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Abstract

Throughout our lives, we face the important task of distinguishing rewarding actions from those 

that are best avoided. Importantly, there are multiple means by which we acquire this information. 

Through trial and error, we use experiential feedback to evaluate our actions. We also learn which 

actions are advantageous through explicit instruction from others. Here, we examined whether the 

influence of these two forms of learning on choice changes across development by placing 

instruction and experience in competition in a probabilistic-learning task. Whereas inaccurate 

instruction markedly biased adults’ estimations of a stimulus’s value, children and adolescents 

were better able to objectively estimate stimulus values through experience. Instructional control 

of learning is thought to recruit prefrontal–striatal brain circuitry, which continues to mature into 

adulthood. Our behavioral data suggest that this protracted neurocognitive maturation may cause 

the motivated actions of children and adolescents to be less influenced by explicit instruction than 

are those of adults. This absence of a confirmation bias in children and adolescents represents a 

paradoxical developmental advantage of youth over adults in the unbiased evaluation of actions 

through positive and negative experience.
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Learning to obtain rewards and avoid punishment is critical for the survival of all organisms. 

An approach to this challenge that is employed across species is trial and error-based 

learning. By aggregating positive and negative feedback stemming from our previous 

actions, we are able to estimate how beneficial a given action might be in the future. 

Although such feedback-driven learning is effective, the need to learn about the 

consequences of our actions through direct experience can be inefficient at best, and 

dangerous when the potential outcomes are extremely negative.

Recruiting a sophisticated capacity for symbolic communication, humans regularly 

circumvent these shortcomings of experiential learning by conveying the value of an action 

through rules, advice, or other forms of explicit instruction. By selecting actions based on 

instruction, a learner is able to benefit from the prior experience and knowledge of others. 

The utility of transmitting information through instruction is particularly evident in the 

context of development. Children and adolescents receive a great deal of instructed 

information from parents, teachers, and public policy campaigns that seek to educate and 

protect them, as well as from their peers. An assumption inherent in providing such 

guidance is that instruction can direct children and adolescents’ behavior as effectively as, or 

better than, their own experiential learning. To date, few studies have directly examined 

whether the efficacy of learning from instruction versus experience changes across 

development. However, our understanding of the cognitive processes and neural circuits 

implicated in such learning, and their maturational trajectories, suggests that there may be 

qualitative changes in the recruitment of instructed versus experiential learning across 

development.

Previous research has demonstrated that providing adults with instruction or advice induces 

a behavioral “confirmation bias,” in which recommended actions are valued more highly 

than those learned solely through experience, even when those recommendations turn out to 

be inaccurate (Biele, Rieskamp, & Gonzalez, 2009; Biele, Rieskamp, Krugel, & Heekeren, 

2011; Doll, Hutchison, & Frank, 2011; Doll, Jacobs, Sanfey, & Frank, 2009). This 

instructional biasing of experiential learning is thought to stem from the influence of the 

prefrontal cortex, implicated in rule-guided behavior (Bunge & Zelazo, 2006; Miller & 

Cohen, 2001), on feedback-based evaluative processes in the striatum (McClure, Berns, & 

Montague, 2003; O’Doherty, Dayan, Friston, Critchley, & Dolan, 2003; Pagnoni, Zink, 

Montague, & Berns, 2002). This process has been modeled computationally as an 

instruction-consistent distortion of error-driven reinforcement-learning signals (Doll et al., 

2009). Developmentally, the striatal signals implicated in feedback-based reward learning 

appear to be relatively mature in children and adolescents (Cohen et al., 2010; Galvan et al., 

2006; van den Bos, Cohen, Kahnt, & Crone, 2012). In contrast, connectivity between the 

prefrontal cortex and the striatum exhibits marked structural changes from childhood 

through adulthood (Imperati et al., 2011; Liston et al., 2006). Consistent with the proposal 

that these connectivity changes reflect fine-tuning of the information exchange between 

these regions (Somerville & Casey, 2010), cognitive functions that depend on the integrity 

of frontostriatal pathways typically show continued maturation into adulthood (Liston et al., 

2006; Rubia et al., 2006; Somerville & Casey, 2010). This neural model suggests that the 

biasing influence of explicit instruction on value-based choices might be diminished in 
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children and adolescents, predisposing them to exhibit greater reliance on experiential 

learning.

In the present behavioral study, we tested this hypothesis by having children, adolescents, 

and adults complete a probabilistic reward-learning task consisting of a learning phase 

immediately followed by a test phase. In the learning phase, three pairs of stimuli were 

presented, and participants could learn experientially, through trial and error, which stimulus 

within each pair was most likely to yield reward. Importantly, participants were given an 

inaccurate instruction that a lower-valued stimulus within one pair was likely to be 

rewarding. Participants could discover that this information was inaccurate through the 

subsequent positive or negative feedback following each choice. During the test phase, 

participants were presented with all possible pairings of the six stimuli from the learning 

phase, and they attempted to select the higher-valued option, receiving no feedback. By 

comparing their performance for instructed and uninstructed stimuli of equal value, we 

could determine the extent to which the false instruction biased their experiential learning of 

the true stimulus value, providing a quantitative measure of the influence of instruction on 

experiential learning. Previous studies in adults have demonstrated that inaccurate 

instruction strongly biases experiential value learning (Doll et al., 2011, 2009; Staudinger & 

Buchel, 2013). We hypothesized that children and adolescents would be less susceptible to 

this bias, instead relying predominantly upon their own experience to guide their choices.

Materials and methods

Participants

Participants were recruited through community-based events (e.g., street fairs) and flyers 

posted within institutions in the New York City metropolitan area. All participants (or 

parents of minors) were screened by phone prior to participation to ensure that the 

participant had no history of diagnosed neurological or psychiatric disorders, was not taking 

medication, and was typically developing cognitively and behaviorally (based on self- or 

parental report). We also ensured that all participants were not colorblind. All participants 

provided written consent to participate and were paid for their participation. They were 

debriefed following the experiment about the misleading nature of the instructions.

A total of 87 (51 female, 36 male) paid volunteers completed the study and were included in 

the analyses: 30 children (18 female, 12 male; 6–12 years of age, M = 9.5, SD = 1.8), 31 

adolescents (15 female, 16 male; 13–17 years of age, M = 14.8, SD = 1.5), and 26 adults (17 

female, nine male; 18–34 years of age, M = 23.0, SD = 4.3). Previous studies (Biele et al., 

2009; Doll et al., 2009) had reported large instruction-bias effect sizes in adults (d = 0.9 and 

d = 1.0–1.3, respectively). Because we considered the possibility that children or adolescents 

might show a smaller effect, we targeted a sample size of 25 participants per group, which 

would enable us to detect a significant effect of at least 0.6 in each age group with 80 % 

power (alpha of .05, two-tailed). Additional participants were recruited to ensure adequate 

power in the event of subject attrition, particularly in the child and adolescent groups.
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Behavioral paradigm

Participants completed an instructed probabilistic selection task (Doll et al., 2009) that was 

adapted for use across development, which consisted of a learning phase followed 

immediately by a test phase. Participants were told that their task was to feed a hungry 

mouse by helping him find the cheese hidden behind one of two mouseholes. During 

learning, participants saw one of three stimulus pairs on each trial, referred to here as AB, 

CD, and EF, which consisted of uniquely colored mouseholes (Fig. 1). These stimuli were 

chosen to make them easily distinguishable and to be as engaging as possible for our 

younger participants.

Participants were given positive or negative feedback (a happy mouse with cheese, or a sad 

mouse) after each choice during the learning phase, indicating whether they had made a 

“correct” or an “incorrect” choice. Although participants did not receive monetary rewards, 

previous studies have suggested that purely cognitive feedback in learning tasks recruits 

underlying neurocircuitry similar to that in reward-based reinforcement learning (Daniel & 

Pollmann, 2010; Rodriguez, Aron, & Poldrack, 2006; van den Bos et al., 2012). Though 

both stimuli in each pair were occasionally correct or incorrect, each pair had an optimal 

choice. The stimuli were probabilistically reinforced; for the AB pair, choosing “A” resulted 

in positive feedback on 80 % of the trials, whereas “B” led to positive feedback on 20 % of 

the trials. The other two pairs (CD and EF) had reward contingencies of 70 % (C/E) and 30 

% (D/F), but participants were given inaccurate instruction about stimulus F (verbatim: 

“We’ll get you started with a hint—this mousehole has a good chance of containing 

cheese”). This instruction was provided in textual format on the screen, accompanied by an 

image of the recommended mousehole. Thus, the instruction did not have a clear social 

source and was not directly associated with the experimenter, or with any specific 

individual. Before starting, participants completed a brief quiz on the task instructions, 

during which they were prompted to recall the recommended stimulus and were again 

visually reminded of this instruction. The participants saw each stimulus pair 60 times, 

pseudorandomized in ten-trial blocks, with side of presentation counterbalanced for each 

participant. Participants had 2.5 s to choose a stimulus and received feedback for 1 s.

Before the test phase, participants were told that they would now be tested on what they had 

just learned. Participants were presented with all 15 possible stimulus pairings (3 original, 

12 novel), but were not given feedback after making a choice. For each pair, they were 

asked to “choose the mousehole that feels more correct based on what you’ve learned; if 

you’re not sure which one to pick, go with your gut feeling.” Participants saw each pair six 

times, randomly intermixed in the 90 test trials. A blank screen was presented between trials 

(150 ms duration), and participants had no time limit when making a choice.

Data analysis

Learning-phase choice behavior data were analyzed using a generalized linear mixed-effects 

model using the lme4 package for the R statistical language (Bates, Maechler, Bolker, & 

Walker, 2014). Optimal choice (i.e., choosing the higher-probability option) was modeled 

with independent predictors of age group (factors: Children, Adolescents, Adults), pair 

(factors: AB, CD, EF), trial (1–180, z-normalized), and all two- and three-way interactions. 
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We used a maximal random-effects structure (Barr, Levy, Scheepers, & Tily, 2013), 

including a per-participant adjustment to the intercept (“random intercepts”), as well as per-

participant adjustments to the pair, trial, and pair-by-trial interaction terms (“random 

slopes”). In addition, we included all possible random correlation terms among the random 

effects. The p values and 95 % confidence intervals of the log-odds were determined 

through bootstrapping with 400 simulations using the bootMer function as implemented in 

the lme4 package, and p values for the analyses of variance were determined using 

likelihood ratio tests as implemented in the mixed function of the afex package. The data are 

presented visually in Fig. 2 below, using mean percent choices for each pair by age group, in 

ten-trial blocks.

We assumed that any biasing influence of the instructions on experiential learning would be 

revealed by a tendency to make instruction-consistent choices in the test phase, an effect 

previously observed when participants were instructed either that a suboptimal stimulus was 

good or an optimal stimulus was bad (Doll et al., 2009). We examined participants’ test-

phase choices for pairs that included the equally valued but differentially instructed 30 % 

stimuli (D and F) to determine the extent to which the learned stimulus values were biased 

by instruction. We first assessed whether participants chose in accordance with the 

instruction for the equally valued pair of 30 % stimuli (DF pair, 30:30 instructed; see Fig. 

3A below). We then compared performance for a set of pairs from the test phase, in order to 

generate an instruction-bias score: AD (80:30), AF (80:30 instructed), DB (30:20), and FB 

(30 instructed:20); see Fig. 3B. These comparisons were chosen because any difference in 

performance—measured as the proportion of choices of the optimal, higher-probability 

option—between the two 80:30 pairs or 30:20 pairs was likely to be due to the instruction, 

since the stimuli were otherwise identical. The bias score was the mean of two difference 

scores: the difference between AD and AF performance, and the difference between FB and 

DB performance, each of which could vary between −1 and +1. Positive numbers would 

indicate an instruction-consistent bias, negative numbers an instruction-inconsistent bias 

(i.e., participants chose against the instruction), and values close to zero would indicate no 

instruction bias. The choice behavior data for these pairs were analyzed similarly to the 

training-phase analysis, except that the independent variables were age group (Children, 

Adolescents, Adults), pair (factors: Easy 80:30, Hard 30:20), and instruction (factors: 

Instructed, Uninstructed). Post-hoc testing was performed using t tests of the instruction-bias 

score mentioned above. To establish that all age groups exhibited above-chance experiential 

learning, we performed an additional analysis testing performance on all uninstructed pairs 

(A, B, C, and D combinations), with age group as the independent variable.

Response time data from each phase of the task were analyzed separately using a linear 

mixed-effects model. Models were constructed as before, with response time as the 

dependent variable and choice and its interactions added as additional, independent 

variables. All p values were determined using conditional F tests with Kenward–Roger 

correction of the degrees of freedom, as implemented in the ANOVA function (with Type 

III F tests) from the car package.

We used reinforcement-learning models to attempt to characterize how participants 

integrated the positive and negative feedback received during the learning phase. We used 
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participants’ test-phase choices as indications of their learned stimulus values (Doll et al., 

2011, 2009; Frank, Moustafa, Haughey, Curran, & Hutchison, 2007; Frank & O’Reilly, 

2006; Frank, Seeberger, & O’Reilly, 2004) and fit two reinforcement-learning models to 

these test-phase choices by maximum a posteriori estimation (Daw, 2011; den Ouden et al., 

2013) using the MATLAB Optimization Toolbox (The MathWorks, Inc., Natick, MA). For 

each model, we estimated the parameters that best captured how learning-phase feedback 

could be integrated to yield the choices observed in the test phase. The first model was a 

standard reinforcement-learning model, in which prediction errors (δ) were used to update 

the values (Q) associated with each stimulus. Feedback that was better than expected would 

yield a positive prediction error, and feedback worse than expected would yield a negative 

prediction error (δ). The learning rate parameter (α) determined the extent to which these 

prediction errors were incorporated into the updated stimulus value. This learning algorithm 

has been widely used to model an experiential trial- and error-based learning process (Bayer 

& Glimcher, 2005; Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006; Watkins & Dayan, 

1992). Specifically, we updated stimulus values (Q) on each trial according to the following 

model:

where δ(t) = r(t) – Qs(t) is the difference between the outcome at time t (1 = reward, 0 = no 

reward) and the current expected stimulus value.

The second reinforcement-learning model included an additional bias parameter (αI) that 

altered the integration of feedback following choices of the instructed stimulus, enabling 

instruction-consistent feedback to be amplified (multiplying positive prediction errors, δ+, 

which were set to zero on negative prediction error trials, by the bias parameter), and 

instruction-inconsistent feedback to be diminished (dividing negative prediction errors, δ–, 

which were set to zero on positive prediction error trials, by the bias parameter) (Doll et al., 

2011, 2009). For the instruction bias reinforcement-learning model, stimulus values were 

updated as follows:

For both models, the final stimulus values were then fit to participants’ test-phase choices, 

with each trial modeled using the softmax choice rule:

where the inverse temperature parameter (β) describes how deterministic an individual’s 

choices are, given the difference in Q values. Parameter estimates were compared at the 

group level using nonparametric tests. Model fits were compared to one another using the 

Akaike information criterion (Akaike, 1974).

Decker et al. Page 6

Cogn Affect Behav Neurosci. Author manuscript; available in PMC 2015 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We took the Beta(1.1, 1.1) distribution as a prior for the learning rate parameter (α), and the 

Gamma(1.2, 5) distribution as a prior for both the bias (αI) and inverse temperature (β) 

parameters. These priors were chosen to be uninformative over the previously observed 

ranges of parameter estimates in similar tasks and to ensure smooth parameter boundaries 

(Daw, 2011; Daw, Gershman, Seymour, Dayan, & Dolan, 2011).

Results

Learning phase

During the learning phase (Fig. 2), we found a significant difference in performance by age 

group (χ2 = 6.96, df = 2, p = .031): Children performed significantly worse than adults [log-

odds difference = −0.547, 95 % confidence interval (CI) (−1.018, −0.161), p = .015], and 

showed a trend toward worse performance than adolescents [log-odds difference = −0.357, 

CI (−0.721, 0.082), p = .095], but adolescents did not differ from adults [log-odds difference 

= −0.190, CI (−0.627, 0.198), p = .40]. Performance also differed significantly depending on 

the stimulus pair (χ2 = 29.7, df = 2, p < .0001). Performance was significantly better for the 

easy uninstructed pair (AB 80/20) than for the falsely instructed pair (EF 70/30) [log-odds 

difference = 1.046, CI (0.721, 1.387), p < .005], and marginally better than for the hard 

uninstructed pair (CD 70/30) [log-odds difference = 0.183, CI (−0.001, 0.338), p = .055]. 

Performance for the easy uninstructed pair (CD 70/30) was also significantly better than that 

for the falsely instructed pair (EF 70/30) [log-odds difference = 0.863, CI (0.573, 1.182), p 

< .005]. We also observed a significant linear improvement in performance across the 

learning phase (χ2 = 36.1, df = 1, p < .0001) [log-odds estimate = 0.297, CI (0.202, 0.378)].

The linear improvement in performance across the learning phase differed by age groups (χ2 

= 7.45, df = 2, p = .024). Children showed slower improvement in performance than adults 

[log-odds difference = −0.283, CI (−0.502, −0.066), p < .005], and marginally slower 

improvement than adolescents [log-odds difference = −0.183, CI (−0.363, 0.037), p = .080], 

and no difference was apparent between adolescents and adults [log-odds difference = 

−0.100, CI (−0.309, 0.109), p = .344]. The linear improvement in performance also differed 

by stimulus pair (χ2 = 2.53, df = 2, p = .009). There was a slower improvement in 

performance for both the easy uninstructed pair (AB) [log-odds difference = −0.265, CI 

(−0.397, −0.135), p = .010] and the hard uninstructed pair (CD) [log-odds difference = 

−0.169, CI (−0.300, −0.034), p = .030] than for the falsely instructed pair (EF), suggesting 

that performance quickly reached asymptote in the uninstructed pairs. However, there was 

no difference between the two uninstructed pairs [log-odds difference = −0.096, CI (−0.208, 

0.016), p = .110]. We found a marginally significant age-group-by-stimulus-pair interaction 

effect (χ2 = 9.33, df = 4, p = .053): Whereas adults performed better than children and 

adolescents on uninstructed pair choices (AB/CD), their performance decreased for the 

instructed pair (EF), particularly when compared to adolescents (Fig. 2). Finally, we found 

no evidence of a pair-by-age-by-trial interaction (χ2 = 2.89, df = 4, p = .576).

Test phase

Replicating previous results (Doll et al., 2009), during the test phase, adults showed a bias 

toward the instructed stimulus (F) when it was part of the equally valued DF stimulus pair 
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[30:30 instructed; t = 5.98, df = 25, p < .0001, mean = 81.4 %, CI (70.6, 92.2)]. However, 

children only showed a marginal effect [t = 1.98, df = 29, p = .0573, mean = 60.8 %, CI 

(49.6, 71.9)], and adolescents showed no effect of instructions [t = 0.66, df = 30, p = .515, 

mean = 53.8 %, CI (42.1, 65.4)] (Fig. 3A). Children [t = −2.64, df = 54.0, p = .011, percent 

difference = −20.7, CI (−35.8, −5.5)] and adolescents [t = −3.56, df = 55.0, p = .0008, 

percent difference = −27.6, CI (−43.2, −12.1)] chose the instructed stimulus significantly 

less than did adults, and no difference in preference emerged between children and 

adolescents [t = 0.92, df = 59.0, p = .36, percent difference = 7.0 %, CI (−8.8, 22.8)]. This 

provided an initial indication of a persistent instruction bias in adults that was absent in 

children and adolescents.

The computed instruction bias score (Fig. 3B) assesses choice preferences across a broader 

set of pairs that are equally valued but differentially instructed. Again, we found that adults 

were more biased than children [t = 2.24, df = 51.8, p = .029; instruction bias difference = 

0.179, CI (0.018, 0.340)] and adolescents [t = 2.29, df = 51.0, p = .026; instruction bias 

difference = 0.182, CI (0.026, 0.341)], and that children were not differently biased from 

adolescents [t = 0.002, df = 58.7, p = .998; instruction bias difference = 0.003, CI (−.284, .

295); Fig. 3C]. This pattern of age group differences was also present for each individual 

subcomponent of the bias score (80/30 and 30/20). The effect of age group remained 

significant when gender was included as a predictor of instruction bias, with only adults 

showing a significant bias (p = .0005). There was also a significant gender interaction for the 

adult group (p = .0133), but not for children (p = .40) or adolescents (p = .25). This effect 

was due to adult females having a larger instruction bias than adult males did [t = 2.57, df = 

24, p = .017; instruction bias difference = 0.298, CI (0.059, 0.537)]. We also found that the 

instruction bias increased linearly with age (r = .246, p = .021; Fig. 3D).

We examined the choices for the pairs that measured the instruction bias (Fig. 3B)—pairs 

AD 80/30, AF 80/30 instructed, DB 30/20, and FB 30/20 instructed—using a mixed-effects 

regression with pair difficulty, instruction, age group, and all interactions as independent 

variables. As expected, we found a significant pair-by-instruction interaction effect (i.e., an 

instruction bias) on performance (χ2 = 23.19, df = 1, p < .0001) [log-odds estimate = −0.510, 

CI (−0.729, −0.302)], indicating that the false instruction impaired performance for the 

otherwise easy pair (80/30) and improved performance for the otherwise hard pair (30/20). 

Additionally, this instruction bias effect differed across age groups (χ2 = 11.59, df = 2, p = .

0031), mirroring the effects seen in the instruction bias score. Children and adolescents were 

equally unaffected by instructions [log-odds difference = 0.024, CI (−0.428, 0.471), p = .

945], whereas adults were significantly more affected by instructions than were children 

[log-odds difference = −0.793, CI (−1.311, −0.278), p < .002] and adolescents [log-odds 

difference = −0.769, CI (−1.325, −0.267), p = .008]. We found no other significant effects of 

pair or instruction (both ps > .6).

We observed an overall difference in age group optimal choices for these pairs (χ2 = 16.58, 

df = 2, p = .0003), reflecting age-related differences in overall probabilistic learning, 

independent of instructions. Children [log-odds difference = −1.310, CI (−1.963, −0.665), p 

< .002] and adolescents [log-odds difference = −0.868, CI (−1.486, −0.275), p = .006] chose 
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less optimally than did adults, but not differently from one another [log-odds difference = 

−0.443, CI (−1.024, 0.115), p = .108].

Performance on all uninstructed pairs (combinations of A, B, C, and D stimuli) showed that 

all age groups performed better than chance [children: log-odds estimate = 0.436, CI (0.128, 

0.744), p = .006; adolescents: log-odds estimate = 0.674, CI (0.367, 0.981), p < .0001; 

adults: log-odds estimate = 1.28, CI (0.932, 1.621), p < .0001]. Children [log-odds 

difference = −0.840, CI (−1.302, −0.378), p = .0004] and adolescents [log-odds difference = 

−0.603, CI (−1.063, −0.143), p = .010] performed less well than adults and were not 

significantly different from each other [log-odds difference = −0.238, CI (−0.672, 0.197), p 

= .284], demonstrating age differences in experiential learning similar to those evident in the 

learning-phase uninstructed choices.

During both the learning and test phases, response times were unrelated to choice, 

instruction, age group, or any of their interactions. Response times decreased significantly 

over the learning phase (response time effect = −51.4 ms, SEM = 7.75 ms, χ2 = 35.58, df = 1, 

p < .0001), with no difference by age groups. During the test phase, response times were 

significantly longer for the hard (30:20) than for the easy (80:20) pairs, regardless of 

instruction (response time difference = 244.8 ms, SEM = 38.5 ms) [F(1, 93.58) = 9.58, p = .

0026]. No other significant effects on test-phase response times were apparent.

Reinforcement learning (RL)

To explore the process by which instructions might influence the integration of feedback 

during the learning phase, we fit participants’ test-phase choices using a standard and 

modified instruction bias RL model. The standard RL model describes a feedback-driven 

learning process that has been proposed to underlie experiential reward learning (Bayer & 

Glimcher, 2005; Pessiglione et al., 2006; Watkins & Dayan, 1992). The instruction bias RL 

model adds a bias parameter that amplifies the influence of instruction-consistent outcomes 

and diminishes instruction-inconsistent feedback, yielding an instruction bias (Doll et al., 

2009). The standard RL model is equivalent to an instance of the instruction bias RL model 

in which the bias parameter is set to 1 (i.e., no bias). Model comparison based on the median 

AIC values for each age group (see Table 1) indicated that the choices of children and 

adolescents were fit better by the standard RL model, whereas adults were fit better by the 

modified model that included an instruction bias parameter. This result suggests that 

children and adolescents recruited an undistorted feedback-based integration process during 

the learning phase, but adults biased the integration of feedback for the instructed stimulus, 

altering the weighting of positive and negative outcomes in an instruction-consistent 

manner.

In both the standard and instruction bias RL models, age group differences in the estimated 

learning rate parameters (α) suggested that children were more influenced by recent 

outcomes than were adolescents or adults (Kruskal–Wallis standard: H = 12.87, p = .002; 

bias: H = 8.82, p = .013; see Table 1 for group comparisons). The softmax inverse 

temperature parameter (β), which reflects how deterministically a participant used learned 

stimulus values to make test-phase choices, also showed increases across age groups 

(standard: H = 16.26, p = .0003; bias: H = 18.71, p < .0001; see Table 1 for group 
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comparisons). These age differences in choice consistency paralleled the differences in test-

phase performance observed for the experientially learned stimuli in the regression results. 

In the instruction bias RL model, bias parameter estimates (αI) exhibited the same pattern of 

age group differences observed for both the instruction bias score and the regression analysis 

(H = 14.25, p = .0009). Adults’ bias parameter estimates were significantly higher than both 

children’s (W = 156.5, p = .0002) and adolescents’ (W = 237, p = .021), with no difference 

appearing between children and adolescents (W = 430.5, p = .62).

Collectively, these modeling results suggest qualitative differences as a function of age in 

the manner in which instructions influenced experiential feedback-based learning. Whereas 

instructions biased the integration of feedback during learning for adults, both children and 

adolescents were less influenced by instructions, integrating feedback in a relatively 

unbiased manner.

Discussion

In this study, we examined whether the influence of instructions on experiential learning 

changes across development. Despite age differences in performance, children, adolescents, 

and adults were all able to recruit experiential feedback to learn to preferentially select the 

higher-valued stimulus of each uninstructed pair. In all age groups, choices for the instructed 

pair were initially biased toward the inaccurately recommended stimulus and gradually 

(rapidly in adolescents) shifted toward the higher-valued alternative stimulus as participants 

received continued negative feedback. However, performance during the test phase 

suggested marked qualitative differences across development in how instructions influenced 

the processing of this experiential feedback. Consistent with previous findings (Doll et al., 

2009; Staudinger & Buchel, 2013), we found that adults showed a strong instruction-

consistent bias, suggesting that inaccurate instruction distorted their feedback-based value 

learning. In contrast, both children and adolescents showed a minimal influence of 

instruction on test-phase performance, suggesting that they integrated positive and negative 

feedback more objectively during the learning phase in order to estimate the value of the 

instructed stimulus. These data suggest that when explicit instruction or advice conflicts 

with experiential feedback about the value of an action, children and adolescents weight 

their own experience more heavily.

Our analyses of instruction bias focused on decisions made during the test phase, in which 

participants’ novel choices revealed the value estimated for each stimulus through the 

integration of learning-phase feedback. In contrast, choices during the learning phase can 

reflect potentially heterogeneous evaluation strategies adopted by participants (e.g., 

hypothesis testing across multiple trials; Doll et al., 2011; Frank et al., 2007), which may 

obscure current stimulus value estimates. Past studies employing variants of this task 

suggested that test-phase choices might provide the most reliable indication of learning and 

are selectively sensitive to various pharmacological, genetic, psychological, and 

neurological factors thought to alter the incremental experiential-learning process (Doll et 

al., 2011, 2009; Frank et al., 2007; Frank & O’Reilly, 2006; Frank et al., 2004). In our study, 

age group differences in the influence of instruction were not evident in choices made 

during the learning phase. However, we saw robust evidence of an instruction bias in the 
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test-phase choices of adults, but not of children and adolescents. Our reinforcement-learning 

analyses establish a link between feedback received during the learning phase and test-phase 

decisions, by formalizing the potential underlying processes for learning stimulus values. 

Crucially, reinforcement-learning parameters for the initial learning phase were fit to the 

test-phase choices that reflected the final learned stimulus values. These analyses suggested 

that whereas experienced outcomes during the learning phase were objectively weighted in 

children’s and adolescents’ value estimates, adults biased the weighting of outcomes for the 

instructed stimulus to be more consistent with the explicit instruction that they had received.

Experiential learning is thought to depend critically on dopaminergic prediction errors, 

through which the striatum can learn the value of an action (McClure et al., 2003; 

O’Doherty et al., 2003; Pagnoni et al., 2002; Schultz, Dayan, & Montague, 1997). Explicit 

instruction is proposed to bias this striatal learning process through the top-down influence 

of the pre-frontal cortex (Biele et al., 2009, 2011; Doll et al., 2011, 2009, 2014; Li, Delgado, 

& Phelps, 2011; Staudinger & Buchel, 2013), which enables task-relevant rules and 

instructions to influence goal-directed behavior (Miller & Cohen, 2001). A theoretical model 

supported by our reinforcement-learning analyses (Doll et al., 2009) posits that the 

prefrontal cortex amplifies the effect of instruction-consistent outcomes and diminishes the 

influence of instruction-inconsistent outcomes on the striatal learned values. This produces a 

behavioral “confirmation bias,” through which recommended actions are more highly valued 

than those learned solely through experience, even when the recommendation is inaccurate. 

Previous studies examining the instructional control of experiential value learning in adults 

have largely supported this model, demonstrating both the hypothesized alteration of striatal 

feedback-driven error signals (Biele et al., 2011) and a correlation between instruction-

guided choice outcomes and pre-frontal cortex activation (Li et al., 2011). Collectively, this 

evidence suggests that functional interaction between the pre-frontal cortex and the striatum 

may have mediated the instructional biasing of learning that we observed in our adult 

participants.

By extension, the relative absence of instructional influence on experiential learning in 

children and adolescents may stem from the reduced functional efficacy of prefrontal–

striatal pathways prior to adulthood. Functional imaging studies have revealed intact striatal 

prediction error signals from childhood onward (Galvan et al., 2006; van den Bos et al., 

2012), consistent with evidence of feedback-based experiential reward learning across 

development (Cohen et al., 2010; Peters, Braams, Raijmakers, Koolschijn, & Crone, 2014; 

van den Bos et al., 2012; van den Bos, Güroğlu, van den Bulk, Rombouts, & Crone, 2009). 

In contrast, both structural and functional connectivity between the prefrontal cortex and the 

striatum exhibit marked changes from childhood through adulthood (Imperati et al., 2011; 

Liston et al., 2006). Cognitive functions that depend on the integrity of this neural pathway 

typically show continued maturation into adulthood (Liston et al., 2006; Rubia et al., 2006; 

Somerville & Casey, 2010), suggesting that developmental changes in frontostriatal 

connectivity may facilitate information exchange between these regions. On the basis of the 

neuroscientific model of instructional control of learning in adulthood, we hypothesize that 

the prolonged maturation of prefrontal–striatal connectivity underlay the resistance of 

children and adolescence to the biasing effects of inaccurate instruction in our task. Our 

present study focused solely on behavior. However, we expect that a functional imaging 
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study of our task might show that adults exhibit an instruction-consistent bias in striatal 

prediction error signals for choices of the instructed stimulus during the learning phase, with 

positive signals being amplified and negative signals diminished relative to those for the 

equally valued uninstructed stimulus. We expect that this biased signaling in adults would 

be accompanied by greater prefrontal–striatal connectivity following instructed than 

following uninstructed choice outcomes. In contrast, we expect that children and adolescents 

would show no such differences in prediction error signals for instructed versus uninstructed 

stimuli. These specific hypotheses about the potential neural substrates of our behavioral 

results could be tested directly in a subsequent developmental neuroimaging study.

The maturational increase in instructional influence on learning that we observed in this 

study concurs with a broader literature suggesting a gradual developmental emergence of 

cognitive control (Bunge & Zelazo, 2006; Diamond, 2006; Munakata, Snyder, & Chatham, 

2012). A primary challenge of cognitive development is to acquire knowledge across a 

variety of stimulus domains about the nature of the environment, which is accomplished in 

large part through inductive statistical learning. Such experientially acquired knowledge 

may be more flexibly applied and easily generalized than explicit rule-based learning, a 

principle that has long been recognized in pedagogical theory (Hayes, 1993; Kolb, 1984). 

Implicit learning processes typically recruit evolutionarily conserved subcortical regions 

including the basal ganglia (Bischoff-Grethe, Goedert, Willingham, & Grafton, 2004; Rauch 

et al., 1997). Such learning is evident early in development (Amso & Davidow, 2012; 

Kirkham, Slemmer, & Johnson, 2002; Saffran, Aslin, & Newport, 1996) and may continue 

to improve into adulthood (Thomas et al., 2004). Although reduced prefrontal control is 

often portrayed as a developmental handicap, it may confer distinct advantages by enabling 

implicit learning to occur unhindered (Thompson-Schill, Ramscar, & Chrysikou, 2009). 

Providing instruction, whether false or veridical, has been shown to interfere with multiple 

forms of implicit experiential learning, reducing task performance relative to when no 

instruction is given (Reber, 1989). Increased sensitivity to underlying patterns in the 

reinforcement of actions may facilitate children’s and adolescents’ acquisition of language, 

social conventions, and other complex behaviors.

An important consideration not addressed in this study is whether the social source of 

instruction might modulate its influence. In the present study, the instruction provided to 

participants was simply presented on the screen, lacking any specific social origin. In 

contrast, real-world advice often comes from peers (friends, classmates, and colleagues) or 

authority figures (parents, teachers, and bosses), which may yield different effects on 

behavior than a printed message does. The source of advice may be a particularly important 

factor during adolescence—a period of increasing independence and heightened sensitivity 

to peers (Chein, Albert, O’Brien, Uckert, & Steinberg, 2011; Galvan, 2014; Gardner & 

Steinberg, 2005; Jones et al., 2014; Steinberg & Monahan, 2007). Moreover, the influence 

of instruction has been shown to depend on the perceived expertise of the advisor (Meshi, 

Biele, Korn, & Heekeren, 2012), and peers and authority figures may be viewed as experts 

in different behavioral domains at different developmental stages. Thus, advice from 

different social sources may vary in salience across both age groups and decision contexts. 

Future work might explore whether manipulating the social source of instruction would alter 

the developmental differences in instruction bias reported here.
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Both parents and policymakers commonly rely on rules and instruction to deter children and 

adolescents from actions that carry potentially harmful consequences. In particular, 

increased independence during adolescence often presents opportunities to experiment with 

behaviors (e.g., sex, drug experimentation, or reckless driving) that frequently yield positive 

social or hedonic outcomes, but that can have rare yet serious negative effects. Positive 

experienced outcomes may come to predominate in adolescents’ risk estimates (Reyna & 

Farley, 2006). In our study, participants of all ages initially adhered to the instruction, 

consistent with other evidence that the actions and decisions of adolescents can be 

influenced by advice (Engelmann, Moore, Capra, & Berns, 2012). However, when the 

feedback they received provided evidence contradictory to their prior instruction, both 

children and adolescents, but not adults, showed greater reliance upon their own experience. 

Public policy campaigns attempting to deter adolescents from risky behavior through 

explicit guidance or information have had limited efficacy (Ennett, Tobler, Ringwalt, & 

Flewelling, 1994; Trenholm et al., 2007). The present results suggest a cognitive mechanism 

underlying such resistance to instruction. This finding highlights the importance of research 

aimed at identifying effective ways for both parents and public health campaigns to advise 

adolescents as they navigate real-world risky behavioral domains (Reyna & Farley, 2006).

In summary, by placing instruction and experience in competition, we have shown here that 

the relative weighting of these two sources of information shifts over the course of 

development. Consistent with the protracted maturation of the circuitry implicated in 

instructional control of learning, children and adolescents showed less influence of 

instruction on choice than did adults. Whereas instruction alters the processing of 

experiential feedback in adults, our results suggest that children and adolescents remain 

attuned to the true reward contingencies in their environment, enabling experience to prevail 

in directing their actions. Many aspects of cognition (e.g., working memory; Crone, 

Wendelken, Donohue, van Leijenhorst, & Bunge, 2006), attentional control (Rueda, Posner, 

& Rothbart, 2005), and executive function (Diamond, 2006) improve as individuals mature 

from childhood through adulthood, typically conferring advantages for adults in learning 

and decision-making. Similarly, the effective recruitment of instruction to guide one’s 

actions may generally be advantageous, allowing an individual to benefit from the 

knowledge and prior experience of others. However, our results suggest that this ability may 

also come at the cost of introducing pronounced bias in the processing of experiential 

feedback. The absence of confirmation biases in the children and adolescents observed in 

this study represents a paradoxical developmental advantage of youth over adults in the 

unbiased evaluation of actions through positive and negative experience.
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Fig. 1. 
Probabilistic-learning paradigm. The learning phase consisted of 180 choices between six 

probabilistically reinforced stimuli presented in three pairs. Participants were falsely 

instructed that one stimulus had a high likelihood of being rewarded, when in actuality it did 

not. Positive or negative feedback was given following each trial. The test phase, consisting 

of all 15 possible stimulus pairs with no feedback, enabled assessment of the extent to which 

the learned stimulus values were biased by the instruction
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Fig. 2. 
Learning-phase performance. Adults (cyan squares) performed better than children (red 

circles) and marginally better than adolescents (blue triangles) for the two uninstructed pairs 

(AB, CD). All groups initially adhered to the false instruction (F) and gradually learned 

through experience to select the higher-valued alternative (E), with adolescents showing the 

fastest improvement. Error bars represent SEMs
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Fig. 3. 
Test-phase performance. (A) Percentages of F choices when seeing the DF pair (30:30 

instructed). (B) The instruction bias was the average of two difference scores between 

stimulus pairs of equal probability that were differentially instructed. (C) Adults showed a 

significantly larger instruction bias than did both children and adolescents. (D) A significant 

increase in instruction bias occurred with age (darker circles indicate two data points). Error 

bars (panels A and C) are 95 % confidence intervals; shading (panel D) indicates SEMs
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Table 1

Reinforcement learning model parameter fits

Model Median KW MWW

Parameter Child Adolescent Adult Chi-
Square 
(df = 
2)

Child vs. Adolescent Child vs. Adult Adolescent vs. Adult

Standard RL α .429 .083 .036 H = 
12.87
p = .
002

W = 579
p = .10

W = 621
p = .0002

W = 504
p = .11

β 0.80 1.25 3.89 H = 
16.26
p = .
0003

W = 361
p = .14

W = 150
p < .0001

W = 238
p = .009

AIC 131.2 125.2 117.2

Modified bias RL α .289 .046 .054 H = 
8.82
p = .
013

W = 622
p = .023

W = 565
p = .004

W = 396
p = .92

β 1.32 2.89 4.55 H = 
18.71
p < .
0001

W = 316
p = .031

W = 127
p < .0001

W = 262
p = .024

α I 1.42 1.44 3.31 H = 
14.25
p = .
0009

W = 430.5
p = .62

W = 156.5
p = .0002

W = 237
p = .021

AIC 135.8 128.3 100.0

α, learning rate. β, softmax parameter, αI, bias parameter, AIC, Akaike information criterion. The nonparametric Kruskal–Wallis (KW) and Mann–

Whitney–Wilcoxon (MWW) tests were used to compare the group parameter estimates

Cogn Affect Behav Neurosci. Author manuscript; available in PMC 2015 June 01.


