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Abstract

RNAs play various roles, not only as the genetic codes to synthesize proteins, but also as the direct 

participants of biological functions determined by their underlying high-order structures. Although 

many computational methods have been proposed for analyzing RNA structures, their accuracy 

and efficiency are limited, especially when applied to the large RNAs and the genome-wide data 

sets. Recently, advances in parallel sequencing and high-throughput chemical probing 

technologies have prompted the development of numerous new algorithms, which can incorporate 

the auxiliary structural information obtained from those experiments. Their potential has been 

revealed by the secondary structure prediction of ribosomal RNAs and the genome-wide ncRNA 

function annotation. In this review, the existing probing-directed computational methods for RNA 

secondary and tertiary structure analysis are discussed.

1. Background

RNA molecules, including both coding RNAs and non-coding RNAs (ncRNAs), play much 

more vital roles in the biological systems than what was suggested in the central dogma [1–

3]. Their functions are not only encoded in the primary sequences [4], but also originate 

from the secondary and the tertiary structures [5–7]. Some well-known instances are the 

cloverleaf-like structure of tRNAs and the kink-turn structural motifs which server as 

important sites for protein recognition. Given the fact that most of transcripts (~90%) in 

typical eukaryotic genomes are ncRNAs, fully understanding RNAs and their functions is 

impossible without studying the high-order structures. However, the determination of RNA 

structures is not a trivial task. The traditional high-resolution techniques, such as X-ray 

crystallography and nuclear magnetic resonance (NMR) spectroscopy, are very time 

consuming and hard to implement. On the other hand, the RNA structure folding algorithms 

[8–11] and the RNA functional annotation algorithms [12–14] are not accurate and efficient 

enough for the large RNAs and the genome-wide data sets.
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The chemical probing technique, also named “structure probing” or “footprinting”, provides 

a new way of studying RNA structures. RNAs of interest are treated with the chemical 

reagents which may modify the specific nucleotides with certain structural features. These 

modifications can act as stops for the primer extension, and their positions in the sequence 

can be detected by reverse transcription. Over the last 30 years chemical probing has been 

adopted for the study of RNA structures [15–17]. Recently more and more new protocols 

have been proposed to tackle the problems related to RNA structures. One of the most 

widely used probing experiments is to detect the paired and the unpaired bases. In these 

experiments, chemical reagents can form stable adducts with the flexible nucleotides in the 

loop regions, but not the protected bases in the stack regions. Some typical reagent choices 

are dimethyl sulfate (DMS) [18], kethoxal (KT) [19], diethyl pyrocarbonate (DEPC) [20], 

and CMCT [21]. None of them can react with all four RNA bases, e.g., DMS can only be 

applied to N1-adenine and N3-cytidine; KT can only be applied to N1 and N2 of guanine. A 

new protocol, selective 2’-hydroxyl acylation analyzed by primer extension (SHAPE) [22, 

23], can involve reactions with all bases. Moreover, SHAPE is insensible to the solvent 

accessibility and RNA size, which makes it an excellent choice for characterizing the 

structure features of large RNAs. RNase enzyme is another important type of reagent for 

probing RNA secondary structures. Instead of adducting to nucleotides, RNase catalyzes the 

degradation of the single- or double-stranded regions into smaller segments [24, 25]. As a 

higher-order conformation which interlinks the packed secondary structure modules with 

through-space interactions, tertiary structure can also be analyzed with chemical probing 

experiments. For example, hydroxyl radicals generated by Fe(II)-EDTA catalyst can cleave 

the specific sites at RNA backbone proximal in space to the location of the bound Fe(II)-

EDTA. Hence the long range interactions of the Fe(II) adducted nucleotides can be 

determined [26, 27]. Cross-linking technique adopts a different strategy to detect juxtaposed 

nucleotides in three-dimensional space. It bridges the nearby nucleotides in an RNA by 

using bifunctional reagents [28] or UV-irritation [29]. The products of the reaction can be 

characterized by mass mapping or sequencing experiments.

The introduction of next generation sequencing (NGS) leads to the development of genome-

wide RNA structure probing protocols. Many high-throughput protocols, such as SHAPE-

seq [30, 31], PARS [32–34], FragSeq [35], Map-seq [36], dsRNA-seq [37], CIRS-seq [38], 

and DMS-based high-throughput sequencing [39, 40], have been applied to the 

transcriptomes of various species. These experiments provide comprehensive insights into 

the structural features of the coding regions. In addition, the genome-wide sequencing also 

reveals the structural characterization of substantial ncRNAs, especially the lncRNAs [34, 

39]. Recent studies show that the mutations and the dysregulations of lncRNAs are directly 

linked to many human diseases, ranging from neurodegeneration to cancer [41–45]. On the 

other hand, single-molecule probing has been combined with massive parallel sequencing to 

target the RNAs with complex structures. For RNA viruses, the functionally active 

structures are vital during their life cycle [46]. The global and local chemical probing of 

various viruses, such as the human immunodeficiency virus (HIV) [47], hepatitis C virus 

[48], influenza A virus [49] and the dengue virus [50], detected several potential regulatory 

motifs. Considering the limitations of traditional methods for RNA structure analysis, the 
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rapid explosion of probing data coming from the high-throughput sequencing experiments 

will certainly enhance our understanding of human diseases.

The embedded structural information in the probing data can be quantified, and then 

incorporated into the computational method. The first breakthrough was in the field of RNA 

secondary structure folding. By integrating reactivities as extra pseudo energy terms into the 

nearest neighbor energy model, the secondary structure prediction accuracy of Escherichia 

coli 16S rRNA can be increased greatly [51]. This successful application suggests the great 

potential in using reactivities to assist the computational analysis of RNA structure. This 

review will introduce the existing chemical probing-directed computational methods and 

their applications (Figure 1). In the discussion section we will also propose the possible 

directions of future research.

2. The computation of reactivities

In the chemical probing experiments, the modifications on the flexible nucleotides can be 

located by the 5’-end labeled primer extension. The lengths of the cDNA fragments imply 

the positions of the modified sites, and the number of the mapped fragments at each site 

indicates its reactive degree [47]. Traditionally, gel electrophoresis (GE) had been utilized to 

visualize the results of probing experiments. Analyzing the gel images is a tedious work, so 

computational methods are required to automate and accelerate the procedure. SAFA [52] 

(https://simtk.org/home/safa) is a semi-automated analyzing tool for gel quantification. The 

users only need to edit the intermediate results guided by a graphic user interface. In recent 

years, most of the single-molecule probing protocols began to make use of capillary 

electrophoresis (CE) for sequencing. However, the traditional algorithms designed for DNA 

CE sequencing may not be suitable for quantifying structural probing reactivities [53]. The 

major issues are signal decay correction, x-axis and y-axis scaling, signal alignment, 

sequence alignment and peak fitting. CAFA [54] (https://simtk.org/home/cafa) offers a CE 

analyzing method for the chemical probing experiment which focuses on peak detection and 

fitting. ShapeFinder [53] (http://giddingslab.org/software) adds a peak and sequence 

alignment step to refine the fitting. It still requires users to select parameters and adjust the 

alignment manually. FAST [55] (http://glennlab.stanford.edu/software.html) improves the 

efficiency of CE analysis by automating the x-axis and y-axis scaling. QuShape [56] (http://

www.chem.unc.edu/rna/qushape/) is presented as an updated version of the ShapeFinder by 

introducing new alignment and scaling algorithms. To align hundreds of capillaries together, 

two tools are provided by the Das lab: HiTRACE [57] (https://simtk.org/home/hitrace) and 

HiTRACE-Web [58] (http://hitrace.org/). The output intensity data of HiTRACE can be 

further processed with a likelihood-based framework [59, 60]. Recently, HiTRACE is also 

extended to allow CE processing standardization [61].

Compared to the reactivity computation of CE traces, the processing of reads generated by 

high-throughput sequencing-based probing protocols is more straightforward. First, the 

mapping of reads to the reference genome infers the sites of modification (normally 1nt 

upstream of the mapped reads). Second, the number of reads mapped to each site indicates 

its reactivity. Based on the two features, there are two groups of methods that quantify the 

read counts to reactivity values. The first group of methods normalizes the read counts 
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directly. For examples, the raw read count of each site can be normalized by that of the most 

reactive base in a given window [39]; FragSeq computes pseudo counts based on the raw 

counts in a transcript, and then the pseudo counts are normalized such that they sum up to 1 

[35]; PARS normalizes all read counts by sequencing depth, and then the log ratios of 

normalized counts for V1 RNase (cleaves the double-stranded RNA) and for S1 RNase 

(cleaves the single-stranded RNA) are computed. Notice that normalization is a general idea 

and can be applied to almost all the scenarios. On the other hand, the second type relies on 

the sophisticated statistical methods, which only model the specific protocols. A 

representative case is SHAPE-Seq, which assumes the number of times an RNA exposing to 

the chemical reagent follows the Poisson distribution. Based on this hypothesis and two 

observations (the read counts in (+) and (−) experiments), it employs maximum likelihood 

estimation to compute three parameters for each site (the rate of the Poisson distribution, 

adduct probability for each site, and reverse transcription termination probability) [62]. And 

the probability of modifying one site is defined as its reactivity. A later study suggests that 

the Poisson distribution assumption is not necessary [63]. The experimental result shows 

that the simplified model has similar results to the original one. Another interesting 

approach is proposed in SeqFold (http://ouyanglab.jax.org/seqfold) to process the PARS 

data [64]. Hypergeometric test is performed for each site to see if it is enriched with V1 or 

S1 reads. The high false discovery rates (FDR) in the hypothesis testing mark the significant 

single-stranded and double-stranded sites. To identify the protein-binding sites in RNAs, 

Probrna [65] (http://yiplab.cse.cuhk.edu.hk/probrna/) also uses the PARS data with 

statistical methods. In this algorithm, an extended linear Poisson model is proposed to 

express the relationship between the nucleotide properties and the observed read counts. 

This model also assumes that the read counts of paired and unpaired nucleotides following 

Poisson distribution with different parameters. By using the expectation maximization (EM) 

algorithm to fit the observation, the optimal assignment of the structure features (paired/

unpaired) is used as the reactivities.

3. The analysis of RNA secondary structure

The probing data are not strong enough to predict RNA secondary structure directly due to 

its lack of interacting information. Originally, reactivities were just superimposed on the 

predicted secondary structures to verify the correctness [66–69]. These structures are 

determined by either the single-molecule folding algorithms [8–10, 70] or the comparative 

methods [11, 71–74]. However, both of them have problems: for single-molecule folding, 

the energy parameters are approximated [9], and the noise from random sequences prevents 

it from discovering new RNAs [75, 76]; for comparative methods, obtaining a precise 

structural alignment itself is a challenging problem, and the false positive rates are too high 

to screen the genome-wide data sets [77–79]. Considering the strengths and weaknesses of 

chemical probing and computational methods, their integration can generate much superior 

secondary structure models. All the methods mentioned in this section are summarized in 

Table 1.

One straightforward application of probing data is to use the pairing attributes of bases as 

constraints in the folding algorithm. Nevertheless, A-U, G-C pairs at helix ends, G-U pairs 

and nucleotides adjacent to G-U pairs can also be adducted by probing reagents. A 
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pioneering approach using these probing features is implemented in the RNAstructure 

package [80] (http://rna.urmc.rochester.edu/RNAstructure.html). In this method, reactivities 

are still treated as hard constraints: the energy of a base pair is set to the positive infinity if 

they are prohibited to be pairing. The most significant improvement is that the lowly 

reactive pairs are allowed at the ends of helices. Experimental results show that the 

secondary structure of the E. coli 5S rRNA is much more accurately predicted when the 

probing constraints are used than when the energy model is used alone (from 26.3% to 

86.8%). In the later version of RNAstructure, a novel soft-constrained algorithm is 

presented, in which the SHAPE reactivity of i-th site is converted into a pseudo free energy 

term [51]:

The default values for the intercept b and slope m are −0.8 kcal/mol and 2.6 kcal/mol, 

respectively. Pseudo energies are added once to the nucleotides at the helix end and twice to 

the interior bases. This new mechanism improves the sensitivity and the positive predictive 

value (PPV) of the secondary structure prediction for E. coli 16S rRNA from ~50% (without 

SHAPE reactivities) to ~97% (with SHAPE reactivities).

The success of rRNA structure prediction inspires people to bring forward many other 

probing-directed folding algorithms. RNAsc [81] (http://bioinformatics.bc.edu/clotelab/

RNAsc/index.spy) argues that RNAstructure has biases because reactivities are only applied 

to the stack regions. To solve the problem, RNAsc defines the Boltzmann weights for the i-

th base in the RNA as follows:

D measures the discrepancy between the predicted structural property x (0 for paired and 1 

for unpaired) and the normalized reactivity qi (∈[0,1]). β is a scaling parameter. By 

integrating it into the computation of partition function, the ensemble distance between the 

probing data and the predicted structure can be optimized.

Both RNAstructure and RNAsc incorporate reactivities into the minimum free energy 

(MFE) model as pseudo energies. This strategy has been generalized into a new statistical 

model based on a joint probability P(α, x, π, θ, ψ) [82]: α is the observed probing data, x is 

the RNA sequence, π is the inferred secondary structure, θ is the set of energy parameters 

and ψ is the underlying likelihood model generating α from π. Hence the folding problem is 

transformed into finding a structure π which maximizes the posterior probability P(π|α, x, θ, 

ψ). Because P(π|x, θ) is given by the Boltzmann equation, θ can be dropped by integrating 

the structure ensemble. Thus the optimal secondary structure follows the equation:
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It shows that the probing-directed folding algorithm should add the log probability of 

probing data α given the RNA structure π. Assuming that the reactivity αi is only dependent 

on πi, ΔG’i=RTlogP(αi|πi) is the appropriate pseudo energy for i-th base, where P(αi|πi) can 

be inferred from the empirical reactivity distributions.

Besides detecting the structure with the lowest folding energy, searching in suboptimal 

structures is also a common way of predicting RNA secondary structures [83, 84]. SeqFold 

[64] adopts this idea to find the optimal solution sampled from the Boltzmann-weighted 

ensemble [85]. Like RNAsc, the chemical signals of probing experiments are standardized 

into the Structural Preference Profiles (SPP), whose values range from 0 to 1 (0 for paired 

and 1 for unpaired). The Manhattan distance between the SPPs of the probing data and of 

each sampled structure is calculated to evaluate their similarity. The structures that have the 

shortest distance to the reactivities are recorded as the “nearest neighbors” to the probing 

data. Then the cluster containing the maximum number of neighbors is selected, and its 

centroid is identified as the secondary structure of the sequence.

In real biological systems, some RNAs exhibit complex structural dynamics [86–88]. Then 

the reactivities of those RNAs would come from multiple structures instead of one. 

RNApbfold (https://github.com/wash/probing) considers the entire Boltzmann ensemble of 

the sequence. The experimental signals are modeled as position-specific “perturbations” 

which distort the frequencies of structures in the ensemble [89]. The optimal perturbation 

vector is computed by minimizing the weighted sum of perturbed energies and the 

discrepancy between observed and predicted pairing probabilities

where ε is the perturbation vector, pi(εi) and qi are the predicted and observed pairing 

probability of the i-th site, σ and τ are the parameters estimating the variances of the 

energies and discrepancy. The term ε can be incorporated into an extended McCaskill’s 

algorithm to calculate the weighted partition function.

Finding the alternative structures in the ensemble is not an easy task due to the exponentially 

increasing search space. MutualFold (http://genome.ucf.edu/MutualFold/) proposes to 

recover two RNA structures within solution (ON/OFF conformations of riboswitch and 

ribozyme) by folding them simultaneously with the help of reactivities [90]. The predicted 

results must satisfy: (1) The sum of their free energy is minimized, and (2) The discrepancy 

between the expected and the observed reactive profiles is minimized. Since one structure 

can both constrain and be constrained by the folding of the other structure, a direct 

enumeration of possible structures and the corresponding constraints becomes very time 

consuming. To solve the problem, the “significant stacks” (> 4 base pairs) are retrieved from 

the RNA sequence. Then the mutual folding problem can be transformed into detecting the 

optimal stack configuration of both structures. Because the number of significant stacks is 

usually much smaller than the length of the sequence, the stack-guided algorithm can be 
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applied to real cases, such as adenine riboswitch and TPP riboswitch, with acceptable time 

and space complexity.

Pseudoknot is a rare but crucial structural motif in RNA functions [91, 92]. Normally, it is 

ignored in the secondary structure prediction to avoid the highly time consuming 

computation [93]. Given the fact that pseudoknot sites can be detected by the chemical 

probing data, ShapeKnots [94] (http://rna.urmc.rochester.edu/Text/ShapeKnots.html) 

extends the SHAPE-directed secondary structure model in RNAstructure to consider one 

pseudoknot. Based on the target sequence and its SHAPE reactivities, the pseudoknot-free 

MFE structure and 99 suboptimal structures are predicted. A helix in one suboptimal 

structure is discarded if it shares more than 50% of its nucleotides with a helix in the MFE 

structure. For each remaining helix, a set of structures is generated by prohibiting its 

members from pairing. After that, the helix is inserted back as a potential pseudoknot. The 

energies of the constructed structures containing pseudoknots are adjusted, and the ones with 

the lowest energies are reported.

No base pairing information can be inferred from the common probing experiments. By 

incorporating mutagenesis, mutate-and-map converts the “one-dimensional” information 

obtained from the chemical probing technique into a “two-dimensional” map. Mutating one 

base in a pair will make its partner accessible to the chemical reagent. As a result, the 

reactivity of the exposed base is changed. This strategy has been used to verify single 

interaction [95, 96]. Mutate-and-map extends the idea to change all bases one by one, and 

then analyze the “map” of reactivities for all mutated sequences. It first was applied to a 

DNA/RNA double helix, in which the base pair interactions can be inferred by using Z-score 

[97]. In [98], a more sophisticated pipeline based on Z-score and RNA structure properties 

was proposed to analyze a “MedLoop hairpin”. It has been shown that this strategy can be 

applied to real RNAs, such as tRNA, ribozyme and riboswitch, and the prediction accuracy 

is better than RNAstructure which is based on the one-dimensional SHAPE [99]. (The 

discussion about the potential defects of the experiments can be found in [60, 100].)

Probing data can also be used to annotate the functions of ncRNAs. Generally, RNA 

function annotation relies on the structural alignment algorithm [13, 101, 102] whose 

efficiency is much lower than the sequence alignment. Some methods predict the secondary 

structures of the target sequences first and then convert them into sequential information to 

reduce the time complexity. However, the computational intensity is still high (O(n3)), and 

the prediction accuracy is also impacted [103]. ProbeAlign [104] (http://genome.ucf.edu/

ProbeAlign/) makes use of reactivities generated by the high-throughput sequencing-based 

probing experiments to achieve both efficiency and accuracy. In this algorithm, the query is 

a profile of a known RNA family and the targets are RNA sequences with reactivities. The 

pairing partnership in the query is ignored, while the partial structural information of targets 

embedded in the probing data is retrieved to guide the alignment. Therefore it is similar to a 

sequence alignment algorithm (O(n2)). The benchmark results show that ProbeAlign 

outperforms the state-of-the-art tools with higher efficiency.

Recently, various high-throughput sequencing-based probing experiments have been applied 

to the genome-wide analysis of RNA structural profiles [105]. PARS reveals the structural 
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properties of the yeast and the human transcriptomes [33, 34]. The average reactivities in the 

coding and UTR regions show that for yeast, coding regions are more structured, while for 

human, the UTR regions are more structured. In addition, a periodic structural signal (a 

cycle of 3 nucleotides) is detected in the coding regions with discrete Fourier transform. Last 

but not least, the correlation between PARS scores and RNA properties, such as the 

translation efficiency and the biological functions, can be evaluated by statistical hypothesis 

testing. Structure-seq uses similar scheme to analyze the in vivo regulatory features of 

Arabidopsis [40]. In [39], the structural difference between the in vivo and in vitro 

transcripts is studied by using Pearson correlation coefficient and the Gini index. The results 

show that the mRNAs in the yeast and the human genomes are much less structured in vivo 

than in vitro. Folding energy landscape can also be studied with high-throughput 

sequencing-based probing data. PARTE monitors the RNA structures in the whole yeast 

genome across five different temperatures [106]. The melting temperature (TE) for each 

nucleotide is computed by detecting the sharp transition with an adaptive regression model 

[69]. Many interesting features are observed from the TE landscape, e.g., on average the 

functional ncRNAs melt under a higher temperature than the one affecting mRNAs.

4. The analysis of RNA tertiary structure

Tertiary structures are essential for the functions of many ncRNAs [107, 108]. X-ray 

crystallography and NMR spectroscopy can provide high-resolution 3D structural 

conformation, but these methods are hard to implement [109] and NMR is generally limited 

to small RNAs [110]. On the other hand, many computational methods have been proposed 

to de novo predict RNA tertiary structures [111–115], but their accuracy is relatively low, 

especially for large molecules. To yield a better result, the coarse-grained through-space 

interactions embedded in the chemical probing data can be melded into the computational 

analysis as constraints. An overview of the probing-based tertiary structure prediction 

methods discussed in this section can be seen in Table 2.

Discrete molecular dynamics (DMD) is a rapid simulation algorithm for three-dimensional 

protein structure prediction [116, 117]. By incorporating base pairing and stacking 

information, DMD has been extended to explore the conformational space of RNA 

molecules [118]. In this algorithm, a coarse-grained structural model is employed to reduce 

the computational intensity: each nucleotide is represented by three hard beads (phosphate, 

sugar and base), and the whole RNA sequence is simplified as a “bead-on-a-string” chain. 

For inter-atomic interactions, the potential energies are approximated as stepwise functions; 

for neighboring bonds, beads interact via an infinitely high square well potential. Thus 

during the search of the minimum energy in the landscape, the simulation procedure 

involves a series of collision events when the potential step borders are encountered. 

Distance constraints obtained from probing experiments, including base pairing and long 

range interaction, can provide additional information to refine the predictions of this model. 

The three-dimensional structure of yeast tRNAAsp has been analyzed with a sequence-

encoded cleavage protocol [110]. The base pairing information of the RNA is determined by 

SHAPE. To detect the long range constraints, some consecutive base pairs in the native 

tRNA are mutated to bind methidiumpropyl-EDTA (MPE). After that, Fe(II)-EDTA 

moieties are placed at the sites marked by MPE. Then the through-space distances from each 
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tethered site to the other sites can be evaluated with the reactive intensity of hydroxyl radical 

probing (HRP). It can be seen that this protocol has two limitations: (1) the mutations cannot 

disturb the structure of the native RNA; (2) the cleavage intensity is not at single-nucleotide 

resolution. In [119], solution HRP is performed on RNAs directly without using the mutated 

markers. An important observation for the method is that the HRP reactivity of a base is 

inversely proportional to the number of its through-space neighboring nucleotides, namely 

“contacts”. Thus for each nucleotide, a threshold contact number derived from its reactivity 

is assigned as an indirect measurement of the long range interaction distances. During the 

DMD simulation, repulsion potential is incurred if the contacts of a given nucleotide exceed 

its threshold. Not only HRP, DMS-based probing can also be adopted to retrieve the 

through-space constraints [120]. The chemical adduct experiment is optimized to yield 

multiple modifications in an RNA strand. The modifications are caused by a “breathing” 

mechanism in which the dynamically interacted nucleotides become transiently accessible to 

DMS. SHAPE-MaP [121] can provide a mutational profile for the sequence by integrating 

non-complementary nucleotides to adduct sites during the reverse transcription. The 

dependence of two mutations is checked by using χ2-test with SHAPE-MaP reactivities, and 

its strength is evaluated by using Pearson’s phi metric. In the DMD simulation, free energy 

bonuses are assigned to interacting pairs whose correlation coefficients are greater than the 

threshold value.

FARNA (Fragment Assembly of RNA) [111] is another de novo RNA tertiary structure 

prediction algorithm which may integrate constraints from probing data. In this algorithm, 

the possible local conformations (torsion angles) of an RNA sequence are drawn from a tri-

nucleotide fragment library constructed with a crystal structure of 23S rRNA (PDB: 1ffk). 

The sampling of the global conformation is guided by an energy function, in which the 

pairing potential is dependent on the relative coordinates and the coplanarity of two bases. 

The high-throughput contact mapping information obtained from MOCHA (Multiplexed 

•OH Cleavage Analysis) can be incorporated into FARNA as an additional energy term 

[122]. Phosphorothioate and Fe(II) are attached to a randomly selected site on the target 

RNA and the experiment is controlled to yield approximately one modification (for both 

reagents) per RNA. The sites of HRP cleavage agent can be detected through backbone 

scission at phosphorothioate, and the corresponding cleaved nucleotides are indicated by the 

HRP data. Their mapping, which can be read out from a two-dimensional gel 

electrophoresis, reveals the through-space contacts (~25Å) in the tertiary structure.

Chemical crosslinking is also utilized in the RNA tertiary structure prediction. One major 

method focusing on using this technique is MS3D [123]. It has been successfully applied to 

the investigation of the pseudoknot in feline immunodeficiency virus (FIV) [124] and the 

HIV-1 ψ-RNA [125]. The bifunctional reagents, NM (Nitrogen mustard) and PDG (1,4-

phenyl-diglyoxal), are used to bridge the spatially conjugated nucleotides at a relatively high 

resolution (NM: ~9Å, PDG: ~7.5Å). The sites of contacted nucleotides are determined by 

mass spectrometric analysis and tandem sequencing. In addition, the secondary structure of 

the target RNA is probed with CMCT, DMS and KT. Both types of information are used in 

the molecular modeling of MC-sym [113]. Like the strategy used by MOCHA, MC-sym 

defines the RNA structures as connected nucleotide cyclic motifs (NCMs), including lone-
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pair loop NCMs and double-stranded NCMs. All the possible NCM backbone templates are 

retrieved from the crystal structures in PDB as the references for the sequential construction 

of RNA tertiary structure. The initial results of MC-sym are refined by CNS 

(Crystallography and NMR system) [126], which is developed for high-resolution 

crystallographic or NMR structure determination. Only the predicted structures that obey the 

binding rules employed by CNS are accepted.

5. Conclusion and future perspectives

In this paper, we have discussed the computational approaches that integrate chemical 

probing information into the analysis of RNA secondary or tertiary structures. The base-

pairing attributes interpreted from the probing data improve the performance of many 

applications, such as the secondary structure prediction of large RNAs, the detection of 

switchable structures, and the genome-wide annotation of ncRNAs. In addition, the spatial 

distance constraints inferred by correlated chemical reactions also support the RNA tertiary 

structure folding algorithm to be an alternate for X-ray crystallography and NMR 

spectroscopy.

Despite the rapid progress of the probing-based RNA structure analysis, there are still 

challenges in how to compute and use the reactivities. The first challenge is to distinguish 

the useful reactivities from the background. The cleavage and modification on the RNA 

strands can be affected by diverse structural factors other than base pairing interactions, e.g. 

the solvent accessibility and the protein-bind activities. Consequently the utilization of the 

probing data should not be merely restricted to measure the pairing probabilities, and the 

discrimination of the target reactivities and the noise would be essential to use them 

properly. Second, the expressed nucleotides from the high-throughput sequencing-based 

protocols may not be sufficient enough for the analysis of RNA structures. In most of NGS 

experiments, e.g. RNA-seq, the mapping of a read means all nucleotides in the covered 

genomic region are expressed. However, in structure probing experiments, one read only 

shows the pairing attribute of one base. So relatively, the sequencing depth of the structure 

probing experiment is much lower than that of the RNA-seq experiment. According to our 

observation, a large amount of nucleotides do not have reactivity values in the output of 

current high-throughput protocols. Moreover, the high-throughput sequencing technique 

also raises an issue of computational efficiency. The genome-wide structure probing data set 

provides substantial new evidences for the large-scale analysis involving the RNA family 

member searching and the novel RNAs discovery. Naturally, the corresponding algorithms 

are very time consuming, because the secondary structure folding and alignment need to 

consider the 2D base pairing interactions. With the additional probing information, we might 

simplify these interactions, or even the existing energy and statistical models of RNA 

secondary structure, to reduce the complexity of the existing algorithms. Last, the variation 

among the existing protocols requires a uniform model to handle the data from different 

sources. All the current algorithms either focus on one specific type of data, or treat different 

probing data with different methods. Both of the solutions are not user-friendly, and cannot 

be scaled to new protocols.
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The structure determination of ncRNAs, in particular lncRNAs, and the analysis of genome-

wide data sets can be further improved if we overcome these challenges. Although the 

current soft constrained folding algorithm yields highly accurate results for the rRNAs in E. 

coli [51], the simulation results show that for some other rRNAs, the performance may not 

be improved by using probing data directly [127]. With regards to the first challenge, the 

accuracy of structure prediction depends on the interpretation of the integrated probing data. 

Naturally the reactivities of the SHAPE protocol are only suggested to be indicators of the 

paired or unpaired bases. However, from the statistical analysis in the RMDB database 

[128], it can be seen that the empirical reactivity distributions of the hairpin loop, internal 

loop, and the junction are different. Thus the secondary structure prediction results should be 

better if the pseudo energies of different loops are distinguished before they are incorporated 

into the energy model. What’s more, comparative methods could be extended to recover the 

reactivities of lowly expressed nucleotides by associating the probing data of similar RNAs 

together. Several approaches have been proposed to infer the structures of one RNA by 

differentiating the reactivities of two reagents [129, 130], or by comparing the reactivities of 

the native RNA with its mutations [99]. Considering the fast pace of high-throughput 

probing data deposition, the reactivity comparison among different RNAs can be realized in 

the future. The consensus structure of multiple homologous RNAs generated from both the 

sequence conservation and the probing data correlation will be much more accurate and 

significant.

Acknowledgements

This work was supported by the National Institute of General Medical Science of the National Institutes of Health, 
USA (R01GM102515).

Reference

1. Eddy SR. Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet. 2001; 2:919–929. 
[PubMed: 11733745] 

2. Huttenhofer A, Schattner P. The principles of guiding by RNA: chimeric RNA-protein enzymes. 
Nat. Rev. Genet. 2006; 7:475–482. [PubMed: 16622413] 

3. Storz G. An expanding universe of noncoding RNAs. Science. 2002; 296:1260–1263. [PubMed: 
12016301] 

4. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 
2004; 5:522–531. [PubMed: 15211354] 

5. McManus CJ, Graveley BR. RNA structure and the mechanisms of alternative splicing. Curr. Opin. 
Genet. Dev. 2011; 21:373–379. [PubMed: 21530232] 

6. Noller HF. RNA structure: reading the ribosome. Science. 2005; 309:1508–1514. [PubMed: 
16141058] 

7. Wan Y, Kertesz M, Spitale RC, Segal E, Chang HY. Understanding the transcriptome through RNA 
structure. Nat. Rev. Genet. 2011; 12:641–655. [PubMed: 21850044] 

8. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P. Fast folding and 
comparison of RNA secondary structures. Monatsh. Chem. 1994; 125:167–188.

9. Jaeger JA, Turner DH, Zuker M. Improved predictions of secondary structures for RNA. Proc. Natl. 
Acad. Sci. USA. 1989; 86:7706–7710. [PubMed: 2479010] 

10. Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure prediction and 
analysis. BMC Bioinformatics. 2010; 11:129. [PubMed: 20230624] 

11. Hofacker IL, Fekete M, Stadler PF. Secondary structure prediction for aligned RNA sequences. J. 
Mol. Biol. 2002; 319:1059–1066. [PubMed: 12079347] 

Ge and Zhang Page 11

Methods. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12. Bafna, V.; Zhang, S. FastR: fast database search tool for non-coding RNA; Proc. IEEE Comput. 
Syst. Bioinform. Conf; 2004. p. 52-61.

13. Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 
2013; 29:2933–2935. [PubMed: 24008419] 

14. Klein RJ, Eddy SR. RSEARCH: finding homologs of single structured RNA sequences. BMC 
Bioinformatics. 2003; 4:44. [PubMed: 14499004] 

15. Peattie DA, Gilbert W. Chemical probes for higher-order structure in RNA. Proc. Natl. Acad. Sci. 
USA. 1980; 77:4679–4682. [PubMed: 6159633] 

16. Krol A, Carbon P. A guide for probing native small nuclear RNA and ribonucleoprotein structures. 
Methods Enzymol. 1989; 180:212–227. [PubMed: 2515419] 

17. Stern S, Moazed D, Noller HF. Structural analysis of RNA using chemical and enzymatic probing 
monitored by primer extension. Methods Enzymol. 1988; 164:481–489. [PubMed: 2468070] 

18. Tijerina P, Mohr S, Russell R. DMS footprinting of structured RNAs and RNA-protein complexes. 
Nat. Protoc. 2007; 2:2608–2623. [PubMed: 17948004] 

19. Brow DA, Noller HF. Protection of ribosomal RNA from kethoxal in polyribosomes. Implication 
of specific sites in ribosome function. J. Mol. Biol. 1983; 163:27–46. [PubMed: 6834429] 

20. Singer B. All oxygens in nucleic acids react with carcinogenic ethylating agents. Nature. 1976; 
264:333–339. [PubMed: 1004554] 

21. Fritz JJ, Lewin A, Hauswirth W, Agarwal A, Grant M, Shaw L. Development of hammerhead 
ribozymes to modulate endogenous gene expression for functional studies. Methods. 2002; 
28:276–285. [PubMed: 12413427] 

22. Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM. RNA structure analysis at single nucleotide 
resolution by selective 2'-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc. 
2005; 127:4223–4231. [PubMed: 15783204] 

23. Wilkinson KA, Merino EJ, Weeks KM. Selective 2'-hydroxyl acylation analyzed by primer 
extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat. 
Protoc. 2006; 1:1610–1616. [PubMed: 17406453] 

24. Auron PE, Weber LD, Rich A. Comparison of transfer ribonucleic acid structures using cobra 
venom and S1 endonucleases. Biochemistry. 1982; 21:4700–4706. [PubMed: 6291588] 

25. Ziehler WA, Engelke DR. Probing RNA structure with chemical reagents and enzymes. Curr. 
Protoc. Nucleic Acid Chem. 2001 Chapter 6:Unit 6.1. 

26. Tullius TD, Greenbaum JA. Mapping nucleic acid structure by hydroxyl radical cleavage. Curr. 
Opin. Chem. Biol. 2005; 9:127–134. [PubMed: 15811796] 

27. Han H, Dervan PB. Visualization of RNA tertiary structure by RNA-EDTA.Fe(II) autocleavage: 
analysis of tRNA(Phe) with uridine-EDTA.Fe(II) at position 47. Proc. Natl. Acad. Sci. USA. 
1994; 91:4955–4959. [PubMed: 8197164] 

28. Nygard O, Nika H. Identification by RNA-protein cross-linking of ribosomal proteins located at 
the interface between the small and the large subunits of mammalian ribosomes. EMBO J. 1982; 
1:357–362. [PubMed: 6201358] 

29. Juzumiene D, Shapkina T, Kirillov S, Wollenzien P. Short-range RNA-RNA crosslinking methods 
to determine rRNA structure and interactions. Methods. 2001; 25:333–343. [PubMed: 11860287] 

30. Lucks JB, Mortimer SA, Trapnell C, Luo S, Aviran S, Schroth GP, Pachter L, Doudna JA, Arkin 
AP. Multiplexed RNA structure characterization with selective 2'-hydroxyl acylation analyzed by 
primer extension sequencing (SHAPE-Seq). Proc. Natl. Acad. Sci. USA. 2011; 108:11063–11068. 
[PubMed: 21642531] 

31. Loughrey D, Watters KE, Settle AH, Lucks JB. SHAPE-Seq 2.0: systematic optimization and 
extension of high-throughput chemical probing of RNA secondary structure with next generation 
sequencing. Nucleic Acids Res. 2014; 42:0.

32. Wan Y, Qu K, Ouyang Z, Chang HY. Genome-wide mapping of RNA structure using nuclease 
digestion and high-throughput sequencing. Nat. Protoc. 2013; 8:849–869. [PubMed: 23558785] 

33. Kertesz M, Wan Y, Mazor E, Rinn JL, Nutter RC, Chang HY, Segal E. Genome-wide 
measurement of RNA secondary structure in yeast. Nature. 2010; 467:103–107. [PubMed: 
20811459] 

Ge and Zhang Page 12

Methods. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



34. Wan Y, Qu K, Zhang QC, Flynn RA, Manor O, Ouyang Z, Zhang J, Spitale RC, Snyder MP, Segal 
E, Chang HY. Landscape and variation of RNA secondary structure across the human 
transcriptome. Nature. 2014; 505:706–709. [PubMed: 24476892] 

35. Underwood JG, Uzilov AV, Katzman S, Onodera CS, Mainzer JE, Mathews DH, Lowe TM, 
Salama SR, Haussler D. FragSeq: transcriptome-wide RNA structure probing using high-
throughput sequencing. Nat. Methods. 2010; 7:995–1001. [PubMed: 21057495] 

36. Seetin MG, Kladwang W, Bida JP, Das R. Massively parallel RNA chemical mapping with a 
reduced bias MAP-seq protocol. Methods Mol. Biol. 2014; 1086:95–117. [PubMed: 24136600] 

37. Zheng Q, Ryvkin P, Li F, Dragomir I, Valladares O, Yang J, Cao K, Wang LS, Gregory BD. 
Genome-wide double-stranded RNA sequencing reveals the functional significance of base-paired 
RNAs in Arabidopsis. PLoS Genet. 2010; 6:e1001141. [PubMed: 20941385] 

38. Incarnato D, Neri F, Anselmi F, Oliviero S. Genome-wide profiling of mouse RNA secondary 
structures reveals key features of the mammalian transcriptome. Genome Biol. 2014; 15:491. 
[PubMed: 25323333] 

39. Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS. Genome-wide probing of RNA 
structure reveals active unfolding of mRNA structures in vivo. Nature. 2014; 505:701–705. 
[PubMed: 24336214] 

40. Ding Y, Tang Y, Kwok CK, Zhang Y, Bevilacqua PC, Assmann SM. In vivo genome-wide 
profiling of RNA secondary structure reveals novel regulatory features. Nature. 2014; 505:696–
700. [PubMed: 24270811] 

41. Pasmant E, Sabbagh A, Vidaud M, Bieche I. ANRIL, a long, noncoding RNA, is an unexpected 
major hotspot in GWAS. FASEB J. 2011; 25:444–448. [PubMed: 20956613] 

42. Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, Finch CE, St Laurent 
G 3rd, Kenny PJ, Wahlestedt C. Expression of a noncoding RNA is elevated in Alzheimer's 
disease and drives rapid feed-forward regulation of beta-secretase. Nat. Med. 2008; 14:723–730. 
[PubMed: 18587408] 

43. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn 
JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY. Long 
non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 
2010; 464:1071–1076. [PubMed: 20393566] 

44. Tano K, Akimitsu N. Long non-coding RNAs in cancer progression. Front Genet. 2012; 3:219. 
[PubMed: 23109937] 

45. Qureshi IA, Mattick JS, Mehler MF. Long non-coding RNAs in nervous system function and 
disease. Brain Res. 2010; 1338:20–35. [PubMed: 20380817] 

46. Hofacker IL, Stadler PF, Stocsits RR. Conserved RNA secondary structures in viral genomes: a 
survey. Bioinformatics. 2004; 20:1495–1499. [PubMed: 15231541] 

47. Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW Jr, Swanstrom R, Burch CL, Weeks 
KM. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature. 2009; 
460:711–716. [PubMed: 19661910] 

48. Lukavsky PJ, Otto GA, Lancaster AM, Sarnow P, Puglisi JD. Structures of two RNA domains 
essential for hepatitis C virus internal ribosome entry site function. Nat. Struct. Biol. 2000; 
7:1105–1110. [PubMed: 11101890] 

49. Priore SF, Kierzek E, Kierzek R, Baman JR, Moss WN, Dela-Moss LI, Turner DH. Secondary 
structure of a conserved domain in the intron of influenza A NS1 mRNA. PLoS One. 2013; 
8:e70615. [PubMed: 24023714] 

50. Chapman EG, Moon SL, Wilusz J, Kieft JS. RNA structures that resist degradation by Xrn1 
produce a pathogenic Dengue virus RNA. Elife. 2014; 3:e01892. [PubMed: 24692447] 

51. Deigan KE, Li TW, Mathews DH, Weeks KM. Accurate SHAPE-directed RNA structure 
determination. Proc. Natl. Acad. Sci. USA. 2009; 106:97–102. [PubMed: 19109441] 

52. Das R, Laederach A, Pearlman SM, Herschlag D, Altman RB. SAFA: semi-automated footprinting 
analysis software for high-throughput quantification of nucleic acid footprinting experiments. 
RNA. 2005; 11:344–354. [PubMed: 15701734] 

Ge and Zhang Page 13

Methods. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



53. Vasa SM, Guex N, Wilkinson KA, Weeks KM, Giddings MC. ShapeFinder: a software system for 
high-throughput quantitative analysis of nucleic acid reactivity information resolved by capillary 
electrophoresis. RNA. 2008; 14:1979–1990. [PubMed: 18772246] 

54. Mitra S, Shcherbakova IV, Altman RB, Brenowitz M, Laederach A. High-throughput single-
nucleotide structural mapping by capillary automated footprinting analysis. Nucleic Acids Res. 
2008; 36:e63. [PubMed: 18477638] 

55. Pang PS, Elazar M, Pham EA, Glenn JS. Simplified RNA secondary structure mapping by 
automation of SHAPE data analysis. Nucleic Acids Res. 2011; 39:e151. [PubMed: 21965531] 

56. Karabiber F, McGinnis JL, Favorov OV, Weeks KM. QuShape: rapid, accurate, and best-practices 
quantification of nucleic acid probing information, resolved by capillary electrophoresis. RNA. 
2013; 19:63–73. [PubMed: 23188808] 

57. Yoon S, Kim J, Hum J, Kim H, Park S, Kladwang W, Das R. HiTRACE: high-throughput robust 
analysis for capillary electrophoresis. Bioinformatics. 2011; 27:1798–1805. [PubMed: 21561922] 

58. Kim H, Cordero P, Das R, Yoon S. HiTRACE-Web: an online tool for robust analysis of high-
throughput capillary electrophoresis. Nucleic Acids Res. 2013; 41:W492–W498. [PubMed: 
23761448] 

59. Kladwang W, VanLang CC, Cordero P, Das R. Understanding the errors of SHAPE-directed RNA 
structure modeling. Biochemistry. 2011; 50:8049–8056. [PubMed: 21842868] 

60. Cordero P, Kladwang W, VanLang CC, Das R. Quantitative dimethyl sulfate mapping for 
automated RNA secondary structure inference. Biochemistry. 2012; 51:7037–7039. [PubMed: 
22913637] 

61. Kladwang W, Mann TH, Becka A, Tian S, Kim H, Yoon S, Das R. Standardization of RNA 
chemical mapping experiments. Biochemistry. 2014; 53:3063–3065. [PubMed: 24766159] 

62. Aviran S, Trapnell C, Lucks JB, Mortimer SA, Luo S, Schroth GP, Doudna JA, Arkin AP, Pachter 
L. Modeling and automation of sequencing-based characterization of RNA structure. Proc. Natl. 
Acad. Sci. USA. 2011; 108:11069–11074. [PubMed: 21642536] 

63. Aviran, S.; Lucks, JB.; Pachter, L. RNA structure characterization from chemical mapping 
experiments; 49th Allerton Conference on Communication, Control, and Computing; 2011. p. 
1743-1750.

64. Ouyang Z, Snyder MP, Chang HY. SeqFold: genome-scale reconstruction of RNA secondary 
structure integrating high-throughput sequencing data. Genome Res. 2013; 23:377–387. [PubMed: 
23064747] 

65. Hu X, Wong TK, Lu ZJ, Chan TF, Lau TC, Yiu SM, Yip KY. Computational identification of 
protein binding sites on RNAs using high-throughput RNA structure-probing data. Bioinformatics. 
2014; 30:1049–1055.

66. Inoue T, Cech TR. Secondary structure of the circular form of the Tetrahymena rRNA intervening 
sequence: a technique for RNA structure analysis using chemical probes and reverse transcriptase. 
Proc. Natl. Acad. Sci. USA. 1985; 82:648–652. [PubMed: 2579378] 

67. Ehresmann C, Baudin F, Mougel M, Romby P, Ebel JP, Ehresmann B. Probing the structure of 
RNAs in solution. Nucleic Acids Res. 1987; 15:9109–9128. [PubMed: 2446263] 

68. Merryman C, Moazed D, McWhirter J, Noller HF. Nucleotides in 16S rRNA protected by the 
association of 30S and 50S ribosomal subunits. J. Mol. Biol. 1999; 285:97–105. [PubMed: 
9878391] 

69. Wilkinson KA, Merino EJ, Weeks KM. RNA SHAPE chemistry reveals nonhierarchical 
interactions dominate equilibrium structural transitions in tRNA(Asp) transcripts. J. Am. Chem. 
Soc. 2005; 127:4659–4667. [PubMed: 15796531] 

70. Markham NR, Zuker M. UNAFold: software for nucleic acid folding and hybridization. Methods 
Mol. Biol. 2008; 453:3–31. [PubMed: 18712296] 

71. Washietl S, Hofacker IL, Stadler PF. Fast and reliable prediction of noncoding RNAs. Proc. Natl. 
Acad. Sci. USA. 2005; 102:2454–2459. [PubMed: 15665081] 

72. Ge P, Zhang S. Incorporating phylogenetic-based covarying mutations into RNAalifold for RNA 
consensus structure prediction. BMC Bioinformatics. 2013; 14:142. [PubMed: 23621982] 

73. Rivas E, Eddy SR. Noncoding RNA gene detection using comparative sequence analysis. BMC 
Bioinformatics. 2001; 2:8. [PubMed: 11801179] 

Ge and Zhang Page 14

Methods. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



74. Knudsen B, Hein J. RNA secondary structure prediction using stochastic context-free grammars 
and evolutionary history. Bioinformatics. 1999; 15:446–454. [PubMed: 10383470] 

75. Workman C, Krogh A. No evidence that mRNAs have lower folding free energies than random 
sequences with the same dinucleotide distribution. Nucleic Acids Res. 1999; 27:4816–4822. 
[PubMed: 10572183] 

76. Rivas E, Eddy SR. Secondary structure alone is generally not statistically significant for the 
detection of noncoding RNAs. Bioinformatics. 2000; 16:583–605. [PubMed: 11038329] 

77. Babak T, Blencowe BJ, Hughes TR. Considerations in the identification of functional RNA 
structural elements in genomic alignments. BMC Bioinformatics. 2007; 8:33. [PubMed: 
17263882] 

78. Stricklin, SL. Noncoding RNA Genes in Caenorhabditis Elegans. St. Louis: Washington 
University; 2006. 

79. Babak T, Blencowe BJ, Hughes TR. A systematic search for new mammalian noncoding RNAs 
indicates little conserved intergenic transcription. BMC Genomics. 2005; 6:104. [PubMed: 
16083503] 

80. Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH. Incorporating chemical 
modification constraints into a dynamic programming algorithm for prediction of RNA secondary 
structure. Proc. Natl. Acad. Sci. USA. 2004; 101:7287–7292. [PubMed: 15123812] 

81. Zarringhalam K, Meyer MM, Dotu I, Chuang JH, Clote P. Integrating chemical footprinting data 
into RNA secondary structure prediction. PLoS One. 2012; 7:e45160. [PubMed: 23091593] 

82. Eddy SR. Computational analysis of conserved RNA secondary structure in transcriptomes and 
genomes. Annu. Rev. Biophys. 2014; 43:433–456. [PubMed: 24895857] 

83. Kwakman JH, Konings DA, Hogeweg P, Pel HJ, Grivell LA. Structural analysis of a group II 
intron by chemical modifications and minimal energy calculations. J. Biomol. Struct. Dyn. 1990; 
8:413–430. [PubMed: 1702639] 

84. Banerjee AR, Jaeger JA, Turner DH. Thermal unfolding of a group I ribozyme: the low-
temperature transition is primarily disruption of tertiary structure. Biochemistry. 1993; 32:153–
163. [PubMed: 8418835] 

85. Ding Y, Lawrence CE. A statistical sampling algorithm for RNA secondary structure prediction. 
Nucleic Acids Res. 2003; 31:7280–7301. [PubMed: 14654704] 

86. Garst AD, Edwards AL, Batey RT. Riboswitches: structures and mechanisms. Cold Spring Harb 
Perspect Biol. 2011; 3:a003533. [PubMed: 20943759] 

87. Schultes EA, Bartel DP. One sequence, two ribozymes: implications for the emergence of new 
ribozyme folds. Science. 2000; 289:448–452. [PubMed: 10903205] 

88. Zhuang X, Kim H, Pereira MJ, Babcock HP, Walter NG, Chu S. Correlating structural dynamics 
and function in single ribozyme molecules. Science. 2002; 296:1473–1476. [PubMed: 12029135] 

89. Washietl S, Hofacker IL, Stadler PF, Kellis M. RNA folding with soft constraints: reconciliation of 
probing data and thermodynamic secondary structure prediction. Nucleic Acids Res. 2012; 
40:4261–4272. [PubMed: 22287623] 

90. Zhong C, Zhang S. Simultaneous folding of alternative RNA structures with mutual constraints: an 
application to next-generation sequencing-based RNA structure probing. J. Comput. Biol. 2014; 
21:609–621. [PubMed: 24689688] 

91. Pleij CW. Pseudoknots: a new motif in the RNA game. Trends Biochem. Sci. 1990; 15:143–147. 
[PubMed: 1692647] 

92. Staple DW, Butcher SE. Pseudoknots: RNA structures with diverse functions. PLoS Biol. 2005; 
3:e213. [PubMed: 15941360] 

93. Lyngso RB, Pedersen CN. RNA pseudoknot prediction in energy-based models. J. Comput. Biol. 
2000; 7:409–427. [PubMed: 11108471] 

94. Hajdin CE, Bellaousov S, Huggins W, Leonard CW, Mathews DH, Weeks KM. Accurate SHAPE-
directed RNA secondary structure modeling, including pseudoknots. Proc. Natl. Acad. Sci. USA. 
2013; 110:5498–5503. [PubMed: 23503844] 

95. Duncan CD, Weeks KM. SHAPE analysis of long-range interactions reveals extensive and 
thermodynamically preferred misfolding in a fragile group I intron RNA. Biochemistry. 2008; 
47:8504–8513. [PubMed: 18642882] 

Ge and Zhang Page 15

Methods. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



96. Pyle AM, Murphy FL, Cech TR. RNA substrate binding site in the catalytic core of the 
Tetrahymena ribozyme. Nature. 1992; 358:123–128. [PubMed: 1377367] 

97. Kladwang W, Das R. A mutate-and-map strategy for inferring base pairs in structured nucleic 
acids: proof of concept on a DNA/RNA helix. Biochemistry. 2010; 49:7414–7416. [PubMed: 
20677780] 

98. Kladwang W, Cordero P, Das R. A mutate-and-map strategy accurately infers the base pairs of a 
35-nucleotide model RNA. RNA. 2011; 17:522–534. [PubMed: 21239468] 

99. Kladwang W, VanLang CC, Cordero P, Das R. A two-dimensional mutate-and-map strategy for 
non-coding RNA structure. Nat. Chem. 2011; 3:954–962. [PubMed: 22109276] 

100. Leonard CW, Hajdin CE, Karabiber F, Mathews DH, Favorov OV, Dokholyan NV, Weeks KM. 
Principles for understanding the accuracy of SHAPE-directed RNA structure modeling. 
Biochemistry. 2013; 52:588–595. [PubMed: 23316814] 

101. Hochsmann M, Toller T, Giegerich R, Kurtz S. Local similarity in RNA secondary structures. 
Proc. IEEE Comput. Soc. Bioinform. Conf. 2003; 2:159–168. [PubMed: 16452790] 

102. Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R. Inferring noncoding RNA families and 
classes by means of genome-scale structure-based clustering. PLoS Comput. Biol. 2007; 3:e65. 
[PubMed: 17432929] 

103. Tseng HH, Weinberg Z, Gore J, Breaker RR, Ruzzo WL. Finding non-coding RNAs through 
genome-scale clustering. J Bioinform. Comput. Biol. 2009; 7:373–388. [PubMed: 19340921] 

104. Ge P, Zhong C, Zhang S. ProbeAlign: incorporating high-throughput sequencing-based structure 
probing information into ncRNA homology search. BMC Bioinformatics. 2014; 15(Suppl 
9):S15. [PubMed: 25253206] 

105. Mortimer SA, Kidwell MA, Doudna JA. Insights into RNA structure and function from genome-
wide studies. Nat. Rev. Genet. 2014; 15:469–479. [PubMed: 24821474] 

106. Wan Y, Qu K, Ouyang Z, Kertesz M, Li J, Tibshirani R, Makino DL, Nutter RC, Segal E, Chang 
HY. Genome-wide measurement of RNA folding energies. Mol. Cell. 2012; 48:169–181. 
[PubMed: 22981864] 

107. Jacquier A. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel 
small RNAs. Nat. Rev. Genet. 2009; 10:833–844. [PubMed: 19920851] 

108. Woodson SA. Compact intermediates in RNA folding. Annu. Rev. Biophys. 2010; 39:61–77. 
[PubMed: 20192764] 

109. Ke A, Doudna JA. Crystallization of RNA and RNA-protein complexes. Methods. 2004; 34:408–
414. [PubMed: 15325657] 

110. Gherghe CM, Leonard CW, Ding F, Dokholyan NV, Weeks KM. Native-like RNA tertiary 
structures using a sequence-encoded cleavage agent and refinement by discrete molecular 
dynamics. J. Am. Chem. Soc. 2009; 131:2541–2546. [PubMed: 19193004] 

111. Das R, Baker D. Automated de novo prediction of native-like RNA tertiary structures. Proc. Natl. 
Acad. Sci. USA. 2007; 104:14664–14669. [PubMed: 17726102] 

112. Martinez HM, Maizel JV Jr, Shapiro BA. RNA2D3D: a program for generating, viewing, and 
comparing 3-dimensional models of RNA. J. Biomol. Struct. Dyn. 2008; 25:669–683. [PubMed: 
18399701] 

113. Parisien M, Major F. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence 
data. Nature. 2008; 452:51–55. [PubMed: 18322526] 

114. Sharma S, Ding F, Dokholyan NV. iFoldRNA: three-dimensional RNA structure prediction and 
folding. Bioinformatics. 2008; 24:1951–1952. [PubMed: 18579566] 

115. Zhao Y, Huang Y, Gong Z, Wang Y, Man J, Xiao Y. Automated and fast building of three-
dimensional RNA structures. Sci. Rep. 2012; 2:734. [PubMed: 23071898] 

116. Dokholyan NV, Buldyrev SV, Stanley HE, Shakhnovich EI. Discrete molecular dynamics studies 
of the folding of a protein-like model. Fold. Des. 1998; 3:577–587. [PubMed: 9889167] 

117. Ding F, Dokholyan NV. Simple but predictive protein models. Trends Biotechnol. 2005; 23:450–
455. [PubMed: 16038997] 

Ge and Zhang Page 16

Methods. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



118. Ding F, Sharma S, Chalasani P, Demidov VV, Broude NE, Dokholyan NV. Ab initio RNA 
folding by discrete molecular dynamics: from structure prediction to folding mechanisms. RNA. 
2008; 14:1164–1173. [PubMed: 18456842] 

119. Ding F, Lavender CA, Weeks KM, Dokholyan NV. Three-dimensional RNA structure refinement 
by hydroxyl radical probing. Nat. Methods. 2012; 9:603–608. [PubMed: 22504587] 

120. Homan PJ, Favorov OV, Lavender CA, Kursun O, Ge X, Busan S, Dokholyan NV, Weeks KM. 
Single-molecule correlated chemical probing of RNA. Proc. Natl. Acad. Sci. USA. 2014; 
111:13858–13863. [PubMed: 25205807] 

121. Siegfried NA, Busan S, Rice GM, Nelson JA, Weeks KM. RNA motif discovery by SHAPE and 
mutational profiling (SHAPE-MaP). Nat. Methods. 2014; 11:959–965. [PubMed: 25028896] 

122. Das R, Kudaravalli M, Jonikas M, Laederach A, Fong R, Schwans JP, Baker D, Piccirilli JA, 
Altman RB, Herschlag D. Structural inference of native and partially folded RNA by high-
throughput contact mapping. Proc. Natl. Acad. Sci. USA. 2008; 105:4144–4149. [PubMed: 
18322008] 

123. Young MM, Tang N, Hempel JC, Oshiro CM, Taylor EW, Kuntz ID, Gibson BW, Dollinger G. 
High throughput protein fold identification by using experimental constraints derived from 
intramolecular cross-links and mass spectrometry. Proc. Natl. Acad. Sci. USA. 2000; 97:5802–
5806. [PubMed: 10811876] 

124. Yu ET, Zhang Q, Fabris D. Untying the FIV frameshifting pseudoknot structure by MS3D. J. 
Mol. Biol. 2005; 345:69–80. [PubMed: 15567411] 

125. Yu ET, Hawkins A, Eaton J, Fabris D. MS3D structural elucidation of the HIV-1 packaging 
signal. Proc. Natl. Acad. Sci. USA. 2008; 105:12248–12253. [PubMed: 18713870] 

126. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, 
Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL. 
Crystallography & NMR system: A new software suite for macromolecular structure 
determination. Acta. Crystallogr. D Biol. Crystallogr. 1998; 54:905–921. [PubMed: 9757107] 

127. Sukosd Z, Swenson MS, Kjems J, Heitsch CE. Evaluating the accuracy of SHAPE-directed RNA 
secondary structure predictions. Nucleic Acids Res. 2013; 41:2807–2816. [PubMed: 23325843] 

128. Cordero P, Lucks JB, Das R. An RNA Mapping DataBase for curating RNA structure mapping 
experiments. Bioinformatics. 2012; 28:3006–3008. [PubMed: 22976082] 

129. Steen KA, Rice GM, Weeks KM. Fingerprinting noncanonical and tertiary RNA structures by 
differential SHAPE reactivity. J. Am. Chem. Soc. 2012; 134:13160–13163. [PubMed: 22852530] 

130. Rice GM, Leonard CW, Weeks KM. RNA secondary structure modeling at consistent high 
accuracy using differential SHAPE. RNA. 2014; 20:846–854. [PubMed: 24742934] 

Ge and Zhang Page 17

Methods. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Chemical probing is a powerful technique for RNA structure analysis.

• Probing signals can be quantified as reactivities.

• Reactivities can be used for computational RNA structure analysis.

• Challenges of probing-based computational methods are discussed.

Ge and Zhang Page 18

Methods. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The hierarchical overview of the RNA high-order structure analysis with probing-based 

computational methods. The white blocks represent chemical experiments and the shaded 

blocks represent the computational processing modules. Secondary structure and tertiary 

structure analysis adopt different protocols with different reagents. The output signals of the 

top-layer experiments are converted into reactivities, indicating pairing probabilities in 

secondary structure analysis or distance constraints in tertiary structure analysis, at the mid-

layer. Finally the reactivities are incorporated into traditional algorithms at the bottom-layer.
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Table 1

Software packages for RNA secondary structure prediction discussed in this review.

Software Name Probing
Protocol

Computational
Method

Feature Strategy

RNAstructure [10, 51] SHAPE, DMS MFE model N/A Add pseudo energies to the stack 
regions.

RNAsc [81] SHAPE MFE model N/A Add pseudo energies to all the 
nucleotides.

Optimal pseudo energy 
term* [82]

SHAPE Statistical method N/A Maximize the posterior probability of 
the predicted structure given the 
probing data.

SeqFold [64] PARS, SHAPE, 
SHAPE-Seq, 

FragSeq

Statistical method N/A Find the cluster of structures in the 
sampling space whose profile is 
“nearest” to the probing data.

RNApbfold [89] SHAPE Least square approximation Ensemble Find a structure ensemble 
minimizing the total error of energy 
model and probing data.

MutualFold [90] SHAPE MFE model Alternative structures Fold two alternative structures 
simultaneously by considering their 
mutual constraints in probing data.

ShapeKnots [94] SHAPE Heuristic method Pseudoknot Construct structures based on the 
entropic cost of pseudoknots.

*
: In this work, the pseudo energy term is proposed without implementation.
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Table 2

Methods for RNA tertiary structure prediction discussed in this review.

Method Name Probing Protocol Computational
Method

Strategy

Sequence-encoded cleavage [110] HRP + SHAPE DMD Place Fe(II)-EDTA at specific nucleotides and find their 
neighbors by using HRP.

iFoldRNA-HRP [119] HRP DMD Convert the HRP reactivities into the numbers of 
neighbors and use them as the constraints.

RING-MaP [120] SHAPE-MaP DMD Model the correlation among the reactive sites in one 
RNA strand as through-space interaction.

MOCHA [122] HRP FARNA Generate 2D mapping between interacted nucleotides by 
performing HRP on RNAs randomly.

MS3D [124, 125] Bifunctional crosslinking MC-Sym Detect spatially conjugated nucleotides by using mass 
mapping technique.
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