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Abstract

A full-wave equation that describes nonlinear propagation in a heterogeneous attenuating medium 

is solved numerically with finite differences in the time domain (FDTD). Three-dimensional 

solutions of the equation are verified with water tank measurements of a commercial diagnostic 

ultrasound transducer and are shown to be in excellent agreement in terms of the fundamental and 

harmonic acoustic fields and the power spectrum at the focus. The linear and nonlinear 

components of the algorithm are also verified independently. In the linear nonattenuating regime 

solutions match results from Field II, a well established software package used in transducer 

modeling, to within 0.3 dB. Nonlinear plane wave propagation is shown to closely match results 

from the Galerkin method up to 4 times the fundamental frequency. In addition to thermoviscous 

attenuation we present a numerical solution of the relaxation attenuation laws that allows 

modeling of arbitrary frequency dependent attenuation, such as that observed in tissue. A perfectly 

matched layer (PML) is implemented at the boundaries with a numerical implementation that 

allows the PML to be used with high-order discretizations. A −78 dB reduction in the reflected 

amplitude is demonstrated. The numerical algorithm is used to simulate a diagnostic ultrasound 

pulse propagating through a histologically measured representation of human abdominal wall with 

spatial variation in the speed of sound, attenuation, nonlinearity, and density. An ultrasound image 

is created in silico using the same physical and algorithmic process used in an ultrasound scanner: 

a series of pulses are transmitted through heterogeneous scattering tissue and the received echoes 

are used in a delay-and-sum beam-forming algorithm to generate a images. The resulting 

harmonic image exhibits characteristic improvement in lesion boundary definition and contrast 

when compared with the fundamental image. We demonstrate a mechanism of harmonic image 

quality improvement by showing that the harmonic point spread function is less sensitive to 

reverberation clutter.
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I. Introduction

Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium 

has important applications in diagnostic and therapeutic ultrasound. The heterogeneous 

composition of tissue distorts the phase and generates unwanted reverberation of an 

ultrasonic signal, resulting in the degradation of the lateral resolution and contrast of an 

ultrasonic scanner. The nonlinearity of wave propagation is used to the advantage of 

diagnostic scanners that employ the harmonic components of the ultrasonic signal to 

improve the resolution and penetration of clinical scanners [1]–[3]. Harmonic imaging has 

been shown to have an important effect in reducing phase aberration and clutter [4]–[6].

Several equations and numerical methods that address nonlinear propagation, heterogeneous 

media, or multiple scattering have been proposed. Ultrasonic propagation through fine-scale 

heterogeneities has been simulated with a finite difference time domain (FDTD) solution of 

the 3-D linear wave equation [7,] [8] or a k-space method [9]. This numerical 

implementation models the fine structure of human tissue and the arrangement of tissue in 

the human body. The full-wave equation accounts for multiple reflections and scattering but 

current numerical implementations lack the ability to simulate nonlinear propagation and 

attenuation.

The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation or nonlinear one-way parabolic 

wave equation accounts for nonlinearity, attenuation, and diffraction within a paraxial 

approximation [10], [11]. It has been solved in the time and frequency domains [12]–[14]; 

however, the parabolic wave equation assumes that field variations transverse to the 

direction of propagation are slow compared with axial variations and the paraxial 

approximation limits the equation’s validity to about 15° from the axis of propagation [15]. 

Additionally, this one-way wave equation does not model reflections, scattering, and 

heterogeneities.

The nonlinear full-wave equation describes acoustic fields in a nonlinear thermoviscous 

medium [16], [17]. It has the advantages of both the 3-dimensional linear wave equation and 

the nonlinear parabolic wave equation by incorporating nonlinearity, attenuation, and all 

wave effects, such as multiple scattering, reflection, and refraction. It is not limited by a 

paraxial approximation so it accurately describes an ultrasonic beam in the off-axis region 

and is valid for arbitrary scatterers in the field. An axisymmetric version of this equation has 

been solved numerically in the context of heat deposition [18].

Here we propose a 3-dimensional numerical solution to a nonlinear full-wave equation that 

additionally describes arbitrary frequency dependent attenuation and variations in density. 

As the accuracy of simulations improves it becomes increasingly important to include higher 

order effects. We present the first numerical method that comprehensively describes 3-

dimensional nonlinear wave propagation in heterogeneous media with arbitrary attenuation 

law. This paper also describes the implementation of perfectly matched layers (PML) at the 

boundaries to reduce reflections to negligible levels. It is shown that the FDTD method can 

accurately represent nonlinear ultrasonic propagation from a diagnostic transducer and that it 

can simulate heterogeneities in speed of sound, attenuation, nonlinearity, and density.
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The perfectly matched layer (PML) was introduced by Berenger in the context of 

electromagnetic waves to provide absorption under a broad variety of conditions [19] and 

has also been used in the context of the paraxial wave equation [20]. In the continuous limit, 

it has been shown that the PML interface between the regular medium and the PML 

completely absorbs the incident wave independently of incidence angle and frequency. 

Various other methods have been proposed too but they are successful only for a limited 

range of frequencies and angles of incidence. The PML technique has been previously 

adapted for acoustics [21], [22] but the methods use low-order discretizations for their finite 

differences. In this paper we introduce a new acoustic PML method for higher order finite 

differences.

The incorporation of arbitrary frequency dependent absorption laws is straightforward in 

frequency domain methods. However, it can be numerically challenging for time-domain 

methods to solve the equivalent convolution [23]. In this paper, in addition to thermoviscous 

attenuation, which is only valid for fluids, we use relaxation mechanisms to model arbitrary 

attenuation, such as the power laws observed in tissue. The numerical methods are based on 

research in seismic wave fields [24] but are adapted for the high-order spatial discretizations 

used here.

Numerical solutions of the full-wave equation are extensively validated. In the linear 

nonattenuating regime results are compared with Field II, a well accepted standard for 

transducer modeling [25], [26]. Nonlinearity is verified by comparing the distortion of a 

plane wave with solutions of a frequency domain Galerkin method. Water tank 

measurements of a commercial ultrasonic transducer are used to validate the combined 

effects of diffraction, nonlinearity, and attenuation in the simulation results for fundamental 

and harmonic components of the acoustic field. Once the validation of the method is 

established the simulation is used to propagate diagnostic ultrasound pulses through an 

experimentally determined representation of an abdominal layer. Multiple pulses are used to 

compose a harmonic and fundamental ultrasound image using the same process that a 

diagnostic scanner employs. The pulses propagate, aberrate through the abdominal layer, 

reflect, scatter, and part of the transmitted energy returns to the transducer face where it is 

beamformed into an image. Unlike other simulations that use nonlinear propagation to create 

ultrasound images [27], this simulation, in addition to including the effects of 

inhomogeneities and multiple scattering, does not require any linear convolution 

assumptions of the point-spread function. Finally we examine the effects of clutter on the 

point-spread function and show that one of the primary mechanisms of image degradation in 

fundamental imaging, compared with harmonic imaging, is the presence of near-field 

reverberation at the fundamental frequencies.

II. Methods

A. Acoustic Equation

The nonlinear full-wave equation used in this paper is a second-order wave equation that 

describes a nonlinear wave propagating in an attenuating medium [17], [28].
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(1)

where ξm satisfies the equation

(2)

The first 2 terms in (1) represent the linear wave equation, the third term accounts for 

thermoviscous diffusivity, followed by nonlinearity, variations in density, and v relaxation 

mechanisms. Here p is the acoustic pressure, c0 and ρ are the equilibrium speed of sound 

and density, δ is the acoustic diffusivity, and β is the nonlinearity parameter. The nonlinear 

parameter B/A is related to the coefficient, β, by β = 1 + B/2A and the diffusivity δ can be 

expressed as a function of the absorption coefficient α with the equation  (where 

ω is the angular frequency). The material parameters c0, δ, ρ, and β can be functions of 

space. The relaxation equation (2) has υ peaks at characteristic frequencies ωm with weight 

αm that depend on the particular frequency dependent attenuation law that is being modeled. 

The change in speed of sound Δc must obey the Kramers-Kronig relation to preserve 

causality.

B. Diffraction

Explicit finite differences in the time domain are used to discretize the nonlinear full-wave 

equation on a 3-dimensional Cartesian grid. The 3-dimensional linear wave equation is 

modeled with a rotated stencil in Cartesian coordinates. Fourth-order spatial derivatives 

were used to minimize the effects of numerical dispersion and reduce the requirements for 

grid refinement. Higher order discretizations that operate only in the Cartesian directions 

tend to have unwanted directionality—the wave propagates at different speeds along the 

direction of discretization compared with directions that are at an angle [29]. This type of 

error has particular significance for correct focusing and spherical propagation from point 

scatterers. To minimize this effect, the spatial discretization used here has 2 rotated stencils 

in addition to the conventional Cartesian stencil. The total star-shaped stencil for the spatial 

derivatives is shown below.

(3)
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where θ, φ, ψ have the possible values −1, 0, 1, and γ and η are arbitrary weighting 

coefficients with γ + η ≤ 1, γ ≥ 0, and η ≥ 0, and, for this equation only, δ is the Kronecker 

delta function rather than the diffusivity. The coefficients γ and η are not equal because they 

represent different grid spacing lengths compared with the central point in the stencil.

If γ = η = 0 the stencil operates along the conventional Cartesian directions. Fig. 1 shows the 

directions along which the γ and η stencils operate in the positive quadrant.

C. Temporal Terms and Density

The linear temporal derivatives are approximated by second-order finite differences:

(4)

(5)

The nonlinear term was rewritten as

(6)

so the equation can be solved for pn+1 directly. Even though a higher order discretization 

could have been used, this discretization was found to be sufficiently accurate for the weak 

nonlinearity (i.e., without shocks) normally encountered in ultrasound imaging.

The spatial derivatives in the density term are modeled with a standard fourth-order 

approximation, but because only a first-order derivative is being calculated the total width of 

the spatial stencil remains unchanged. Preserving the stencil width reduces the 

communication time required by the domain decomposition in the parallelized code, as 

described in further detail in the discussion. The discretization is shown here for the ρ 

derivative in the x-axis:

(7)

D. Relaxation Mechanisms

The v relaxation mechanisms describe the following frequency dependent attenuation:

(8)
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where

(9)

Each relaxation mechanism has an associated characteristic frequency ωm and a fractional 

change in speed of sound associated with the parameter ym. If we assume that Δc = c0, then 

(8) can be approximated by

(10)

To fit the relaxation mechanisms to an arbitrary frequency-dependent attenuation law the 

characteristic frequencies ωm are chosen. Then certain discrete frequencies are chosen across 

a frequency range of interest. Due to the linearity of (10) with respect to ym these weights 

can be determined with a straightforward minimization of the mean of the square error 

between the relaxation mechanisms and the attenuation law. This approach requires 

selecting characteristic frequencies. A more accurate, and more complex, alternative to this 

procedure requires the use of a nonlinear minimization routine to explore the parameter 

space given by both ωm and ym and then determine their optimal values. As subsequent 

results will show, the former method provides sufficient accuracy for the purpose of this 

paper.

Once the relaxation parameters are established, finite differences are used to discretize (2). 

A second order in time and fourth order in space discretization is used:

(11)

with

(12)

and

(13)

The finite difference scheme for the relaxation attenuation is then

(14)

and
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(15)

where Ci,j,k represents the spatial discretization of ∇2p described in (3).

E. Perfectly Matched Layer

The perfectly matched layer boundary condition is applied to the linear wave equation

(16)

Each of the 6 orientations in the stencil described by (3) must be solved separately and have 

their own independent calculations. This adds considerable complexity to the code, and 

practically, only the 3 conventional Cartesian orientations need to be used to obtain a 

satisfactory absorbing boundary layer, as is demonstrated in subsequent results. In the 

interest of notational simplicity, we describe here the solution in the z coordinate using the 

stretched coordinate approach proposed in Chew and Weedon [30]. The wave equation can 

then be written in time-harmonic form with the complex-coordinate stretched space

(17)

where the z coordinate is stretched by

(18)

Eq. (17) can be written in the time domain with the aid of the auxilliary variables D1 and D2:

(19)

(20)

Then the scalar wave equation can be written as

(21)

(22)
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(23)

These equations can be discretized by deconvolving the second-order derivative so that 2 

applications of the first derivative match the second derivative coefficients: [b−1;, b0, b1] * 

[b−1, b0, b1] = [−1, 16, −30, 16, −1]/12. Then

(24)

(25)

where to double floating point precision

(26)

In (25) note the minus sign in b−m to preserve the convolution ordering. The PML is 

sensitive to small variations and the numerical derivatives in the limiting case of σz = 0 must 

match the derivatives in the nonabsorbing region. The field parameters D1 and D2 do not 

have a particular physical meaning and are only used for their numerical convenience. The 

diffraction term in (16) can then be discretized as

(27)

The conductivity profile of the PML is given by

(28)

where d is the thickness of the PML, m is the order, and R0 is the reflection of the PML at 

normal incidence. These parameters are optimized with respect to the number of matching 

layers and the frequency of the incident wave.

F. Hydrophone Measurements

Prior to making measurements, a membrane hydrophone (Onda Corp, Sunnyvale, CA) was 

placed in deionized water for 30 min. A Siemens Antares ultrasound scanner (Siemens 

Medical Solutions USA, Inc., Issaquah, WA) was then set up to repeatedly fire the center 

beam of a VF10–5 transducer (Siemens Medical Solutions USA, Inc., Issaquah, WA) at 

about 100 Hz PRF using a 2-cycle apodized pulse at 7% of its maximum power. The center 

of the hydrophone was placed at the 20 mm focus of the transducer. A 2-dimensional 

acquisition was performed with a Newport MM3000 (Newport Corporation, Irvine, CA) 
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translation stage to move the transducer in increments of 0.1 mm laterally and in elevation. 

The translation stage has a precision of 0.1 µm. A 5 mm-by-5 mm grid was recorded, with 5 

waveforms being acquired at each spatial location using a trigger from the ultrasound 

scanner. Once this acquisition was completed, the transducer was lowered 16.5 mm and 

another 2-dimensional acquisition with a fixed axial position (10 mm by 10 mm) was 

performed with the same parameters. Voltage was converted to pressure according to the 

conversion factor provided by the manufacturer’s frequency-based calibration.

Basic filtering and averaging were used to remove noise from the data. A 0.3-mm spatial 

low-pass filter was used in the lateral-elevation plane before averaging the 5 independent 

acquisitions. Additionally, the initial condition data obtained from the transducer face was 

band-pass filtered with a 200% bandwidth Gaussian filter centered at the transducer’s 6.67 

MHz pulse frequency.

G. Field II

The linear nonattenuating algorithm, i.e., the algorithm with the nonlinearity and attenuation 

terms set to zero, was compared with an equivalent Field II [26] simulation for a commercial 

linear transducer. Field II solves the wave equation with the Tupholme-Stepanishen method 

for calculating linear pulsed ultrasound fields in a homogeneous medium [31]–[33]. It has 

been widely validated and is commonly used to model transducers.

The transducer modeled in the Field II simulations is consistent with linear transducers made 

commercially. The array had an elevation focus of 2 cm, a lateral focus of 2.4 cm, an F/# of 

1.5, and a center frequency of 4.2 MHz. The transducer was modeled to match the proposed 

algorithm, meaning the kerf was set to zero and an element size of 20 µm by 20 µm was 

used to model an active aperture size of 16 mm by 5 mm. The number of mathematical 

elements used for each 20 µm by 20 µm was set to 1. The soft baffle boundary condition, in 

which the acoustical potential is fixed at zero, was used in the Field II simulation, and a 

parabolically focused profile was used in both the lateral and elevation dimensions,

(29)

where p0 is the pressure amplitude, dx is the lateral focus, dy is the elevation focus and f is 

the impulse function:

(30)

Here the number of cycles n was set to 1.667 so that the fractional bandwidth was 

approximately 0.6, and the exponential drop-off parameter m was 2.

In addition, the angular response of the transducer elements was negated by applying an 

apodization of

(31)
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(32)

in the lateral and elevation dimensions. The element width is given by ax. The proposed 

algorithm does not apply an angular weight to the transducer elements. A sampling 

frequency of 160 MHz was used in the Field II simulation.

III. Results

A. Stencil Parameters

The stencil parameters γ and η, were calculated by comparing the linear inviscid part of the 

algorithm (β = δ = 0) to the analytic solution for an oscillating point source in a 

homogeneous medium [34]. A 2 MHz oscillator was placed in the center of a 1.5 cm × 1.5 

cm × 1.5 cm grid with Δx = Δy = Δz = 18 µm and the time step was set to 2.3 ns. Unless 

otherwise specified these grid parameters are used in the remainder of the simulations as 

well. The material parameters are c0 = 1540 m/s and ρ = 1000 kg/ m3. To avoid edge effects, 

the spherical wave was allowed to propagate until it just reached the boundaries; then the 

stencil parameters were varied until the L2 numerical error was minimized. These were 

found to be γ = 0.025 and η = 0.005 and these values are used in the remainder of this paper.

B. Relaxation Mechanisms

The relaxation parameters were calculated using a 2 parameter model for attenuation laws in 

tissue and water. In tissue the attenuation was modeled with an f1 frequency dependence and 

an attenuation of 0.7 dB/MHz/cm. In water the frequency dependence is f2 with an 

attenuation of 1.7000e-04 dB/cm at 0.5 MHz. The parameters were calculated by 

minimizing the error for a frequency range between 0.5 and 12 MHz using the 

approximation that Δc = c0, as described previously. The plots in Fig. 2 show the ideal 

attenuation law and the fitted relaxation mechanism for tissue (on the left) and water (on the 

right). Two parameters q = 2 were sufficient to obtain an excellent fit with the relaxation 

models across the wide frequency band. Table I shows the relaxation parameters used to fit 

the relaxation models to the attenuation laws.

C. Perfectly Matched Layers

The conductivity profile of the PML was optimized for 40 and 100 matching layers for a 2.4 

MHz center frequency, as shown in Table II. A planar ultrasonic pulse was transmitted 

through a homogeneous nonattenuating medium at a normal angle to the absorbing layer and 

the amplitude of the reflected wave was measured. Fig. 3 shows the incident (left) and 

reflected (right) pulses for an absorbing boundary layer with 100 layers or a thickness of 

1.25 mm. Even though the layer is thin, the amplitude of the reflected pulse is reduced by 

close to 4 orders of magnitude. A 0.5 mm layer reduces the reflected energy by over 3 orders 

of magnitude. Much like a physical absorbing layer, the reflected wave has a lower 

frequency content, indicating that a further measured reduction of the energy would occur 

when it is filtered through the pass-band of an ultrasonic transducer. In the subsequent 

simulations the 40-layer boundary condition is used at the sides of the domain, which is 
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reached by the diffracted edges of an ultrasound pulse, and 100 layers are used at the bottom 

surface, where the more intense pulse center is absorbed.

D. Clinical Transducer in a Linear Homogeneous Nonattenuating Medium

The linear nonattenuating algorithm was compared with an equivalent Field II simulation for 

a commercial transducer. Field II solves the wave equation with the Tupholme-Stepanishen 

method for calculating linear pulsed ultrasound fields in a homogeneous medium [31]–[33]. 

It has been widely validated and is commonly used to model transducers.

The transducer used in the following simulations is a Siemens VF10–5 linear array (Siemens 

Medical Solutions USA, Inc., Issaquah, WA) with 192 elements, a 2 cm elevation focus, 2.4 

cm lateral focus, an F-number of 1.5, and a 4.2 MHz center frequency. The element 

dimensions are 0.201 mm width and 5 mm height. For the purposes of the simulations the 

element kerf was assumed to be negligible. The simulation parameters were kept as 

described above except for the grid size, which was altered to 1.5 cm laterally, 1 cm in 

elevation, and 3.35 cm in depth, on the positive quadrant of the lateral-elevation plane.

Fig. 4 compares the intensity of the acoustic field for the Field II and FDTD nonlinear full-

wave simulations across the lateral plane. The agreement is good throughout the simulated 

region. There are small visible differences, notably the −6 dB contour is approximately 1 

mm more proximal to the transducer face in the nonlinear full-wave simulation and the −20 

dB contour is slightly narrower at shallow depths (z < 1.5 cm). However, the overall 

morphology of the contours is very close.

The lateral beamplot at the focus is shown in Fig. 5. The width and shape of the main lobe is 

almost indistinguishable between the 2 simulations. The height of the side lobe is slightly 

larger (<0.2 dB) for the nonlinear full-wave simulation. Beyond 1 cm laterally the difference 

between the 2 simulations is less than 0.3 dB.

The agreement between simulations for the axial intensity, shown in Fig. 6, is also very 

good. There is a small difference in the calculations at the hump preceding the focal region 

(z = 1.6 cm) and the nonlinear full-wave simulation predicts a slightly wider (<0.2 mm) 

focal region.

E. Nonlinear Plane Wave

Results from the inviscid FDTD nonlinear full-wave simulation were compared with the 

results from the Galerkin method applied to the inviscid Burgers’ equation [35]. Burgers’ 

equation is a nonlinear hyperbolic partial differential equation that in acoustics can be 

written as

(33)

where t′ = t − z/c0 is the retarded time. The use of transformed coordinates shifts the small 

signal phase speed of the wave to zero. Therefore changes in pressure from (33) are due 

entirely to nonlinearity and not propagation effects. Solutions of the Burgers’ equation can 
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be compared with solutions of an inviscid plane wave propagating with the FDTD nonlinear 

full-wave algorithm because the transverse components of the Laplacian operator in (1) are 

zero. Thus the solutions are mathematically equivalent for one-way waves but numerically 

different. Unlike the time-domain method used to solve the nonlinear full-wave equation, 

the Galerkin technique solves (33) in the frequency domain. The details of the 

implementation are omitted here but can be found in [35].

Fig. 7 shows a 2 MHz plane wave with β = 5, p0 = 1.5 MPa after it has propagated a distance 

of 2 cm. This distance is approximately one-quarter of the theoretical plane wave shock 

formation distance for a sinusoidal wave. The initial waveform is a 1.677 cycle pulse with 

an exponential drop-off m of 2 and is shown as a solid line. The dashed line represents the 

wave as calculated by the Galerkin method after it has propagated 2 cm and the dash-dotted 

line is the FDTD nonlinear full-wave calculation.

In the time domain (the left graph in Fig 10), the simulations are practically 

indistinguishable. In the frequency domain (right graph of Fig. 10) there is excellent 

agreement at the fundamental and second harmonic frequencies. At the third harmonic there 

is a 1.2 dB difference between the peaks and at the fourth there is a 2.5 dB difference.

F. Experimental Verification

The acoustic plane at the transducer face was measured and used as an input to the full-wave 

simulation with the acoustic properties of water. Shown on the left of Fig. 8 are the 

experimentally measured point-spread functions for the fundamental (top) and harmonic 

(bottom) fields. The equivalent plots are shown for the simulated data with the 

experimentally determined initial conditions on the right. A Gaussian bandpass filter with a 

100% bandwidth was used to filter the fundamental and harmonic components. The point-

spread function was calculated as the temporally averaged intensity on a normalized dB 

scale.

There is good agreement between the experimental and simulated fundamental PSFs in 

terms of primary and secondary features. The size and position of the main lobe are very 

similar and the initial off-plane position of the transducer is apparent in the measured and 

simulated data sets. The elevation and lateral side lobes also have similar position and 

amplitude. Features that are less than 35 dB down from the peak or off axis with respect to 

the lateral and elevation planes exhibit a close correspondence even though there is a visible 

amount of noise in the experimental data. Sections of the lateral and elevation beam plots 

shown in Fig. 9 provide a more quantitative visualization of the differences. The main lobe 

of the fundamental lateral beam plot is almost identical to the measured values. The side 

lobes and data below −25 dB exhibit a small discrepancy of about 1–2 dB. The elevation 

beam plots remain above −25 dB throughout the considered range and they are visually 

indistinguishable from each other.

The harmonic PSFs shown at the bottom of Fig. 8 have similar primary features and many of 

the secondary features are distinguishable even though the noise floor of the experimental 

data limits the accuracy of the comparison in the sub −30 dB range. The main lobe position 

and size shows good agreement and the elevation side lobes have the same position and 
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amplitude even though they appear to be blurred into the main lobe for the experimental 

data. The lateral side lobes can be seen peaking through the noise floor in the same locations 

as the simulated data. Beam plots at the bottom of Fig. 9 show that in the elevation plane the 

main lobe matches the experimental data down to −30 dB and in the elevation plane there is 

a close match with a 5% error at the full width half maximum (FWHM). The position of the 

secondary lobes is accurate though there is a discrepancy of less than 4 dB in the magnitude.

A comparison of the experimental and simulated power spectra at the focal point is shown in 

Fig. 10. The fundamental power spectra at 6.67 MHz are indistinguishable and there is a 1 

dB or less difference for the harmonic power spectra at 13.3 MHz. There is a slightly larger 

difference in the power spectra for frequencies in between the fundamental and harmonic 

power bands but it is limited to a narrow frequency range centered at 10 and 12 MHz.

G. Ultrasonic Imaging

A focused ultrasonic pulse was propagated through a 2-dimensional hetergeneous tissue 

model with 12 point scatterers per resolution. In the interest of time these simulations were 

performed in 2 dimensions because each line in the ultrasound image was calculated using a 

transmitreceive simulation. The initial pulse had an amplitude of 0.5 MPa and was 

spherically focused at 5 cm from an unapodized transducer with an F-number of 1.5. Its 

center frequency was 2.1 MHz with a 67% bandwidth. The tissue representation was 

obtained from a histologically stained sample of human abdominal wall [7], [36] and the 

structures in the tissue were correlated with their measured properties of which the speed of 

sound is shown on the right of Fig. 11. As shown in Table III there are variations in speed of 

sound, attenution, density, and nonlinearity. The point scatterers have a 40 µm diameter and 

a random spatial and amplitude variation with a mean variation in the speed of sound of 77 

m/s, which corresponds to a 5% variation of the accepted average tissue velocity of 1540 

m/s. The pressure field at the focus (5 cm) is shown on the right side of Fig. 11 on a 

compressed scale to emphasize small amplitude features such as those occurring from 

reflection, reverberation, and scattering.

A circular anechoic region with a 5 mm diameter was placed at the focus to mimic a lesion. 

To simulate an ultrasonic imaging system, a focused pulse was transmitted and allowed to 

propagate. The resulting reflections were measured and a standard constant F-number delay 

and sum beamforming algorithm was used to create a single A-line. The process was 

repeated by translating the transducer and forming a series of A-lines that are shown as 

fundamental (left) and harmonic (right) B-mode images in Fig. 12. A 100% bandwidth 

bandpass filter was used to obtain the fundamental and harmonic components from the raw 

data. No point-spread function assumptions were used to form the images.

In a second related application the transmit-receive point-spread functions were calculated 

for the same ultrasonic pulse propagating through the tissue layer but without the spatially 

distributed scatterers. A single point scatterer was placed at the focus and beamforming was 

used to obtain the fundamental and harmonic point-spread functions shown on the left of 

Fig. 13. All other material and pulse parameters were kept unchanged from the previous 

description. The plots on the right of Fig. 13 were obtained by subtracting the reverberation 

from the nearfield layer from the original fundamental and harmonic PSFs. This 
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reverberation PSF was calculated by removing the point target at the focus and using only 

the reflections from the abdominal layer in the beamforming process.

The plots of the PSFs have 4 distinct regions of interest: the X-shaped portion spanning the 

image, representing a conventional PSF if it did not incur any degradation; the lateral 

regions within the isochronous volume to the left and right of the “X,” the region above, 

which precedes the pulse temporally; and the region below, which trails it. The fundamental 

PSF has a substantial amount of clutter written into all these regions whereas the harmonic 

PSF is degraded primarily in the isochronous volume, to a lesser extent in the trailing region, 

and even less in the preceding region. When the reverberation clutter is linearly subtracted 

from the original PSF there is a marked improvement in the fundamental PSF. All of the 

clutter in the preceding region is removed, there is a substantial reduction in the trailing 

region, and there is an improvement in the isochronous volume. In the harmonic PSF the 

clutter in the preceding region is also removed but because the original harmonic PSF does 

not have much clutter there to begin with the improvement is comparatively smaller. There 

is not an easily discernible improvement in the remaining regions.

IV. Discussion

A. Computation

The algorithm uses fourth-order finite difference discretizations in space and second-order 

discretizations in time that were solved explicitly in the time domain. Due to the fine 

discretization and the use of 3 spatial dimensions the memory and processing requirements 

were demanding. More than 109 physical grid points and more than 1013 spatio-temporal 

points are calculated for each 3-dimensional simulation. To distribute the memory and 

computational requirements custom parallel code was written with version 7.0.6 of the 

LAM/MPI toolkit using a combination of C and Fortran77. This code runs on a dedicated 56 

processor Linux cluster with 64 bit architecture and 112 GB of RAM.

The overall spatial stencil for the entire method was kept at 5 points per dimension which, 

with the one-dimensional domain decomposition used in the parallelization, required 

communication of a laterally 2-point-wide axial-elevation volume per processor per domain 

boundary. These extensive internode communication requirements were negotiated with a 

private gigabit network using jumbo frames on a SMC8748L2 switch. The system runs Cen-

tOS 4, a free version of Red Hat Enterprise Linux 4. The 3-dimensional simulations 

presented in this paper required approximately 32 h of run time and 90 GB of memory.

B. Perfectly Matched Layer

In the PML literature it is common to treat the interior of the domain, where there are no 

absorbing layers, as an extension of the PMLs with the stretched coordinate set to 1 [22], 

[30]. To improve the memory requirements, here the interior is treated separately and only 

the boundary elements have the increased memory requirements associated with the PML. 

For large simulations, such as those presented in this paper, the boundaries represent a small 

fraction of the total simulation; therefore, the added memory requirement of the PML is 

practically negligible and grows only marginally with an increase in the domain size.
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One of the advantages of using PMLs compared with conventional methods is that the 

amount of absorption can be increased by simply adding extra layers. There is. however, a 

point of diminishing returns; for example, an increase from 40 to 100 layers reduced the 

reflected amplitude from −63.2 dB to −78.9 dB, a 24% change.

An 80 dB reduction in reflected energy is low enough to satisfy demanding ultrasound 

applications, such as those requiring clutter or reverberation measurements, and is much 

better than typical results from water tank setups with absorbing media on the walls.

C. Nonlinear Plane Wave

Propagation of a nonlinear plane wave and comparison with the Galerkin solution of 

Burgers’ equation shows the accuracy to within 2.5 dB of the FDTD method up to 4 times 

the fundamental frequency. An accurate representation of the higher frequencies is 

particularly important for thermal simulations where the amount of energy deposition is 

related to the frequency dependent absorption and is more heavily dependent on higher 

frequencies. There is no distinguishable error in the power spectrum estimate for the second 

harmonic, which has particular significance for harmonic imaging. Frequencies beyond the 

second harmonic are normally outside of the transducer’s passband and do affect imaging 

applications.

D. Experimental Verification

The experimental verification ties together the effects of diffraction, nonlinearity, and, to a 

lesser extent, frequency-dependent attenuation, which had previously been examined 

independently. The results indicate that the nonlinear full-wave FDTD simulation can take a 

measured apodized focused ultrasonic field at the transducer face and accurately reproduce 

the acoustic field at the focus for both the fundamental and harmonic components. Even fine 

characteristics that are 30 dB below the main lobe and focal errors in the original pulse can 

be seen in the simulated results. The excellent agreement between the simulated and 

experimentally determined power spectra at the focus support the previous spectral results 

for plane wave propagation.

E. Ultrasonic Imaging

The previous verifications of the simulation established confidence in our ability to simulate 

realistic ultrasonic fields in homogenous media. However, the intended application of the 

simulation is for heterogeneous media where our ability to verify the results is limited. The 

heterogeneous results were presented based on the strength of prior verification steps.

When an ultrasound pulse propagates through an in silico representation of a measured 

section of human abdominal wall it exhibits the expected complex characteristics associated 

with heterogeneous propagation. In the multimedia file (not shown here) the pulse can be 

seen reflecting from the layers in the abdominal wall. As the pulse emerges the spherical 

profile of reflections from the point scatterers become apparent. some of the energy reaches 

the boundary where there is no discernible reflection from the wall. The pulse becomes 

progressively tighter as it reaches the focus at 5 cm. Meanwhile acoustic energy continues to 

reverberate in between the layers of the abdomen and there is a discernible step in the 
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amplitude of the reverberating acoustic field that follows integer multiples of the abdominal 

depth. Finally the pulse is completely absorbed by the distal boundary and only the 

reverberated energy persists in the simulated region. Although it is not discernible in the 

movie, the propagation occurs nonlinearly and with frequency dependent loss.

The simulated ultrasonic images shown in Fig. 12 exhibit characteristic differences between 

conventional and harmonic imaging. In the harmonic image the anechoic lesion at 5 cm has 

better contrast to noise ratio and better boundary definition. The abdominal layers in the 

fundamental image are comparatively brighter, indicating that proportionally more 

fundamental energy is reflected from them than harmonic energy, which is consistent with 

the fact that a certain propagation distance is required for harmonic energy to develop and 

accumulate.

The clutter point-spread function images shown in Fig. 13 provide a more comprehensive 

picture of the mechanisms for harmonic image quality improvement. When the clutter PSFs 

are subtracted from the original PSFs there is a marked improvement in the fundamental 

PSF but only a marginal improvement in the harmonic PSF. This provides strong supporting 

evidence that reverberations from near-field layers are a substantial source of image quality 

degradation for fundamental imaging but not for harmonic imaging. Energy at harmonic 

frequencies has not yet developed in the near field; therefore, there isn’t enough 

reverberation at those frequencies to degrade the image. This analysis applies to the 

simulated image, which is a single realization.

The clutter simulations also demonstrate the capabilities of the simulation in a numerically 

demanding situation. An 80 dB dynamic range is achieved in the fundamental plots in Fig. 

13 and, preceding normalization, an additional 10 dB is shown in the harmonic plots. A 

small amount of numerical noise is visible as striations in the center of the harmonic 

reverberation subtracted image, and to a lesser extent in the fundamental image, but overall 

there are very few numerical artifacts. There are no discernible reflections, which would be 

visible where the “X” meets the lateral boundaries (note that these images were not cropped 

laterally, and the edge of the image corresponds to the lateral boundary of the domain).

V. summary and conclusions

We have introduced a finite difference time-domain algorithm that solves the nonlinear 

attenuating full-wave equation in 3 spatial dimensions. The numerical method propagates 

nonlinear diagnostic ultrasound waves in a heterogeneous attenuating medium with 

boundary conditions that reduce reflections to negligible levels. The entire acoustic field is 

simulated so the effects of reflection, reverberation, multiple scattering, and clutter can be 

accurately modeled and an arbitrary acoustic source can be placed anywhere in the 3-

dimensional simulated field. In the simulations presented heterogeneities in the nonlinearity, 

attenuation, density, and speed of sound can be modeled with a resolution of 12.5 µm.

The numerical solutions were verified extensively. diffraction, or the linear wave term, was 

verified with Field II, a simulation package that is considered a standard in linear transducer 

modeling, and with water tank measurements. differences between the 2 simulations were 
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less than 0.3 dB across the considered acoustic field. comparisons of the measured and 

simulated focal plane of a diagnostic ultrasound transducer exhibited the same primary and 

secondary features with respect to the position and amplitude of the main lobe and side lobes 

for both the fundamental and harmonic components. A comparison of the power spectrum at 

the focus also showed excellent agreement. The nonlinear propagation was also verified 

numerically with results from the Galerkin method for a propagating plane wave and was 

shown to be in agreement to within 2.5 dB up to 4 times the fundamental frequency. There is 

negligible disagreement if only the fundamental and harmonic frequencies are considered.

We demonstrated the code’s ability to propagate sound through heterogeneous media by 

transmitting an ultrasound pulse through a measured representation of human abdominal 

wall. There is no easy way to verify heterogeneous propagation but the acoustic field 

qualitatively exhibited the expected behavior as it scattered, reflected, reverberated, focused, 

and distorted nonlinearly.

The method’s capabilities were demonstrated by creating fundamental and harmonic 

ultrasonic images in silico through the same physical process used in a diagnostic scanner. A 

series of pulses were transmitted through a heterogeneous scattering medium and the 

received acoustic field at the transducer plane was used in a beamforming algorithm. The 

resulting harmonic image exhibited the characteristic improvement in lesion boundary 

definition and contrast. To determine a mechanism for image quality improvement the point-

spread functions for these images were calculated and it was shown that reverberation clutter 

degrades the fundamental image to a much larger extent than the harmonic image.

This simulation has the potential to investigate harmonic imaging in heterogeneous media, 

not just for clutter, but also from the perspective of distributed or near-field phase 

aberration, beamformation, tissue structure and properties, scatterer distribution, and for 

novel transducer geometries. Although not presented here, in addition to imaging 

applications the simulation can, for example, output the complete spatio-temporal loss field 

as calculated from the relaxation mechanisms, which has particular applications for acoustic 

radiation force or tissue heating.
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Fig. 1. 
Directions of the stencil for the linear wave equation in the positive quadrant.
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Fig. 2. 
Relaxation model for frequency dependent attenuation laws in tissue (left) and water (right). 

A 2 parameter model is sufficient to closely fit the attenuation laws across a wide frequency 

range.
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Fig. 3. 
Transmitted and reflected waves from the perfectly matched layer with 100 layers (or a 1.25 

mm thickness). Values are normalized to the transmitted amplitude.
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Fig. 4. 
A comparison of the intensity of the acoustic field as calculated by Field II and the linear 

inviscid FDTD nonlinear full-wave method for a commercial clinical ultrasound transducer. 

The lateral plane is shown.
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Fig. 5. 
A comparison of the lateral beam plot at the focus for the Field II and the linear inviscid 

nonlinear full-wave simulations.
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Fig. 6. 
A comparison of the axial intensity for the Field II and the linear inviscid nonlinear full-

wave simulations.
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Fig. 7. 
Nonlinear propagation of a plane wave as calculated by the FDTD nonlinear full-wave 

algorithm and the Galerkin scheme. A time domain waveform is shown on the left and the 

power spectrum is shown on the right.
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Fig. 8. 
Experimental (left) and simulated (right) PSFs for the fundamental (top) and harmonic 

(bottom) beams.
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Fig. 9. 
A comparison of measured (solid) and simulated (dashed) lateral (left) and elevation (right) 

beam plots for the fundamental (top) and harmonic (bottom) PSFs shown in Fig. 8.
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Fig. 10. 
A comparison of the experimental (solid) and simulated (dashed) power spectrum at the 

focus.
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Fig. 11. 
On the left, a graphical representation of the variation in the speed of sound for the 

abdominal layer (not shown are spatial variations in attenuation, nonlinearity, and density). 

On the right, the acoustic field of a diagnostic pulse at the focus (scale is compressed to 

emphasize small amplitudes).
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Fig. 12. 
Simulated fundamental (left) and harmonic (right) ultrasound images of an anechoic region 

below an abdominal using a transmit-re-ceive beamformation process.
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Fig. 13. 
Point-spread functions with clutter from propagation through a representation of the 

abdominal wall. The fundamental (top) and harmonic (bottom) PSFs are shown without any 

processing (left) and with reverberation clutter removed (right). The axes are not 

geometrically proportional.
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Table I

Relaxation Parameters.

y1 ω1 (rad/s) y2 ω2 (rad/s)

Tissue 0.00337039 2π · le6 0.0033757 2π · 10e6

Water 2.5312e–5 2π · 0.1e6 −0.08215e–5 2π · 50e6
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Table II

Conductiviy Profiles.

Num. Layers Thickness Reflected energy m R0

40 0.5 mm −63.2 dB 2 le–5

100 1.25 mm −78.9 dB 3 le–7
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Table III

Typical Acoustic Parameters for Tissue.

Tissue B/A α (dB/MHz/cm) c0 (m/s)

Fat 9.6 0.40 1479

Muscle 8.0 0.1S 1550

Connective 8.0 0.68 1613

Liver 7.6 0.50 1570
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