion 

corrected (FSL’s MCFLIRT), undistorted and warped to MNI space (see below), outlier-

attenuated (AFNI’s 3dDespike), smoothed with a 6 mm FWHM Gaussian kernel (FSL’s 

fslmaths), and intensity-scaled by a single grand-mean value per run. To warp the data to 

MNI space, functional data were aligned to the structural image (FSL’s FLIRT), using 

boundary-based registration (Greve and Fischl, 2009) simultaneously incorporating 

fieldmap-based geometric undistortion. Separately, the structural image was nonlinearly 

coregistered to the MNI template (FSL’s FLIRT and FNIRT). The two transformations were 

concatenated and applied to the functional data.

fMRI analysis

Voxelwise general linear models (GLMs) were fit using ordinary least squares (AFNI’s 

3dDeconvolve). GLMs were estimated for each participant individually using data 

concatenated across the 4 runs. There were 11 baseline terms per run: a constant, 4 low-

frequency drift terms (first-through-fourth-order Legendre polynomials), and 6 motion 

parameters.

The primary GLM modeled each bag drop as a 1s event convolved with an HRF. Together 

with the constant effect we included 5 mean-centered amplitude modulators of the outcome-

related BOLD response: (1) the outcome’s left/right position on the screen (included as a 

nuisance term), (2) model-derived CPP, (3) model-derived RU, (4) reward value (a binary 

term contrasting high-value versus neutral-value outcomes), and (5) residual update from the 

behavioral analysis. The residual term represents the extent to which the participant’s update 

on a given trial was different than predicted by a regression model that included all of the 

hypothesized influences on learning rate. We also computed all pairwise contrasts among 

the CPP, RU, and reward value terms for each participant. Each modulator was z-scored 

across trials for a given participant (prior to HRF convolution) to place the GLM 

coefficients on a comparable scale and facilitate contrasts between modulator variables.

Single-trial nuisance regressors were included for the first and last trial of each run as well 

as invalid trials. A trial was deemed invalid if the participant either failed to collect the 

bucket from the home position or made an obvious response error (placing the bucket >30 

screen units outside the range between the last prediction and outcome). Trials immediately 
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following either of these events were also deemed invalid. The percentage of invalid trials 

was zero for 18 participants, 0.2–2.8% for 13 participants, and 10.2% for one participant.

Whole-brain, group-level analyses assessed statistical significance on the basis of cluster 

mass, with the cluster-defining threshold set to the nominal p<0.001 level. Corrected p-

values were determined via permutation testing (Nichols and Holmes, 2002) using FSL’s 

randomise with 5000 iterations. Each iteration involved sign-flipping the entire coefficient 

map for a random subset of participants, computing the group-level t-map, and adding the 

maximum suprathreshold cluster mass to an empirical null distribution. This method 

estimates the distribution for image-wise maximum cluster mass under the null hypothesis 

that coefficients are centered on zero, while preserving the spatial autocorrelation of the 

data. The empirical null distribution was then used to assign p-values to clusters in the non-

permuted data, affording whole-brain control of the family-wise error rate. Results were 

thresholded at corrected p<0.05, two-tailed. Conjunction analyses identified regions that 

passed this threshold with effects of the same sign in each of the constituent analyses. A 

cluster extent threshold of 10 contiguous voxels (270μL) was applied to conjunction results. 

For significant voxels, conjunction t statistics were defined as the minimum-absolute-value t 

statistic across the constituent analyses.

Further analyses tested whether trial-by-trial BOLD measurements from the two DMFC 

residual-update regions (Fig. 6A) or the seven common adaptive learning-rate regions (Fig. 

5) improved our predictive modeling of updating behavior. We extracted the BOLD time 

course from each ROI, regressed out effects of baseline, CPP, RU, and reward value, and 

estimated a series of single-trial BOLD amplitudes (Mumford et al., 2012). Nine new 

behavioral regression models were created, one for each ROI, that included all the original 

predictors (Fig. 2) plus a term that allowed the impact of prediction errors to be adjusted 

according to trial-wise BOLD amplitudes. For the residual-update regions in DMFC, the 

BOLD amplitudes were extracted using a leave-one-participant-out procedure to avoid 

circularity. On each iteration we defined two ROIs as 15mm-radius spheres centered at local 

peaks for the residual effect in inferior and superior DMFC using a subsample of n=31 

(which in practice resulted in identical ROIs in 30 of the 32 iterations), and extracted BOLD 

time courses from these ROIs for the held-out participant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Task overview and theoretical predictions. A: Screenshots of the experimental task. 

Participants positioned a bucket, trying to predict where a bag would drop from an occluded 

helicopter. B: An example sequence of trials. Data points mark the location at which 

successive bags fell (yellow = rewarding outcome, gray = neutral outcome). Heavy dashed 

line marks the true generative mean, which had periods of stability with occasional change 

points. Cyan line marks the predictions of an approximate Bayesian model. Inset equation 

presents the model’s belief-updating rule (Bt = belief, Xt = observed outcome, αt = learning 

rate on trial t). Vertical dashed line marks the boundary between a high-noise condition (left) 

and low-noise condition (right), reflected in different levels of stochastic variance around the 

generative mean. C: Two theoretical influences on learning rate across trials. Change-point 
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probability (CPP) is elevated when an unexpectedly large prediction error occurs. Relative 

uncertainty (RU) is elevated subsequently and slowly decays as a more precise estimate of 

the current mean is reached. Inset equation shows how CPP and RU jointly determine the 

adaptive learning rate.
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Figure 2. 
Behavioral results. A: Example data from one participant, illustrating the fit obtained using 

only a fixed-learning-rate term. Each data point represents a trial. A fixed learning rate 

implies a linear relationship between prediction error (current outcome minus previous 

prediction) and update (next prediction minus previous prediction), regardless of noise (light 

gray = low noise; dark gray = high noise). B: Illustration of the fit obtained with a change-

point probability term, using the same data as in panel A. Here the learning rate is adaptive 

(non-linear) and depends on noise. C: Coefficients from the full regression-based analysis of 

behavioral data (see inset equation), with coefficients estimated for each participant 

individually. The four plotted coefficients correspond to a fixed learning rate (β1, panel A), 

change-point probability (β2, panel B), relative uncertainty (β3), and reward value (β4). 

Estimates of β4 are scaled by a factor of 5 for visibility. Black markers show the results of 

fitting the regression model to simulated data generated by the approximate Bayesian model 

(“Optimal”) or by a model with a fixed learning rate (“Fixed LR”).
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Figure 3. 
Effects of individual learning-rate variables on BOLD, tested concurrently in the same GLM 

(see text and Table S1).
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Figure 4. 
Brain regions selectively sensitive to CPP, RU, or reward. A: Regions showing significant 

effects (corrected p<0.05, whole-brain permutation test) in the same direction for contrasts 

of CPP versus 0, CPP versus RU, and CPP versus reward. Warm colors represent positive 

effects and cool colors represent negative effects. B: Regions showing significant effects in 

the same direction for contrasts of RU versus 0, RU versus CPP, and RU versus reward. C: 

Mean±SEM BOLD time courses relative to large change points (CPP>0.5), obtained from 

33-voxel spheres centered at peak voxels in Panel A. Sensitivity to CPP entails a response 

that peaks soon after a change point and then decays rapidly (see Fig. 1C and S2). D: 

Equivalent time courses for peak locations in Panel B. See Movie S1 for further details of 

change-point-aligned time courses. E: Regions showing significant effects in the same 

direction for contrasts of reward versus 0, reward versus CPP, and reward versus RU.
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Figure 5. 
Conjunction of BOLD effects for multiple influences on learning rate. A: Regions showing 

significant effects (corrected p<0.05, whole-brain permutation test) of all three learning-rate-

related variables: CPP, RU, and reward value. B: Across-participant relationship between 

behavioral effects and BOLD effects in each conjunction region. Results are plotted for the 

effects of normative factors (the sum of CPP and RU parameters; left) and effects of reward 

value (right). Points represent across-participant Pearson correlations (with bootstrapped 

95% CIs) between the behavioral parameter and the BOLD effect in each ROI.
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Figure 6. 
BOLD response correlated with residual variability in prediction-updating behavior. A: 

Significant clusters for residual behavioral update (corrected p<0.05, whole-brain 

permutation test) were seen in both inferior and superior DMFC. B: The same effect was 

tested in common adaptive learning-rate regions (see Fig. 5). Points show the median 

residual update effect in each region with bootstrapped 95% CIs. C: Trial-by-trial BOLD 

amplitudes from the regions in Panel A were significant predictors of belief-updating 

behavior. BOLD amplitudes from either superior or inferior DMFC were added to a 

behavioral regression model that also contained all other hypothesized predictors of belief 

updating (see Fig. 2), and regression coefficients were estimated separately for each 

participant. The BOLD term tended to receive positive coefficients across participants, both 
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for amplitudes extracted from the superior DMFC region (vertical axis) and from the inferior 

DMFC region (horizontal axis).
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