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Abstract

Reinforcement learning describes motivated behavior in terms of two abstract signals. The 

representation of discrepancies between expected and actual rewards/punishments – prediction 

error – is thought to update the expected value of actions and predictive stimuli. 

Electrophysiological and lesion studies suggest that mesostriatal prediction error signals control 

behavior through synaptic modification of cortico-striato-thalamic networks. Signals in the 

ventromedial prefrontal and orbitofrontal cortex are implicated in representing expected value. To 

obtain unbiased maps of these representations in the human brain, we performed a meta-analysis 

of functional magnetic resonance imaging studies that employed algorithmic reinforcement 

learning models, across a variety of experimental paradigms. We found that the ventral striatum 

(medial and lateral) and midbrain/thalamus represented reward prediction errors, consistent with 

animal studies. Prediction error signals were also seen in the frontal operculum/insula, particularly 

for social rewards. In Pavlovian studies, striatal prediction error signals extended into the 

amygdala, while instrumental tasks engaged the caudate. Prediction error maps were sensitive to 

the model-fitting procedure (fixed or individually-estimated) and to the extent of spatial 

smoothing. A correlate of expected value was found in a posterior region of the ventromedial 

prefrontal cortex, caudal and medial to the orbitofrontal regions identified in animal studies. These 

findings highlight a reproducible motif of reinforcement learning in the cortico-striatal loops and 

identify methodological dimensions that may influence the reproducibility of activation patterns 

across studies.
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1. Introduction

Behavior can be controlled by reward or punishment, and environmental stimuli that predict 

them. The way animals develop representations of these predictive relationships has been 

described in terms of mathematical models of reinforcement learning (RL), a restricted set 

of which dominate experimental and theoretical attention. With the advent of new 

neurophysiological and imaging methods, insights from these models have advanced our 

understanding of the role of cortico-striato-thalamic networks, the midbrain, the amygdala, 

and the monoamine systems in behavioral adaptation. In particular, the activity of dopamine 

neurons in the mesostriatal pathway has been shown to conform to predictions derived from 

formal learning rules (Waelti, Dickinson, & Schultz, 2001) and may also distinguish 

between particular instantiations of RL models (M. R. Roesch, Calu, & Schoenbaum, 2007). 

Combined with imaging and neurophysiology, they have helped us better understand the 

types of computations that take place in the reward system and the alterations observed in 

neurological and psychological disorders including Parkinson’s disease (M. J. Frank, 2005), 

depression (Kumar et al., 2008), schizophrenia (Gradin et al., 2011), eating disorders (G. K. 

Frank, Reynolds, Shott, & O’Reilly, 2011), addiction (Chiu, Lohrenz, & Montague, 2008) 

and suicidal behavior (Dombrovski, Szanto, Clark, Reynolds, & Siegle, 2013). Here, we 

provide an introduction to the constructs of prediction error, the discrepancy between the 

expected and obtained outcome, and expected value. We then offer a brief overview of the 

putative neural substrates of these computations and present a meta-analysis of functional 

imaging studies that have examined neural correlates of the prediction error and expected 

value constructs derived from RL models.

1.1. The Rescorla-Wagner model of Pavlovian conditioning

Building on the earlier Bush-Mosteller model (Bush & Mosteller, 1951, 1953), Rescorla and 

Wagner (RW) developed their influential model of Pavlovian conditioning (Rescorla & 

Wagner, 1972). The RW model provided an account of animal learning from multiple 

conditioned stimuli. One challenge here is posed by interactions between the stimuli such as 

the Kamin blocking effect, or diminished conditioned responding to stimulus X following 

AX --> US pairing preceded by A --> US (Kamin, 1968). The dependent variable in the 

Rescorla-Wagner (RW) model was the unobserved, but theoretically plausible associative 

strength (V) of the CS-US pairing. Associative strength is conceptually close to the expected 

reward value of a given stimulus (at least when a single appetitive US is presented). Another 

innovation, which enabled an elegant explanation of the Kamin blocking effect, was to 

combine the associative strength of all stimuli present on a given trial in order to generate a 

prediction error. In other words, according to RW, an outcome is surprising only to the 

extent that it is not predicted by any of the stimuli. Here is how it describes the change in the 

associative strength of the two stimuli after a trial when the stimulus compound AX is 

followed by a US:
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Eq. 1

where α learning rate for each stimulus, β is the learning rate for the US, λUS is the 

asymptote of associative strength which the US will support, and VAX=VA+VX. Thus, if 

stimulus A is pre-trained to the asymptote, subsequent training with the AX compound 

generates no prediction error for X. Besides blocking and overshadowing, the RW model 

successfully accounted for a variety of Pavlovian and instrumental phenomena, despite a 

number of limitations (see Miller, Barnet, & Grahame, 1995).

1.2. Temporal difference models

Temporal difference (TD) models of animal learning, like RW, learn from prediction errors 

(Sutton & Barto, 1998), and describe an approach modeling prediction and optimal control. 

TD aims to predict all future rewards, discounting them over time:

Eq. 2

where r is future reward and γ is the temporal discount factor reflecting a preference for 

immediate over delayed rewards. Instead of waiting until all the outcomes are experienced, 

TD estimates future rewards by repeating the following algorithm in each learning episode 

(time step).

Eq. 3

where α[r(t+1) + γV(t+1)−V(t)] is the prediction or temporal difference error, and γV(t+1) 

takes the place of the remaining terms γr(t+2)+ γ2r(t+3)+…+ γkr(t+k+1).

To deal with the temporal distribution of predictive cues or response options, TD methods 

introduce the idea of eligibility traces. That is, only closely preceding (eligible) cues or 

actions are credited for reward or blamed for punishment.

TD provides a real-time account of learning, that RW or other trial-level models do not. A 

key area of divergence between RW and TD is that TD treats rewards themselves and the 

cues that predict them as, in principle, equivalent, insofar as they are both stimuli, which can 

invoke changes in the valuation of future rewards. Both conditioned cues and outcomes can 

influence value prediction, and can elicit prediction errors. This innovation provides an 

effective account of the learning of sequences of stimuli, as conditioned cues can come to 

operate as reinforcers in their own right (Dayan & Walton, 2012). Moreover, reinforcement 

value is collapsed into a single, common currency across different reinforcers. On the other 

hand, RW is a model, which describes the extent to which the unconditioned stimulus (US: 

e.g. reward or punishment) can be predicted by environment stimuli. Thus the major focus 

of RW is processing of the US, PEs occur only at the US, and conditioned cues are treated 

as distinct entities, competing to predict the US (Rescorla & Wagner, 1972). At the same 

time, one can see the parallel between summed associative strength of all presented CSs in 

RW and value in TD.
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These differences between trial-level models such as RW and TD lead to differential 

predictions regarding putative neural learning signals, as illustrated in Fig. 1. A trial-level 

model aligns its associative strength (or expected value) signal with the CS and PE, with the 

US. One can see that, when signals from a trial-level model such as RW are aligned with 

stimuli in real time, the time course of TD error approximates the combination of associative 

strength at the CS and prediction error at the US. On the other hand, in trial-by-trial fMRI 

learning experiments with short and especially fixed CS-US intervals, predicted BOLD 

signal corresponding to associative strength or value generated by trial-level models will 

often approximate those of TD.

1.3. Neural Correlates of Prediction Errors: Model based Neuroimaging and 
Electrophysiology

Prediction error-based learning models have also enabled neuroscientists to interpret neural 

signals, most prominently from midbrain dopaminergic neurons (Schultz, Dayan, & 

Montague, 1997). Firing rates in dopaminergic neurons in this region are consistent with the 

predictions of RW: a blocking experiment revealed that firing rates reflect the contingency 

between a stimulus and a reward rather than the mere pairing of the two (Waelti et al., 

2001). Moreover, specific predictions of the TD model were also corroborated in these 

neurons: most notably, neural firing within DA neurons in the midbrain gradually becomes 

coupled to predictive stimuli rather than rewards themselves (Schultz et al., 1997). In 

addition, a study of conditioned inhibition revealed that an inhibitory cue, predictive of 

reward omission, could reduce firing rates of sub-populations of these neurons (Tobler, 

Dickinson, & Schultz, 2003).

A natural development of this work was to apply the same behavioral paradigms and 

reasoning to human neurophysiological research. While ERP and MEG research has 

attempted to address analogous questions (Holroyd & Coles, 2008; Krigolson, Hassall, & 

Handy, 2014), the relatively limited capability of these methods to register unambiguous 

physiological responses from subcortical or brainstem regions has meant that the majority of 

progress would depend on functional magnetic resonance imaging (fMRI). Since one of the 

seminal studies of this field (J. P. O’Doherty, Dayan, Friston, Critchley, & Dolan, 2003), the 

primary focus of fMRI studies has generally been the ventral striatum, rather than the 

midbrain itself. A typical explanation (e.g. M. R. Roesch, Calu, Esber, & Schoenbaum, 

2010; Tobler, O’Doherty J, Dolan, & Schultz, 2006) is that the fMRI response reflects the 

phasic input to a structure (Logothetis & Pfeuffer, 2004), rather than the local processing or 

the region’s output. Thus, given that the dopaminergic neurons of the VTA project to the 

areas of the striatum (Haber, Fudge, & McFarland, 2000), fMRI-measured VS activation 

might then be seen as the downstream consequence of VTA firing. This perspective finds 

considerable support in the literature, although there are two areas of possible complication. 

First, there is evidence of prediction error-related activation in the VTA itself (e.g. 

D’Ardenne, McClure, Nystrom, & Cohen, 2008), implying that local processing may also be 

relevant. Second, the VS also receives input from a wide range of cortical and subcortical 

regions (Voorn, Vanderschuren, Groenewegen, Robbins, & Pennartz, 2004), any of which 

could influence its activity and information processing within it. A further advantage of 

fMRI is that, although focused analysis of prediction error responses in the VTA and VS has 
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been performed with this technique (D’Ardenne et al., 2008), its capability to identify signal 

across the entire brain has allowed examination of related signals in other parts of the cortex. 

Integration and analysis of the rich datasets obtained using fMRI methods are the focus of 

the present work.

1.4. Learned value, economic subjective value and their neural correlates

In economics, subjective value or utility is the theoretical common currency used to 

compare disparate goods. Economic commodities can be thought of as reinforcers and labor 

or price paid, as analogues of effort during operant conditioning (Lea, 1978). While 

economic decision-making has traditionally been studied using stylized description-based 

prospects, recent research suggests that experience-based experiments resembling animal 

learning paradigms provide complementary models of real-life economic decision-making 

(Hertwig & Erev, 2009). Thus, to the degree that economic preferences incorporate one’s 

reinforcement history, one may hypothesize that revealed preferences and feedback-based 

animal learning depend on similar neural computations (Fellows, 2011). One of the 

motivations for the present analysis was to examine whether cortical regions tracking 

learned reward value coincide with medial prefrontal regions shown to signal economic 

subjective value on revealed preference tasks (Peters & Buchel, 2010).

In addition, animal electrophysiological studies have found responses which accord well 

with the what might be expected of learned value signals in regions including the ventral 

prefrontal cortex (vPFC) and limbic areas such as the cingulate, and the striatum (Samejima, 

Ueda, Doya, & Kimura, 2005; Simmons, Ravel, Shidara, & Richmond, 2007; Jonathan D. 

Wallis & Miller, 2003). Here, the vPFC refers to both the orbitofrontal cortex (OFC), the 

ventromedial prefrontal cortex (vmPFC) as well as more lateral regions of the ventral 

prefrontal cortex. The vmPFC denotes the mammalian paralimbic agranular/dysgranular 

prefrontal cortex encompassing monkey areas 14, 25, and rostral 24 and 32 of Petrides and 

Pandya (Petrides & Pandya, 1994) and human areas 25, and rostral 32 and 24; the orbital 

aspect of this region is also referred to as the medial orbitofrontal cortex (mOFC). 

Associative signals represented in the vPFC possess many properties of abstract value: they 

are sensitive to delays and probability of reward, as well as to the presence of alternatives 

(Kennerley, Dahmubed, Lara, & Wallis, 2009; Kennerley & Wallis, 2009b; Kobayashi, 

Pinto de Carvalho, & Schultz, 2010; Padoa-Schioppa & Assad, 2008; M. R. Roesch & 

Olson, 2005; Tremblay & Schultz, 1999). These signals are “subjective,” integrating internal 

states such as hunger (Bouret & Richmond, 2010; Critchley & Rolls, 1996). Other decision-

related signals have been found in motor prefrontal and parietal cortex (Platt & Glimcher, 

1999). However, it appears that these signals may reflect salience (Leathers & Olson, 2012) 

or motivation (Matthew R. Roesch & Olson, 2004) rather than value.

1.5. The present meta-analysis

The present work provides a quantitative summary of fMRI evidence on prediction error and 

expected value representations in the human brain using activation likelihood estimation 

(ALE) meta-analysis. It extends recent meta-analyses of value and prediction error signals 

(Bartra, McGuire, & Kable, 2013; Clithero & Rangel, 2014; Garrison, Erdeniz, & Done, 

2013; Levy & Glimcher, 2012) in two ways. First, to control methodological heterogeneity, 
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our analysis included only studies that used delta-rule reinforcement learning models. This 

enabled a better-controlled evaluation of the consequences of variations in methodology. We 

could thus identify core networks that are most reliably detected. Second, to reveal the 

distributed networks that subserve human reward learning, we jointly mapped the regions 

responsive to value and prediction error. Based on the animal and human literature reviewed 

above, we hypothesized that prediction error signals would be observed in the striatum 

(including putamen, caudate and nucleus accumbens) and midbrain.

In contrast, we hypothesized that expected value signals will be represented in the 

ventromedial prefrontal cortex. In contrast to previous meta-analyses (Bartra et al., 2013; 

Garrison et al., 2013; Levy & Glimcher, 2012), we focused only on studies in which signals 

derived from a reinforcement learning algorithm served as explanatory variables in the 

analysis of fMRI data. This allowed us to examine if differences in the approach to 

generating such signals could yield different neural maps. We also examined other 

methodological variables that could have an impact on the observed coordinate maps 

derived from reward prediction error (RPE) experiments. Variables of theoretical interest 

included instrumental or Pavlovian designs, and reinforcer type (monetary, liquid or social). 

Accounting for the effect of these variables will demonstrate the degree to which the RPE 

maps are dependent on choices of experimental parameters. To this end, we had several 

secondary hypotheses.

1. Pavlovian vs. Instrumental paradigms: Prior studies suggest differential roles for 

striatal subregions in Pavlovian vs. Instrumental tasks. Pavlovian RPEs recruit the 

ventral striatum, whereas RPEs on instrumental tasks (most of which include a 

Pavlovian component) appear to recruit both ventral and dorsal striatum (J. 

O’Doherty et al., 2004).

2. Fixed/Individual Learning: All models evaluated in the present work include a 

parameter which controls the rate at which conditioning occurs. There are three 

main strategies for determining the learning rate, all three of which are evaluated in 

a study by Cohen (Cohen, 2007). He compared neural correlates of parameters 

generated by individual fits of each participant’s responses (‘individual’), with 

correlates of the group mean of such parameters (‘group fixed’) and an arbitrary 

fixed estimate of the group response (‘fixed’). Despite somewhat different patterns 

of activation, the two methods were broadly consistent in indexing similar limbic 

and prefrontal regions of interest. In general, individually fitted parameters can 

arguably better accommodate the subject’s behavior (Estes & Maddox, 2005), and 

thus may provide a more optimal fit of underlying neural signals. Yet, noisy, 

stochastic behavior, or directed exploration, may deleteriously affect the reliability 

of estimated parameters. Group fitting (‘group fixed’) parameters provides a form 

of regularization (N.D. Daw, 2011), leading to more a conservative 

parameterization which is potentially less susceptible to such misspecification. 

They may also be well suited to studies of patient groups (e.g. Bernacer et al., 

2013). We tested whether each approach biased the discovery of particular brain 

regions. Alternatively, either approach could simply be a more accurate way of 
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characterizing the neural correlates of individual acquisition curves, and thus be 

associated with similar, if more finely resolved, patterns of activation.

3. US-aligned Outcome PE vs. CS- and US-aligned TD error. As noted above, the 

time course of TD error differs from that of outcome PE generated by trial-level 

models. It has been suggested, that TD error may be exclusively represented in the 

ventral striatum, while outcome PE is signaled by a larger network including the 

caudate (Niv, Edlund, Dayan, & O’Doherty, 2012). Moreover, exclusively 

outcome-coupled PE regressors may be more susceptible to ongoing activation 

coupled to the outcome distinct from PE itself, such as the appetitive response to a 

rewarding outcome (Rohe, Weber, & Fliessbach, 2012). We contrasted TD and 

outcome PE studies, expecting to see more extensive activation to outcome PE and 

also anticipating that a conjunction analysis would reveal the ventral striatum as the 

site of overlap between these studies.

4. Reward type: Previous meta-analyses have examined patterns of activation in 

response to various primary and secondary rewards (Sescousse, Caldu, Segura, & 

Dreher, 2013). However, any differences and commonalities may have been driven 

by sensory properties of rewarding stimuli. By contrast, our focus on model-

estimated PEs allowed us to examine spatial segregation or dissociation of more 

abstract neural computations triggered by disparate rewards. Based on animal 

studies reviewed above, we hypothesized that the ventral striatum will be the 

shared area of activation to all types of rewards.

5. Smoothing. A variable without theoretical interest that may affect the pattern of 

data is the smoothing kernel employed by the study. Recently, Sacchet and 

Knutson have shown that the application of large smoothing kernels can bias the 

localization of ventral striatal responses to reward anticipation (Sacchet & Knutson, 

2013). In addition, it is not easy to detect BOLD activations in subcortical and 

especially brainstem nuclei because of their small size: only 60 mm3 for the ventral 

tegmental nucleus (VTA), for example (Paxinos & Huang, 1995). Yet, when 

preprocessing whole-brain fMRI images, researchers often use spatial filters 

exceeding the size of potential signal sources in these nuclei. The matched filter 

principle suggests that such large filters are likely to reduce the signal-to-noise 

(SNR) ratio in these structures. We tested whether this size mismatch affected the 

detection of prediction error signal sources in the basal ganglia and midbrain. We 

contrasted studies that used smaller (<8 mm) filters with those that used larger 

filters.

2. Methods

2.1. Study Selection Criteria and Definitions

Studies were selected by searching PubMed and Google Scholar to identify fMRI studies 

that employ computational algorithms to investigate neural correlates of reinforcement 

learning studies. A combination of keywords was used: [“reinforcement learning” OR 

“reward learning”], [“prediction error” OR “expected value”], [“rescorla-wagner” OR 

“temporal-difference” OR “Q-learning”]. We also identified studies using reference tracing 
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and citations within reviews. The search yielded 40 studies. Each article was reviewed by at 

least two authors to make sure that it fulfilled the following criteria:

1. Only studies that used a reinforcement learning model (trial-level delta rule models, 

TD, Back propagating connectionist model) to create regressors for a general linear 

model (GLM) analysis of BOLD signal were included. The common feature of 

these studies is a prediction error-based learning rule.

2. Our prediction error analyses used maps that revealed a positive coupling with 

appetitive ‘signed’ RPEs, which are positive when the reward is higher than 

expected or negative when it is lower than expected. Maps reporting aversive 

prediction errors were excluded, since their number was insufficient for an ALE 

analysis. Similarly, negative correlations with RPE or expected value (EV) 

regressors were also not analyzed, as these are not systematically reported.

3. EV was defined as the extent to which stimuli or actions are predictive of reward.

4. Studies that used modified delta-rule algorithms were included as long as they 

involved no additional equations or components that would fundamentally change 

the representational structure (e.g. an upper layer in a hierarchical model).

5. Studies in which an RL model, of the sort described above, was refuted or out-

performed by a model from a different class (e.g. hidden Markov model, Kalman 

filter, hierarchical Bayesian models, hybrid models with separate representational 

systems) were excluded to avoid inclusion of maps derived from potentially 

disadvantaged models.

6. Only studies reporting whole brain results were included1. For studies reporting 

only region of interest or otherwise restricted analyses, we contacted the authors to 

obtain whole brain coordinates, and included the study if the data were received.

7. We included only studies of non-clinical adult populations, excluding rare 

genotypes, subclinical psychopathology and placebo-treated participants.

In total, we included in our ALE analyses 38 studies reporting reward prediction error maps 

and 16 studies reporting expected value maps with 751 and 337 participants respectively. Of 

the EV studies, two did not contribute RPE maps. Details of all included studies are listed in 

Tables 1–3, and proportions of different study designs are displayed in Figure 2.

2.2. Subgroup Analyses

Various subgroup analyses investigated heterogeneity across studies. We classified studies 

into the following categories:

• Instrumental/Pavlovian: In ‘Instrumental’ paradigms, outcome is contingent on 

behavioral response (choice). In ‘Pavlovian’ paradigms, outcome is not contingent 

1A study by Wittmann and colleagues (Wittmann, Daw, Seymour, & Dolan, 2008) was not included as the sequence was optimized 
for ventral structures and regions above the dorsal anterior cingulate were not imaged. However, as this study could potentially have 
been included given alternative criteria, we compared this RPE map with the other studies. RPE activations reported in this study were 
highly comparable with similar designs (Fixed, Instrumental, Monetary, TD) studies (e.g. putamen, visual cortex, thalamus, opercular 
activation)
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on choice, although a response may be made – for example, in order to signal 

outcome probability.

• Fixed/Individual: A ‘fixed’ learning rate is assumed to be equivalent for all 

participants within the cohort. The learning rate may be estimated at the group level 

(e.g. (Bernacer et al., 2013)) or by taking a reasonable heuristic (often around 0.2 

e.g. (Kumar et al., 2008)). Alternatively, ‘individual’ learning rates are estimated 

separately for each participant, and prediction error and expected value signals for 

each participant reflect the individually estimated learning rate.

• Outcome PE/TD: Although there were a wide variety of algorithms, we made a 

broad distinction between Rescorla-Wagner-like trial-level models and temporal 

difference-like algorithms (‘TD’). Put simply, trial-level models have a single 

update mechanism at the time of the outcome which forms the basis of the reward 

PE, whereas reward PEs are computed at both the stimulus/action and outcome 

phases of the task in TD algorithms.

• Monetary/Liquid/Cognitive/Social: ‘Monetary’ and ‘Liquid’ paradigms involved 

the respective reinforcers; ‘Cognitive’ paradigms employed cognitive 

reinforcement such as numerical or symbolic feedback; ‘Social’ paradigms 

involved smiles, frowns, fearful or beautiful faces as reinforcement.

• High/Low Smoothing: ‘High’ studies employed a smoothing kernel of 8mm or 

more; ‘Low’ studies employed a smoothing kernel of 7mm or less.

Where there was a choice of maps to use from a given study which fulfilled our criteria, we 

selected the one in which the GLM regressor was estimated on the basis of the largest 

number of trials. For example, we included the overall social and monetary RPE maps 

reported in the study of Fareri and others (Fareri, Chang, & Delgado, 2012) for the main 

RPE analysis, but the social RPE map only for all of the subgrouping analyses. Other 

arbitrary choices included the decision to include the liquid reinforcement map in (Metereau 

& Dreher, 2013), due to the relatively low number of these studies. Finally, where slightly 

different models were fitted to the data, the better fitting or otherwise preferred model was 

selected.

2.3. Activation Likelihood Estimation (ALE)

Statistical analysis of the studies was conducted using the revised activation likelihood 

estimation (ALE) algorithm (Eickhoff, Bzdok, Laird, Kurth, & Fox, 2012) for coordinate-

based analyses (Turkeltaub, Eden, Jones, & Zeffiro, 2002). The method generates meta-

analytic maps of consistent brain activation locations from the coordinates derived from 

neuroimaging studies with similar experimental conditions. The method provides an 

estimate of the convergence of foci across activation maps, and determines the significance 

of these estimates via an empirically derived null distribution (Eickhoff et al., 2012). The 

null hypothesis is that the foci are distributed randomly across the brain, and the test statistic 

supports a random-effects inference, that the modeled activation (MA) maps reflect an 

above-chance convergence across studies (Eickhoff et al., 2012; Turkeltaub et al., 2012). A 

detailed description of the ALE technique can be found elsewhere (Eickhoff et al., 2012; 

Turkeltaub et al., 2012). In short, activation foci reported for a given experiment are treated 
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as centers of a 3D Gaussian probability distribution, the width of which is empirically 

derived and reflects an estimate of the spatial uncertainty of the foci of a given map and 

sample size of each experiment (Eickhoff et al., 2009). Based on the ICBM tissue 

probability maps, each focus is given a probability value on how likely the activation is 

located at exactly that position. One modelled activation map (MA) is then created for each 

experiment by merging the probability distribution of all activation foci. If more than one 

focus from a single experiment is jointly influencing the MA map, then the maximum 

probability associated with any one focus reported by the given experiment is used. ALE 

scores are then calculated by taking the union of these individual MA maps, and these scores 

reflect the voxel-wise convergence of activation across experiments. The p values of the 

ALE scores are determined with reference to the null distribution The resulting non-

parametric p-values were transformed into Z-scores and thresholded at a cluster-level 

Family Wise Error (FWE) rate-corrected threshold of p < 0.05 (cluster-forming threshold at 

voxel-level p<0.001).

Comparison of different subgroups was performed by subtracting voxelwise MA maps from 

one another, and then comparing this map to an empirically derived null distribution of 

ALE-differences scores (10,000 permutations). To this end, ALE analyses were performed 

separately on the experiments associated with either condition and computing the voxel-wise 

difference between the ensuing ALE maps. All experiments contributing to either analysis 

were then pooled and randomly divided into two groups of the same size as the two original 

sets of experiments defined by activation in the first or second cluster (Eickhoff et al., 2011). 

ALE-scores for these two randomly assembled groups were calculated and the difference 

between these ALE-scores was recorded for each voxel in the brain. Repeating this process 

10,000 times then yielded a null-distribution of differences in ALE-scores between the ALE 

analyses of the two clusters. The ‘true’ difference in ALE scores was then tested against this 

null-distribution, yielding a posterior probability that the true difference was not due to 

random noise in an exchangeable set of labels based on the proportion of lower differences 

in the random exchange. The resulting probability values were then thresholded at p > 0.95 

(95% chance for true difference) and a cluster size (k) of 20.

3. Results

3.1. Reward Prediction Error (RPE)

The activations revealed by the main categories were largely in line with our hypotheses 

(Table 4; Figures 3 and 4). The ALE meta-analysis of RPE maps revealed clusters 

encompassing bilateral ventral striatum, bilateral amygdala, midbrain, thalamus, frontal 

operculum and insula. The largest clusters were seen in the ventral striatum: one activation 

cluster in each hemisphere which extended from the ventromedial caudate (nucleus 

accumbens) to the lateral putamen and amygdala (predominantly the superficial subregion: 

SF). The left frontal operculum cluster impinged both on the pars orbitalis of the inferior 

frontal gyrus and the anterior insula. RPE-related activation was also observed in the left 

visual cortex, predominantly located in V3 and V4.
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3.2. RPE: Subgroup analysis

We performed a number of analyses focusing on different subcategories of the RPE studies, 

in order to identify distinct activations associated with different designs. First, in order to 

interpret these contrasts appropriately, we examined the extent to which the different 

categories of experimental design were statistically independent.

3.2.1. Confounding—Fisher’s exact tests (FET) between each of the sub-categories 

assessed the contingency between design factors. There was a highly significant association 

between reinforcer type and Pavlovian/Instrumental design (FET=14.67, p<0.001). 

Monetary reinforcers were more common in instrumental studies and liquid reinforcers were 

more common in Pavlovian studies. Three other relationships showed trend-level 

associations (p’s between 0.061 and 0.088): Fixed/Individual vs Pavlovian/Instrumental; 

Outcome PE/TD error vs Reinforcer type; Outcome PE/TD error vs Pavlovian/Instrumental.

This confounding between Pavlovian designs, liquid reinforcers and TD modeling proved 

relevant as the activations associated with Pavlovian designs were mostly made up of studies 

employing liquid reinforcement and had a high contribution from TD studies. There were 

relatively few TD studies, but these employed either monetary or liquid reinforcers and 

about half were Pavlovian designs. In general, given the small number of such studies 

(Pavlovian/TD/Liquid) and the potential for confounding, the findings should be interpreted 

cautiously from these maps.

Both the individual-related striatal and the fixed-related midbrain activations were 

predominantly made up of instrumental rather than Pavlovian studies, as would be expected 

from the higher proportion of instrumental studies. The striatal activations associated with 

individual studies were about half monetary and half other reinforcers, while the midbrain 

activation associated with fixed studies was also represented by studies employing a variety 

of different reinforcers.

3.2.2. Instrumental vs. Pavlovian (Table 5)—The instrumental RPE map was similar 

to the overall RPE map, aside from the lack of midbrain activation. Striatal activations were 

slightly more medial than the overall RPE cluster and did not extend as convincingly into 

the lateral striatum (putamen) nor further into the amygdala. In addition, the left caudate was 

activated in this contrast. By contrast, the Pavlovian studies yielded two clusters in the left 

putamen/amygdala and right amygdala. The amygdala activations were predominantly 

located in the superficial subregion.

Bilateral amygdala and left lateral putamen were significantly more likely to be activated in 

Pavlovian than instrumental paradigms. The reverse contrast yielded a significant cluster in 

the left caudate (anterior and dorsally located), as well as smaller activations in more ventral 

regions of the medial striatum. A small region reflecting the conjunction of instrumental and 

Pavlovian tasks was apparent in the left putamen.

3.2.3. Fixed vs. Individual (Table 6)—The individual map was also similar to the 

overall RPE map, without the presence of the midbrain cluster or any activation within the 

dorsal striatum. The striatal activations were focused within the medial regions of the ventral 
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striatum. By contrast, the fixed map yielded two clusters: one in left putamen and one in the 

midbrain. Statistical comparison of the contrasts yielded greater activation in the bilateral 

ventral striatum (medially-focused) for the individual contrast, as well as the left operculum 

and left visual cortex. The fixed contrast yielded a large midbrain cluster, as well as very 

small differences in the left lateral putamen. A cluster representing the conjunction of fixed 

and individual was present in the left putamen.

3.2.4. PE at outcome vs. TD error (Table 7)—Studies modeling PE at the US only 

made up a large proportion of the data, and consequently the US PE map was very similar to 

the overall RPE map. The seven TD error studies yielded a cluster including the left lateral 

striatum (putamen) and amygdala. A conjunction between the two was again observed 

within the left putamen. The TD error studies activated the left amygdala/hippocampus more 

than the US PE studies, while the latter showed greater activation in the left caudate and left 

frontal operculum

3.2.5. Reinforcer type (Table 8)—As with the outcome PE map, monetary 

reinforcement occurred frequently in the selection of studies. Thus, the monetary sub-

analysis revealed a pattern of activations very similar to the overall RPE contrast. The other 

reinforcer-type sub-analyses were somewhat underpowered, and we did not perform 

statistical contrasts of these maps. The cognitive sub-analysis did not reveal any significant 

clusters, but the liquid and social reinforcement maps yielded several distinct clusters. 

Liquid rewards elicited lateral putamen and amygdala activations, while social rewards 

produced two left hemispheric activations: one was similar to the frontal opercular/insula 

cluster in the main reward PE contrast; the second was in the left inferior parietal cortex.

3.2.6. High vs. Low Smoothing (Table 9)—High smoothing studies were associated 

with bilateral putamen and amygdala activation, as well as activation in the left frontal 

operculum. Low smoothing studies were associated with the thalamus/midbrain and left 

frontal operculum. The opercular activations were not similar enough to yield a significant 

conjunction. High smoothing studies were significantly more likely to activate the right 

amygdala than low smoothing studies. The low smoothing studies were more likely to 

activate a small cluster of the thalamus, towards the top of the midbrain/thalamus cluster 

identified in the main RPE contrast.

3.2.7. Overall conjunction—A conjunction analysis was conducted across all of the 

main contrast types (Instrumental/Pavlovian; Fixed/Individual; RW/TD; High/Low 

Smoothing) using the minimum statistic across the cluster thresholded contrasts for each of 

the eight maps (Rottschy et al., 2012). A 30 voxel cluster was revealed in the left putamen 

(-22, 6, 9) across the first three pairs of contrasts (i.e. excluding smoothing). This cluster 

thus reflects the strongest convergent evidence for a neural correlate of a signed RPE signal 

we were able to obtain (see Figure 5). However, when the smoothing-related contrasts were 

included, no clusters were identified.
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3.3. Expected Value (Table 10)

The ALE analysis of studies reporting expected value yielded a single activation in the 

subgenual anterior cingulate cortex (Table 10; Figure 6). To illustrate specificity, RPE and 

EV maps were contrasted. The subgenual ACC was significantly more likely to be activated 

in the EV than the RPE condition, while the left striatum and midbrain were significantly 

more likely to be activated in the RPE than the EV condition. No significant clusters 

representing the conjunction of EV and RPE were observed.

4. Discussion

In line with previous animal and human studies, the present meta-analysis confirmed our 

core hypotheses: that the midbrain and striatum represented reward prediction errors, while 

the subgenual cingulate – a caudal region of the ventromedial prefrontal cortex – represented 

expected value. In addition, this meta-analysis revealed that the frontal operculum and visual 

cortices are a part of the reward prediction error network, mainly recruited during social 

rewards and attentional processing respectively. While largely compatible with previous 

meta-analyses of the neural bases of prediction errors (Garrison et al., 2013), reward 

anticipation and receipt (Diekhof, Kaps, Falkai, & Gruber, 2012; Liu, Hairston, Schrier, & 

Fan, 2011; Sescousse et al., 2013) and value (Bartra et al., 2013; Clithero & Rangel, 2014; 

Levy & Glimcher, 2012; Peters & Buchel, 2010), the present study extends this work by 

focusing exclusively on the neural correlates of parametric reward prediction errors and 

expected value derived from reinforcement learning models. We identified methodological 

factors that might contribute to divergent findings, including instrumental/Pavlovian 

designs, reinforcer type and smoothing kernel size.

Core prediction error network

The reproducibility of fMRI BOLD images is often a concern, test-retest reliability of the 

method being generally modest and very poor in some cases (Bennett & Miller, 2010). 

Moreover, methodological differences across studies, including differences between 

scanners, paradigms, participants and analyses software may further conspire to amplify 

between-study heterogeneity. Nevertheless, a core network of regions associated with 

prediction errors was readily identified, including the ventral striatum and midbrain as 

predicted. Indeed, even for two regions that were not predicted – the left frontal operculum 

and left visual cortex – over 10 studies contributed to each of these clusters. This suggests 

that this core prediction error network is robust to between-study variability and reflects a 

level of specificity of the activations. However, each of the activations should be interpreted 

carefully; it is often difficult to distinguish certain psychological events due to a shared but 

spurious correlation with the general linear model regressor. The variability of paradigms 

may act to provide some de-correlation of irrelevant variables from the RPE construct. For 

example, the lack of prediction error signals in the medial PFC is consistent with the animal 

electrophysiological studies (M. R. Roesch et al., 2010), although medial OFC activation has 

been shown to be coupled to RPE in some human fMRI studies. Our findings are consistent 

with the view that this is likely to be due to the correlation inherent between appetitive 

properties of the outcome and RPE in many of these designs (Erdeniz, Rohe, Done, & 

Seidler, 2013; Rohe et al., 2012).
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Aside from the reinforcement learning signal hypothetically encoded by dopamine-rich 

regions such as the midbrain and ventral striatum, associative learning algorithms are often 

extended to account for salience and attentional phenomena. These constructs may be 

necessary for interpreting RPE correlates in the visual cortex, amygdala and insula. For 

example, the Pearce-Hall (PH) model (Pearce & Hall, 1980) emphasizes that cues associated 

with surprising outcomes command attention: prediction errors not only strengthen 

associations, but a similar signal, reflecting surprise associated with the outcome, may 

control the rate at which such associations are strengthened. In the PH model, stimuli which 

are accompanied by larger prediction errors attract attention, and thus become more readily 

associated with other stimuli. A recent theme has been to argue that a PH signal might be 

coupled to the surprising outcome itself, rather than conditioned stimuli. For example, a 

recent study by Li and colleagues (Li, Schiller, Schoenbaum, Phelps, & Daw, 2011) 

suggested that, consistent with animal learning studies (Maddux, Kerfoot, Chatterjee, & 

Holland, 2007), the amygdala codes surprise as predicted by the PH model rather than a 

signed RPE signal.

In the present study, we found amygdala activation coupled to the RPE contrast. In 

probabilistic designs that are widely used, it would be difficult to dissociate a PH signal 

from the basic RPE contrast. It may then be that RPE-coupled amygdala activation reflects 

some confounding of a PH signal with the RPE signal, particularly as a PH parameter is 

often not concurrently modelled. However, amygdala activation was particularly associated 

with studies in which liquid was used as a reinforcer, while larger smoothing kernels were 

also associated with greater activation in the amygdala. These factors should be independent 

of the learning rule and contingency under investigation, and should be adequately 

controlled in future studies of the PH rule.

Other regions that play a well-established role in attention in the fMRI literature were also 

coupled to the RPE contrast, including the left visual cortex. Although reward-related 

responses in the visual cortex have been identified, a recent study argued that these signals 

may reflect attentional processing rather than the appetitive and dopamine-related properties 

of the reward (Arsenault, Nelissen, Jarraya, & Vanduffel, 2013). We also identified a left 

frontal operculum/anterior insula region with the RPE contrast, that is activated by a wide 

range of stimuli and task designs and thus perhaps has a general role in task set 

representation (Dosenbach et al., 2006). Nevertheless, the activation of this region by reward 

has been quite well characterized. A study by Rutledge and colleagues (Rutledge, Dean, 

Caplin, & Glimcher, 2010) parametrically manipulated reward probability of wins and 

losses, finding that the response of the anterior insula to reward does not follow a pattern 

that would be expected from a prediction error signal. It was however modulated to some 

degree by the probability of the outcome, insofar as activation was not observed in the 

region if the outcome was fully predicted, and showed fairly consistent activation across 

wins and losses if the outcome was uncertain. Given that the paradigms in the present study 

generally include a degree of outcome uncertainty, it opens the possibility that anterior 

insula activation may become coupled with an RPE regressor while not accurately reflecting 

the predicted RPE signal. Less obvious is the fact that paradigms employing social 

reinforcement were particularly able to elicit activation in this region. An interpretation of 

the study of Rutledge might suggest that this is simply related to the kind of contingencies 
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employed in the social paradigms, but equally it is worth considering the possibility that the 

anterior insula may play a distinct role in the reinforcement process itself.

Pavlovian vs Instrumental

Although the majority of studies were instrumental, requiring the participant to make a 

choice, we contrasted these studies with a small number of Pavlovian designs. We found 

differential activation in the left caudate (dorsal striatum), consistent with an influential 

study of O’Doherty and colleagues (J. O’Doherty et al., 2004), in which the striatum was 

argued to follow the ‘actor-critic’ model: the anterior, dorsal caudate (‘actor’) was engaged 

when behavior output was required. By contrast, the ventral striatum (‘critic’) was engaged 

during errors of value prediction, whether a response was required to obtain reward or not. 

This distinction is also broadly consistent with animal lesion studies, as the dorsomedial 

striatum of rodents – a likely homologue of the caudate region identified in the present study 

and that of O’Doherty et al. (2004) - plays a key role in instrumental, goal directed behavior 

(Yin, Ostlund, Knowlton, & Balleine, 2005) whereas the ventral striatum is more 

consistently implicated in Pavlovian behaviors (Corbit & Balleine, 2011; Parkinson, 

Olmstead, Burns, Robbins, & Everitt, 1999).

Although the notion that the striatum contributes to action selection in a manner predicted 

by actor-critic model has steadily gathered currency, it was somewhat undermined by a 

previous meta-analysis by Garrison and colleagues (Garrison et al., 2013). This study found 

that while both the dorsal and ventral striatum were engaged by instrumental designs, both 

were significantly more activated by these designs than Pavlovian designs. Our findings 

contrast from this study, as we did find significant activation in the ventral striatum elicited 

by Pavlovian designs, although somewhat more lateral than equivalent activations seen in 

instrumental designs.

Together, the present study and that of Garrison may provoke further debate about the 

success of the actor-critic model as an account of the striatum’s influence on behavior. 

However, there are several important reasons as to why providing a definitive contribution 

to this question might be difficult. First, it has been noted (e.g. Coricelli et al., 2005; Yeung, 

Holroyd, & Cohen, 2005) that designs in which a (human) participant is required to make a 

choice, and is reinforced for doing so, are potentially more engaging than Pavlovian designs 

and consequently can provide more robust neural signals. Given that the MR scanner 

requires that an individual lie for long periods in a darkened room, performing an often 

repetitive task, this consideration is not to be taken lightly, and can make it difficult to 

design an effective Pavlovian paradigm. This may both explain the preponderance of 

instrumental tasks in the literature, as well as the second key limitation – that Pavlovian 

designs tend to focus on liquid reinforcers rather than other domains. This is presumably 

because liquid is a powerful primary reinforcer, particularly when the participant is thirsty 

(e.g. Kumar et al., 2008), and this may somewhat compensate for a potential lack of 

engagement described above. A final limitation is the nature of the definition of instrumental 

and Pavlovian designs. Instrumental behavior can be defined on the basis of the contingency 

between a particular action and an outcome (Balleine & Dickinson, 1998), and the manner 

in which a subject can use this information to obtain reinforcement. The presence of stimuli 
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on all of the paradigms we considered in the present work complicates this issue somewhat. 

Specifically, in any of the instrumental designs included in the present work, it cannot be 

assumed that this action-outcome contingency is the sole factor which determines choice. 

Rather, an individual’s responses may also be susceptible to influence by the presented 

stimuli, and the relationships between the stimuli and reinforcement.

Fixed vs Individual Learning Rates

We investigated whether the strategy of RL model fitting, upon which the pattern of the 

RPE (and EV) regressors was based, was associated with different patterns of neural 

activation. Although across most situations, the pattern of RPEs associated with fixed and 

individual model fitting should be highly similar, it is nevertheless unclear exactly how 

sensitive the pattern of activations is to the parameterization of the underlying model. Daw 

has consistently argued that the fixed (or more particularly group fixed) strategy offers 

advantages over estimating the model parameters per individual (N.D. Daw, 2011). On the 

other hand, regarding fitting models to behavioral data, Estes and Maddox (Estes & 

Maddox, 2005) have argued that individual participant fitting avoids certain sources of bias 

associated with group averaging.

The fixed subgroup shows the strongest corroboration of the classic RPE hypothesis 

pioneered by Schultz and colleagues (Schultz et al., 1997) as the midbrain was engaged by 

these studies. In addition, activation in the lateral putamen was also observed, as would be 

expected on the basis of anatomical connectivity (Haber et al., 2000). However, if the 

individual method was suboptimal, we would both not expect the method to have obtained 

traction in the literature, individual studies being more common than fixed, and more 

importantly, we would not expect a distinct pattern of activations to emerge. It is possible to 

imagine various scenarios in which the presence of suboptimal acquisition or preprocessing 

parameters that impair the detection of midbrain activations would sustain the observation of 

a certain pattern of weaker VS RPE-associated responses beyond the canonical network, but 

even then, the focus of the activation should not show such a reproducibly medial focus 

within the striatum. It also does not seem likely that a suboptimal RPE regressor should be 

better coupled to an experimental confound, such as the response to the reward itself (Rohe 

et al., 2012). Within the RL framework we have set out, the most likely remaining 

explanation is that neural responses to RPEs generated by different learning rates are 

reflected across different regions of the brain (Glascher & Buchel, 2005). For example, a 

model of Frank et al (M. J. Frank, Moustafa, Haughey, Curran, & Hutchison, 2007) 

distinguished a rapid but time-dependent learning mechanism, ascribed to the OFC, and a 

slower, incremental learning mechanism, ascribed to the striatum. Both mechanisms used 

similar RW-based learning rules, although more recent, comparable models have employed 

a working memory-based system rather than a rapid RL system (Collins & Frank, 2012). 

This might therefore provide one interpretation of our data, with the modification that the 

medial striatum encodes a more variable learning rate (across individuals), perhaps better 

linked to trial by trial choice performance, while the midbrain and lateral putamen reflect a 

more homogeneous, slower learning rate that would not be as strongly reflected in behavior.
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Conjunction Analyses

A further level of specificity is afforded by the conjunction analysis examining which 

regions are identified across different designs, and thus relatively invariant. Across several 

of the subgroup analyses (e.g. fixed/individual; Pavlovian/instrumental; RW/TD), the left 

putamen was identified. The region was notable insofar as it was positioned at the midpoint 

between the classic ventromedial striatal region, which may correspond to the nucleus 

accumbens in humans (Haber & Knutson, 2010), and a more clearly lateralized putamen 

region. Given that these two regions may be anatomically distinct (Haber et al., 2000), it is 

important to consider the extent to which smoothing may have played a part in this finding. 

Smoothing of individual participant images is considered to be an important preprocessing 

step: though not without drawbacks, the method is thought to enhance statistical power by 

increasing signal to noise (Yue, Loh, & Lindquist, 2010), and increases the underlying 

smoothness for Gaussian random field-based (cluster) analyses (Hayasaka & Nichols, 2003). 

It is intriguing that one subgrouping analysis that did not yield activation in this region was 

the conjunction of studies which used high and low smoothing kernels. In a recent study, 

Sacchet and Knutson (2013) demonstrated that larger smoothing kernels can influence the 

localization of peak activation within the ventral striatum, with larger kernels yielding more 

posterior activations. In our study, the variability in the magnitude of the smoothing kernel 

across studies was relatively small, with the large majority of studies choosing an 8mm 

kernel and no significant differences between the low/high smoothing subgroups were seen. 

However, it was also notable that studies using a small smoothing kernel were (non-

significantly) more capable of revealing midbrain activation. Given that the midbrain is a 

small structure, matched filter theory (for fMRI see Yue et al., 2010) would predict a smaller 

filter should therefore be advantageous to identify activation in this region. Overall, as 

suggested by Sacchet and Knutson, differences in smoothing across studies may provide 

significant additional heterogeneity, and alternative smoothing methods that honor the 

geometry and size of these regions may be valuable in future studies.

Core expected value network

Our meta-analysis of RL studies of expected value identified a subregion of the subgenual 

cingulate cortex, corresponding most closely to areas 25 and 32 of the human and monkey 

vmPFC. This phylogenetically ancient agranular region is likely homologous to the 

paralimbic and infralimbic cortex of rodents (J. D. Wallis, 2012).

At the first approximation, our findings converge with primate electrophysiological 

(Kennerley et al., 2009; Kennerley & Wallis, 2009a, 2009b; Morrison & Salzman, 2009; 

Padoa-Schioppa & Assad, 2006, 2008; Matthew R. Roesch & Olson, 2004; M. R. Roesch & 

Olson, 2005; Jonathan D. Wallis & Miller, 2003) and lesion (Izquierdo, Suda, & Murray, 

2004; Noonan et al., 2010; P. H. Rudebeck & Murray, 2011) studies as well as rodent lesion 

studies (Gallagher, McMahan, & Schoenbaum, 1999; McDannald, Lucantonio, Burke, Niv, 

& Schoenbaum, 2011; Takahashi et al., 2009) implicating the OFC in value computations. 

Yet, the substantial anatomical heterogeneity between these literatures cannot be ignored. 

Most primate electrophysiological studies recorded value signals from more rostral, central 

orbitofrontal regions (BAs 11 and 13). Rodent studies often employed lesions of the more 

rostral and lateral OFC (Gallagher et al., 1999; McDannald et al., 2011; Takahashi et al., 
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2009). In contrast, our subgenual cingulate cluster is more medial and caudal and does not 

extend to the orbital surface. This discrepancy was recently discussed by Wallis (2012), who 

pointed out a few possible solutions to this puzzle. First, rostromedial OFC BOLD 

activations in BA 11, medial BA 13 and ventral BA 10 are obscured by the susceptibility 

artifact. Thus, value signals in the human brain may well extend into the rostral and central 

OFC areas highlighted by primate physiological studies. However, a recent meta-analysis of 

fMRI studies of reward value that was not limited to RL studies by Bartra and colleagues 

reported value-related activations in medial rostral OFC areas most affected by the 

susceptibility artifact, but not in the more lateral central OFC (Bartra et al., 2013), where 

signal is often better preserved.

Another set of considerations stems from the medial-lateral organization of the orbitofrontal 

circuits (Ongur & Price, 2000). The lateral, “orbital” circuit of Carmichael & Price (1996) 

encompasses central OFC areas, which integrate sensory inputs carrying information about 

extrinsic food value: taste, olfaction, and vision. It is often argued that this lateral circuit 

represents not only the value of foods and liquids typically used in animal experiments, but 

that of external stimuli and outcomes in general (Schoenbaum, Takahashi, Liu, & 

McDannald, 2011; J. D. Wallis, 2012). Physiologists typically record from this circuit in 

their studies of the primate and rodent OFC (Kennerley et al., 2009; Kennerley & Wallis, 

2009a, 2009b; Morrison & Salzman, 2009; Padoa-Schioppa & Assad, 2006, 2008; Matthew 

R. Roesch & Olson, 2004; M. R. Roesch & Olson, 2005; Jonathan D. Wallis & Miller, 

2003).

An additional reason why fMRI studies do not detect value signals in central OFC is its 

diametrically opposed value encoding scheme (J. D. Wallis, 2012). Some OFC neurons 

increase and others decrease their firing rate in response to increasing value (Kennerley & 

Wallis, 2009a; Morrison & Salzman, 2009; Padoa-Schioppa & Assad, 2006). These 

opposing responses may cancel each other out at the level of BOLD signal. The medial 

orbital circuit, encompassing the vmPFC and the subgenual cingulate in particular, has 

prominent visceral and motor connections (Carmichael & Price, 1996; Ongur & Price, 

2000). Its putative functions include sensing internal states, tracking social value, and 

bridging outcome value and action selection (Bouret & Richmond, 2010; Noonan et al., 

2010; Peter H. Rudebeck et al., 2008; P. H. Rudebeck, Buckley, Walton, & Rushworth, 

2006). Grabenhorst and Rolls place the vmPFC downstream from the OFC in the processing 

of reward signals, proposing that the vmPFC receives stimulus value information from the 

OFC, incorporates other variables such as cost into the decision, and transmits it to the 

motor areas (Grabenhorst & Rolls, 2011). VmPFC responses often scale with subjective 

pleasure, which may best correspond to the reward rate or the total value of contingencies 

that can be exploited.

Not only are the findings of vmPFC value signals consistent in human fMRI studies, but 

they are also less well established in the primate electrophysiological literature (J. D. Wallis, 

2012; but see Strait, Blanchard, & Hayden, 2014). This discrepancy may reflect 

methodological differences between the human and monkey studies. For example, human 

studies use mostly secondary reinforcers such as money and correct/incorrect feedback. 

Only 2/16 value studies in our meta-analysis used primary rewards (liquid). One of them 
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detected value signals in the vmPFC (Takemura, Samejima, Vogels, Sakagami, & Okuda, 

2011) and one did not (Gradin et al., 2011), and neither found them in the central OFC. 

Further, the meta-analysis by Bartra and colleagues reported vmPFC value signals for both 

primary and monetary rewards (Bartra et al., 2013). A similar explanation focuses on the 

putative predilection of the vmPFC for social value signals (P. H. Rudebeck et al., 2006). 

The presence of vmPFC value signals in fMRI studies that used primary, non-social rewards 

argues against this explanation. That said, demand characteristics may confound in human 

imaging studies of value signals, and experimenters may thus need to conceal contingency 

manipulations. In summary, our finding of RL-estimated value signals in the vmPFC/

subgenual cingulate is consistent with non-RL-based human imaging studies and diverges 

somewhat from the primate electrophysiological studies that tend to find value signals in the 

central OFC.

Given that the EV map was restricted to the vmPFC, a supplementary conjunction analysis 

of the RPE and EV contrasts did not reveal significant results. Given that the EV maps 

reflect future expected rewards, it is plausible that a TD-related signal should be observed at 

this stage, and thus a concurrent striatal or midbrain activation. In fact, significantly 

different activations were observed between the RPE network (RPE > EV) and the vmPFC 

EV cluster (EV > RPE). A statistical account of this observation may relate to the combined 

inclusion of RPE and EV regressors in the general linear model used in the analysis of many 

of the studies: the presence of each regressor concurrently, combined with a suitable design, 

may act to orthogonalize these two events and distinguish the resulting maps. Nevertheless, 

our findings are also consistent with the view that a phasic TD signal might be distinct (in 

this case, neuroanatomically) from an expected value signal (Ludvig, Sutton, & Kehoe, 

2008).

Limitations

Although striking consistency in the pattern of activation was observed across paradigms, 

there was nevertheless evidence of different classes of paradigm leading to different patterns 

of findings, as discussed. A limitation of the inferences that can be drawn from analyses of 

these differences is caused by the presence of confounds between different categories. This 

was particularly acute for Pavlovian, TD and liquid designs because of their relative 

infrequency. In particular, amygdala RPE-coupled activations were associated with these 

classes of design, making it difficult to draw strong conclusions about the amygdala’s 

engagement by a paradigm class. Overall, our method of contrasting paradigm classes 

requires that all other dimensions are controlled for strong inferences to be obtained. 

Although this was not possible, the findings nevertheless point to particular trends of 

experimental design which may precipitate differences in the pattern of neural activation 

obtained.

Refutations or refinements of reinforcement learning models are of course a crucial part of 

their theoretical development within neuroscientific investigation (Gamez, 2012). However, 

we have restricted our analysis to studies in which the RL model was not refuted or 

otherwise argued to be an inferior account of the pattern of data, albeit allowing for some 

modifications of parameterization to the basic RW or TD model. Bayesian models such as 
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the Bayesian learner (Behrens, Woolrich, Walton, & Rushworth, 2007), hidden-Markov 

models (Hampton, Bossaerts, & O’Doherty, 2006) and Bayesian RL (Mathys, Daunizeau, 

Friston, & Stephan, 2011), as well as the Kalman filter (N. D. Daw, O’Doherty, Dayan, 

Seymour, & Dolan, 2006) can all exhibit advantages over many of the models we have 

examined in the present work. However, the superior performance of the alternative models 

in the studies we opted to exclude may be a result of peculiarities of the experimental 

design, which may render these studies more heterogeneous a priori, and thus less suitable 

for meta-analysis. In addition, the nature of this advantage should be carefully qualified 

(Myung, 2000): often, these models are representationally more powerful, perhaps reflecting 

inherent features of the experimental design (e.g. the rule transitions imbedded within 

reversal learning: (Behrens et al., 2007; Hampton et al., 2006). While pursuing the benefits 

of these models is likely to be a topic of major ongoing interest, we argue that the 

incremental increase in complexity and representational capacity of many of these models 

creates a natural, qualitative distinction with the more traditional RL methods which provide 

the focus of the present work.

Another limitation of the present study involves the limitation of meta-analysis, over and 

above the direct pooling of data within a ‘mega’-analysis. Judicious combination of fMRI 

studies of conditioning could in theory be performed, perhaps along similar lines to an 

analysis of task-related neural activation by Dosenbach and colleagues (Dosenbach et al., 

2006). If possible, this would certainly afford more direct contrast of different modeling 

strategies (e.g. fixed/individual learning rate; smoothing kernels) and possibly also 

procedural differences (e.g. reinforcer type, response contingency). Moreover, this approach 

may afford more detailed investigation of the relationship between individual functional 

activations and anatomy, providing that adequate structural data is available. The overlap 

between individually defined regions of interest and brain activations would diminish the 

necessity of spatial smoothing, and potentially increase specificity in regions of high 

between-participant anatomical variation.

We have also restricted our study inclusion to healthy adult groups. Individual differences in 

a variety of demographic factors can influence the pattern of RL-related neural activation 

and represent possible unmeasured sources of inter-subject variability. Again, a ‘mega’-

analysis with suitably recorded data may provide some control of these effects. However, 

the consistency of some of our findings (e.g. left putamen) across methodological 

dimensions suggests that these factors may serve to modulate a core pattern of activation 

rather than yield qualitative differences. Overall, as ALE has been argued to be statistically 

conservative (Graham et al., 2013), it is likely that, broadly, our findings represent a central, 

reproducible motif which may provide a useful reference point for future studies of RL and 

reward-based conditioning studies. Indeed, an increase in the number of available RL 

studies would allow greater power to address the full diversity of RL-related processes in the 

human brain. While the number of studies available is adequate, further information would 

be usefully gleaned by increasing the number of studies (e.g. Rottschy et al., 2012), 

particularly if these are designs which are not well represented in the current selection (e.g. 

liquid, TD studies).
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Summary

In the present work, we have identified a pattern of human neural correlates of reward 

prediction error (RPE) and expected value (EV) signals derived from simple reinforcement 

learning (RL) algorithms. Our findings accord well with existing literature, particularly 

electrophysiological studies with experimental animals, in our identification of dopamine-

rich regions such as the midbrain and striatum in RPE signaling, and the ventromedial 

prefrontal cortex in EV representation. The main contribution of the present work is to 

demonstrate that various methodological factors can influence the pattern of findings. These 

include factors that are possible to control at the analysis stage (e.g. learning rate estimation, 

smoothing), but also factors that must be examined experimentally (e.g. reinforcer type, 

behavioral output). Overall, the RL framework has been an empirically successful paradigm 

for investigating the neurobiology of appetitive behavior, and we anticipate a new 

generation of studies will seek to develop the implications of these findings further.
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Figure 1. 
The temporal difference (TD) model describes a real-time course of reward prediction error 

(PE) signals; PEs transfer from the US to the CS as learning progresses. In contrast, trial-

level models such as Rescorla-Wagner describe PE only at the US. Associative strength 

(conceptually close to value) signals build at the CS. It is easy to see the resemblance 

between TD error signal and the combination of PE and associative strength signals in trial-

level models. * Before the asymptote is reached. At the asymptote, PE at the US disappears.
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Figure 2. 
Pie charts show the percentage of studies in each condition that were included in producing 

the RPE ALE map.
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Figure 3. 
Map of significant ALE clusters associated with the RPE contrast, with the activations in the 

striatum highlighted. Pie charts show the contribution of studies of a particular class to the 

bilateral striatum activation. Percentages are not corrected for base rate.
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Figure 4. 
Map of significant ALE clusters associated with the RPE contrast, with the activations in the 

midbrain and frontal operculum highlighted. Pie charts show the contribution of studies of a 

particular class to each activation. Percentages are not corrected for base rate.
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Figure 5. 
Conjunction map showing the overlap of ALE maps from individual subgroup analyses 

(Fixed, Individual, Pavlovian, Instrumental, Outcome PE, TD, Monetary, Liquid and 

Social), with the left putamen cluster (x=-22, y=6, z=9, cluster size = 30) from the 

conjunction analysis shown in green and marked with arrows.
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Figure 6. 
Map of significant ALE clusters associated with the EV contrast. Pie charts show the 

contribution of studies of a particular class to the subgenual cingulate activation. 

Percentages are not corrected for base rate.
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Table 3

Overall numbers of participants and foci contributing to each of the contrasts investigated. For the categories 

included in the subgroup analysis (‘Fixed’ and below), only the studies and accompanying statistics that are 

included in the final analyses are shown in the table.

Studies Participants Foci

Reward PE 38 751 545

EV 16 337 249

Fixed 14 275 149

Individual 24 476 395

Instrumental 31 610 477

Pavlovian 7 141 67

RW 31 627 473

TD 7 124 71

Monetary 16 305 215

Liquid 5 87 68

Cognitive 7 142 110

Social 7 181 112
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Table 4

ALE clusters representing Reward Prediction Errors, including peak t statistics, MNI co-ordinates and cluster 

size. Studies contributing to each cluster, and the extent of their contribution (percent) to the overall cluster are 

marked. SF=superficial subregion of amygdala.

Region T statistic Coordinate Size Studies participating (percentage contribution)

Left Striatum (Ventral Putamen and Caudate), 
Amygdala (SF)

6.66
5.39
3.50

−20 6 −12
−10 8 −6
−28 −6 −18

615 van den Bos et al., 2012 (10.23)
Gradin et al., 2011 (8.54)
Murray et al., 2008 (7.44)
Bellebaum et al., 2012 (6.58)
Kumar et al., 2008 (6.21)
Glascher et al., 2009 (6.20)
Metereau & Dreher, 2013 (5.86)
Madlon-Kay et al., 2013 (5.53)
Kahnt et al., 2009 (5.20)
Kim et al., 2006 (4.97)
Niv et al., 2012 (4.97)
Seger et al., 2010 (4.94)
Fareri et al., 2012 (4.85)
Tanaka et al., 2006 (4.45)
Howard-Jones et al., 2010 (3.22)
J. P. O’Doherty et al., 2003 (2.89)
Bray & O’Doherty, 2007 (2.26)
Klein et al., 2007 (2.00)
Seymour et al., 2005 (0.32)
Jones et al., 2011 (1.97)
Jocham et al., 2011 (0.21)
Li et al., 2006 (0.17)

Right Striatum (Ventral putamen and caudate), 
Amygdala (SF)

4.67
4.65
4.62
4.40
4.38
3.42

10 8 −10
26 −2 −12
16 8 −4
18 16 −6
14 6 −14
34 2 −12

463 Glascher et al., 2009 (8.89)
Metereau & Dreher, 2013 (8.73)
Kumar et al., 2008 (8.63)
van den Bos et al., 2012 (7.91)
Li et al., 2006 (7.79)
Seger et al., 2010 (7.36)
Madlon-Kay et al., 2013 (7.35)
Kahnt et al., 2009 (7.23)
Kim et al., 2006 (6.07)
Gradin et al., 2011 (6.06)
Watanabe et al., 2013 (5.77)
Klein et al., 2007 (4.63)
Murray et al., 2008 (3.35)
Howard-Jones et al., 2010 (2.24)
Fareri et al., 2012 (1.89)
Jones et al., 2011 (1.62)
Brovelli et al., 2008 (1.21)
Schonberg et al., 2007 (1.03)
J. P. O’Doherty et al., 2003 (0.78)
Park et al., 2010 (0.53)

Left Insula, Frontal Operculum 6.14 −32 24 −8 201 Jones et al., 2011 (17.89)
Schlagenhauf et al., 2012 (13.23)
Jocham et al., 2011 (13.00)
Chowdhury et al., 2013 (12.74)
Kahnt et al., 2009 (12.39)
Park et al., 2010 (10.46)
Valentin & O’Doherty, 2009 (5.89)
Glascher et al., 2009 (2.09)
Robinson et al., 2013 (1.87)
J. P. O’Doherty et al., 2003 (1.55)
van den Bos et al., 2012 (0.26)
Murray et al., 2008 (0.18)Seger et al., 2010 (7.19)

Midbrain, Thalamus 5.63 −10 −20 −6 162 Murray et al., 2008 (15.24)
Bellebaum et al., 2012 (15.12)
Jocham et al., 2011 (14.75)
J. P. O’Doherty et al., 2003 (12.76)
Rodriguez, 2009 (11.69)
Valentin & O’Doherty, 2009 (11.20)
Jones et al., 2011 (9.19)
Kumar et al., 2008 (4.68)
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Region T statistic Coordinate Size Studies participating (percentage contribution)

Park et al., 2010 (1.63)
Seymour et al., 2005 (1.21)
Gradin et al., 2011 (1.15)
Schlagenhauf et al., 2012 (0.44)

Left Fusiform, Lingual, Inferior Occipital Gyrus 
(V3, V4)

4.08
4.05
3.87
3.18

−22 −82 −18
−34 −84 −8
−24 −88 −16
−24 −82 −8

147 Chowdhury et al., 2013 (23.64)
van den Bos et al., 2012 (17.92)
Bellebaum et al., 2012 (13.15)
Schonberg et al., 2010 (11.75)
Gradin et al., 2011 (9.43)
Madlon-Kay et al., 2013 (8.96)
Howard-Jones et al., 2010 (7.83)
O’Sullivan et al., 2011 (6.48)
Metereau & Dreher, 2013 (5.80)
Gershman et al., 2009 (2.57)
Murray et al., 2008 (0.98)
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Table 5

ALE clusters representing Instrumental (Instr) and Pavlovian (Pav) activations, including peak t statistics, 

MNI co-ordinates and cluster size. SF=superficial subregion of amygdala; LB= laterobasal subregion of 

amygdala; EC= entorhinal cortex

Region T statistic Coordinate Size

Instrumental

Left Putamen
Left Ventral Caudate
Left Dorsal Caudate (Head)

5.96
5.46
4.64

−16 6 −12
−10 8 −6
−12 8 8

597

Right Ventral Striatum 4.78
4.52
3.37

14 6 −14
18 16 −6
6 18 −4

397

Left Frontal Operculum 6.32 −32 24 −8 233

Left Fusiform Gyrus (V4), Inferior occipital, lingual gyrus 4.21
4.17
3.93

−22 −82 −18
−34 −84 −8
−24 −88 −16

162

Pavlovian

Left Putamen / Amygdala (SF) 5.18
4.06

−24 4 −10
−20 0 −22

194

Right Amygdala (SF) 5.16
3.71
3.66

26 −2 −12
36 0 −10
38 −2 −8

136

Pav/Instr conjunction: Left Putamen 4.77 −22 6 −12 50

Instr > Pav: Left Caudate 2.98
2.95
2.34

−10 8 10
−8 4 10
−10 4 16

58

Instr > Pav: Left Pallidum 1.93
1.86
1.74

−12 4 −2
−8 2 −4
−6 4 −2

29

Pav > Instr: Right Amygdala (SF/LB) 2.89
2.49

24 −8 −8
34 −2 −12

112

Pav > Instr: Left Putamen, Left Amygdala (SF) 2.69 −28 2 −10 82

Pav > Instr: Left Amygdala (SF/LB), Left Hippocampus (EC) 2.35 −22 2 −20 50
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Table 6

ALE Clusters representing Individual (Ind) and Fixed activations, including peak t statistics, MNI co-ordinates 

and cluster size.

Region T statistic Coordinate Size

Individual

Left Ventral Striatum 6.13
5.14

−18 4 −12
−10 10 −6

441

Right Ventral Striatum 4.78
4.64
4.25
3.88
3.54

18 8 −4
14 6 −16
10 8 −10
24 0 −12
6 18 −4

415

Left Fusiform Gyrus (V4), Inferior occipital, lingual gyrus 4.38
4.06
3.96
3.72
3.47

−34 −84 −8
−24 −88 −16
−24 −84 −18
−26 −88 −8
−24 −82 −8

217

Left Frontal Operculum 6.20 −30 24 −8 166

Fixed

Midbrain / Thalamus 5.44
3.65

−8 −22 −6
6 −16 −10

278

Left Putamen (lateral) 4.57 −24 6 −8 111

Fixed/Individual conjunction: Left Putamen 4.21 −24 6 −10 51

Ind > Fixed: Left Inferior Occipital, Fusiform Gyrus (V4) 2.80
2.77
2.60
2.23

−34 −80 −8
−36 −80 −12
−24 −80 −6
−28 −88 −8

119

Ind > Fixed: Left Ventral Striatum 2.44
2.35

−12 6 −10
−10 10 12

113

Ind > Fixed: Right Ventral Striatum 2.50 20 8 −8 53

Ind > Fixed: Left Frontal Operculum 2.09
2.00

−26 28 −4
−28 24 −6

40

Fixed > Ind: Midbrain/Thalamus 2.62
2.47
2.46

−4 −24 −4
−2 −12 −10
−10 −26 −6

151

Cogn Affect Behav Neurosci. Author manuscript; available in PMC 2016 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chase et al. Page 44

Table 7

ALE clusters representing Temporal Difference (TD) error and PE at outcome activations, including peak t 

statistics, MNI co-ordinates and cluster size. SF=superficial subregion of amygdala; LB= laterobasal 

subregion of amygdala; EC= entorhinal cortex

Region T statistic Coordinate Size

TD error

Left Putamen, Amygdala (SF/LB), Hippocampus 5.12
4.31
4.20
3.69

−16 6 −14
−24 6 −10
−20 0 −22
−28 −8 30

270

PE at outcome

Left Ventral Striatum 5.45
5.21
4.62

−10 8 −6
−20 6 −12
−12 8 8

566

Right Ventral Striatum 4.59
4.52
4.35
3.44

18 8 −4
18 16 −6
10 8 −10
6 18 −4

365

Midbrain / Thalamus 5.10 −8 −20 −6 115

Left Frontal Operculum 6.28 −32 24 −8 240

PE at outcome only/TD error conjunction: Left Putamen 4.74
4.31

−18 6 −12
−24 6 −10

112

TD error > Outcome PE: Left Amygdala (SF, LB), hippocampus (EC) 3.95
3.26
2.64

−18 2 −24
−18 0 −28
−16 −6 −30

127

Outcome PE > TD error: Left Caudate 3.30
2.97
2.95
2.51
1.93

−10 10 6
−8 4 10
−10 8 10
−10 8 14
−8 10 0

126

Outcome PE > TD error: Left Frontal Operculum, Inferior Frontal Gyrus pars orbitalis 2.47
2.01
1.98
1.97
1.77

−40 34 −10
−34 32 −12
−34 32 −8
−36 36 −12
−38 26 −12

64
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Table 8

ALE clusters representing activations associated with different reinforcers, including peak t statistics, MNI co-

ordinates and cluster size. SF=superficial subregion of amygdala; LB= laterobasal subregion of amygdala; 

CM=centromedial subregion of amygdala; EC= entorhinal cortex

Region T statistic Coordinate Size

Monetary

Left Ventral Striatum 6.07 −18 6 −14 278

Left Inferior Occipital, Lingual gyrus (V4) 4.87
4.24
3.25

−34 −84 −8
−24 −86 −16
−26 −98 −12

215

Right Ventral Striatum 4.35
3.99
3.311

10 10 −10
16 6 −14
18 16 −6

278

Liquid

Left Putamen / Amygdala (SF, LB) 5.76
4.37

−24 4 −10
−28 −2 −14

260

Right Amygdala (SF, LB, CM) 5.30
3.71
3.43

26 −2 −12
38 −2 −8
32 −14 −14

154

Social

Left Frontal Operculum / IFG 5.74 −30 24 −10 234

Left Inferior Parietal Lobule (hIP1, Inferior Parietal Cortex (PGa, PFm) 4.25
3.92

−40 −54 42
−50 −56 42

123

Cognitive

No regions
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Table 9

ALE clusters representing activations associated with High and Low Smoothing kernels including peak t 

statistics, MNI co-ordinates and cluster size. SF=superficial subregion of amygdala.

Region T statistic Coordinate Size

High Smoothing

Left Putamen, Amygdala 6.40
3.61

−20 6 −12
−28 −4 −16

524

Right Putamen, Amygdala 4.78
4.66
4.11
3.55
3.11

26 −2 −12
14 6 −14
20 10 −4
34 2 −12
6 4 4

430

Left Frontal operculum 5.55 −30 24 −8 137

Low Smoothing

Thalamus / Midbrain 4.81 −8 −18 −2 112

Left Inferior Frontal Gyrus (pars orbitalis), Frontal operculum 4.13
4.07
3.85

−34 28 −12
−36 22 −6
−30 28 −14

109

High/Low smoothing conjunction: - - -

High > Low: Right Amygdala (SF) 2.44
1.99
1.97

24 −2 −14
14 0 −16
16 2 −14

57

Low > High: Left Thalamus 2.09 −6 −18 −2 46
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Table 10

ALE cluster representing the activation associated with Expected Value (EV) including peak t statistics, MNI 

co-ordinates and cluster size. Studies contribution to the cluster, and their percentage contribution are marked

Region T statistic Coordinate Size Studies participating (percentage contribution)

Subgenual
Cingulate

4.85
3.54

4 34 −6
−6 28 −20

172 FitzGerald et al., 2012 (26.52)
Wunderlich et al., 2010 (24.44)
Glascher et al., 2009 (21.24)
Bernacer et al., 2013 (13.99)
Kim et al., 2006 (9.83)
Klein et al., 2007 (2.80)
Takemura et al., 2011 (0.69)
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