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Abstract
Autotaxin (ATX) is a secretory protein, which converts lysophospholipids to lysophosphati-

dic acid (LPA), and is essential for embryonic vascular formation. ATX is abundantly de-

tected in various biological fluids and its level is elevated in some pathophysiological

conditions. However, the roles of elevated ATX levels remain to be elucidated. In this study,

we generated conditional transgenic (Tg) mice overexpressing ATX and examined the ef-

fects of excess LPA signalling. We found that ATX overexpression in the embryonic period

caused severe vascular defects and was lethal around E9.5. ATX was conditionally overex-

pressed in the neonatal period using the Cre/loxP system, which resulted in a marked in-

crease in the plasma LPA level. This resulted in retinal vascular defects including abnormal

vascular plexus and increased vascular regression. Our findings indicate that the ATX level

must be carefully regulated to ensure coordinated vascular formation

Introduction
Autotaxin (ATX) is a motogen-like phosphodiesterase that was originally isolated from condi-
tioned medium of human melanoma cells [1]. Previously, ATX was shown to have lysopho-
spholipase D (lysoPLD) activity, which converts lysophosphatidylcholine (LPC) to a bioactive
lysophospholipid, lysophosphatidic acid (LPA) [2, 3]. LPA is a lipid mediator with diverse bio-
logical functions in vitro and in vivo, most of which are mediated by G protein-coupled recep-
tors (GPCRs) specific to LPA (LPA1–6) [4–6]. ATX knockout mice are embryonic lethal
around E9.5~10.5 with vascular defects in the yolk sac and embryos [7, 8]. Aberrant neural
tube formation is also observed in ATX knockout embryos [9, 10]. ATX catalytic activity must
be responsible for these phenotypes because mutated ATX knock-in embryos, in which a single
amino acid responsible for the catalytic activity of ATX was modified, are embryonic lethal
[11].

High levels of ATX are found in various biological fluids, such as serum, urine and peritone-
al fluid [12]. ATX concentration was increased in fluids from patients with various diseases
such as chronic hepatitis [13], follicular lymphoma [14] and some cancers including breast,
ovary and pancreas [15–17]. In addition, serum ATX levels from pregnant women were found
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to be high [18]. Elevated ATXs in some cancers are proposed to contribute to the invasion of
cancer cells because ATX promotes proliferation and migration of cancer cells through produc-
tion of LPA and sequential activation of LPA receptors. However, the roles of elevated ATX
levels in other situations such as in the development of the vasculature, is unclear.

Here, we showed that overexpression of ATX caused embryonic lethality with vascular de-
fects, growth retardation and prevented closure of the neural tube. In addition, overexpression
of ATX in neonatal period results in a delay in retinal vascularization and a decrease in vessel
branching. These results indicates that excess of ATX-LPA signalling induces severe vascular
defects, which may induce multiple diseases including cancer.

Material and Methods

Reagents and antibodies
1-Myristoyl (14:0)-LPC was purchased from Avanti Polar Lipids Inc. Rat anti-CD31 antibody
was purchased from BD Biosciences. Biotinylated Griffonea Simplicifolia I isolectin B4 was pur-
chased from vector laboratories. Rabbit anti-mouse collagen IV was purchased from AbD Sero-
tec. Alexa Fluor 488 Goat anti-rat IgG, Alexa Fluor 568 goat anti-rabbit IgG and Alexa Fluor
488 streptavidin were purchased from Molecular Probes.

Mice
Mice were maintained according to the Guidelines for Animal Experimentation of Tohoku
University and the protocol was approved by the Institutional Animal Care and Use Commit-
tee at Tohoku University. The strategy for the generation of ATX Tg mice has been reported
previously [19]. In brief, the cDNA for mouse ATX (ATXβ isoform) was inserted into the
pCALNL5 vector [20]. The plasmid, containing the transgene downstream of a neomycin cas-
sette with LoxP sites at both ends, was excised to produce a CAG-loxP-neor-loxP-ATX
(LNL-ATX) fragment. The fragment was then microinjected into fertilized eggs, and the eggs
were transferred to the fimbriae of the uterine tubes of female C57BL/6 mice that had been
mated with vasoligated male mice 1 day before. Founders were mated with C57BL/6 mice to
confirm germ line transmission by PCR genotyping, and those with successful germ line trans-
mission (LNL-ATX Tg mice) were then crossed with CAG-Cre Tg mice. This step resulted in
removal of the neor cassette from the LNL-ATX transgene, thereby allowing activation of the
ATX transgene in the whole body of the offspring (Fig 1). To obtain ATX conditional Tg (ATX
cTg) mice, LNL-ATX Tg mice were crossed with mice expressing tamoxifen-inducible Cre
recombinase (Cre-ER) under the control of the CAG promoter (Jackson Laboratories). Gene
activation in pups was triggered by i.p. injection of 50 μl of tamoxifen solution (Sigma, T5648;
3 mg/ml corn oil) once at P1 or P5. The phenotypes of the mutant mice were analyzed at P6.
Other littermates were used as controls. Primers used in genotyping are listed below:

Fwd, 5’-CTTTTTCCTACAGCTCCTGGG-3’ and Rev, 5’-CCATTCGGCCCTCTTAAT
TCG-3’

Quantitative RT-PCR analysis
Total RNA from mouse embryos were isolated using a GenElute Mammalian Total RNAMini-
prep Kit (Sigma-Aldrich). Total RNA was reverse-transcribed using High-Capacity cDNA RT
Kits (Applied Biosystems) according to the manufacturer’s instructions. PCR reactions were
performed with SYBR Premix Ex Taq (Takara Bio) and were monitored by ABI Prism 7300
(Applied Biosystems). Standard plasmids ranging from 102 to 106 copies per well were used to
quantify the absolute number of transcripts of cDNA samples. The numbers of transcripts
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were normalized to the number of a house-keeping gene, Gapdh in the same sample. Primers
used in gene expressions are listed below:

Atx, 5’-GGAGAATCACACTGGGTAGATGATG-3’ and 5’-ACGGAGGGCGGACAAAC-3’;
Gapdh, 5’-AGGAGCGAGACCCCACTAAC-3’ and 5’-CGGAGATGATGACCCTTTTG-3’.

Fig 1. Overexpression of ATX in embryos led to lethality with severe defects. (A) Schematic diagram of the construction of ATX Tg mice. The ATX
transgene was inserted at the downstream of the neor/pA cassette. This fragment, in which the ATX transgene is silent, was introduced into mice, and the
transgene-positive offspring were then mated with CAG-Cre Tg mice. At this stage, the LNL (for loxP-neor/pA-loxP) cassette was excised by Cre
recombinase, and the ATX transgene was activated under control of the CAG promoter in the transgene-positive embryos. (B) PCR genotyping of ATX Tg
mice. After mating of LNL-ATX Tg mice with CAG-Cre Tg mice, PCR genotyping was performed. Fragments of 1.6 and 0.2 kb were amplified for LNL-ATX Tg
and CAG-ATX Tg (ATX Tg) mice, respectively, whereas these products were not detected in WT littermates. (C) A picture of embryos and placentas at
E11.5. (D) Defects in the yolk sac vasculature. Yolk sac from control (wild type) and ATX Tg embryos at E10.5. (E-G) Morphologies of control (wild type) (left)
and ATX Tg (right) embryo proper at E9.5 and E10.5. At E10.5 (E) and E9.5 (F and G), ATX Tg embryos are easily distinguishable from control littermates
(wild type). ATX Tg embryos exhibit several defects such as growth retardation (E), open and kinky neural tube (F, arrow) and abnormal allantois (G, arrow).
Scale bars, 200 μm in panels D and E and 100 μm in panels F and G. (H) Quantitative RT-PCR analysis of ATX mRNA in mouse embryos at E8.5. (wild type;
n = 3, CAG-Cre; n = 3, LNL-ATX Tg; n = 2, ATX Tg; n = 3,).

doi:10.1371/journal.pone.0126734.g001
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Measurement of lysophospholipase D activity andWestern blotting
Lysophospholipase D activity was measured as described previously [2]. Briefly, plasma sam-
ples were mixed with 14:0 LPC (100 mM Tris-HCl, 5 mMMgCl2, 500 mMNaCl, 0.05% Triton
X-100, pH 9.0) and incubated for 3 h at 37°C. Liberated choline was quantified using choline
oxidase (Wako, Osaka, Japan), peroxidase (TOYOBO, Osaka, Japan) and TOOS reagent
(Dojindo, Kumamoto, Japan). The activity was indicated by the generation rate of choline per
unit time and volume (pmol/ml/h). Western blotting of ATX was performed as described
using ATX-specific monoclonal antibody [7].

Whole-mount staining and immunofluorescence staining
For immunostaining of flat-mount retinas, eyes were dissected from neonatal mice and fixed in
4% PFA for 2 hrs at room temperature. The retinas were stained with isolectin B4 (1:50), anti-
CD31 antibody (1:200) and anti-collagen IV antibody (1:200) as previously described [21].

Quantification of LPA by LC-MS/MS
Plasma LPA levels were determined by LC-MS/MS as previously described [22]. Briefly, lipids
in plasma were extracted in 100 μL of methanol containing 100 nM 17:0-LPA (internal stan-
dard). After filtration through a 0.2 μm acetyl cellulose filter (YMC), 20 μL of sample was in-
jected into liquid chromatography (LC) and analyzed by tandem mass spectrometry (MS/MS).

Results and Discussion

Overexpression of ATX in embryos led to lethality with severe defects
To obtain transgenic (Tg) mice overexpressing ATX, a Tg construct for ATX (Fig 1A) was mi-
croinjected into the pronuclei of fertilized eggs of C57BL/6 females and transferred into the
oviducts of pseudopregnant females. The founder mouse, in which the ATX transgene was still
silent, was mated with CAG-Cre Tg mice to allow the removal of the neor cassette from the
LNL-ATX transgene by the Cre/LoxP reaction (Fig 1A and 1B). CAG-Cre Tg mice is useful to
induce Cre-mediated recombination all tissues because CAG promoter directs ubiquitous ex-
pression of the gene [23]. We established three lines, which possessed the ATX Tg allele.
Among the three lines, two lines (line D and F) were crossed with CAG-Cre mice. Following
this, the transcription of the ATX transgene was directly regulated by the CAG promoter and
was thereby activated in all tissues CAG-Cre mice and LNL-ATX Tg mice were healthy and fer-
tile. However, no offspring carrying the active ATX transgene (ATX Tg) was found among 73
newborn mice from LNL-ATX Tg females crossed with CAG-Cre males (Table 1 and S1
Table), suggesting that the ATX Tg mice are embryonic lethal.

To know when ATX Tg embryos showed abnormality, embryos were isolated at various
stages of gestation. At E11.5 almost all of ATX Tg embryos were dead in utero (Fig 1C). At
E10.5, the yolk sacs of ATX Tg embryos completely lacked large vitelline vessels, whereas yolk
sacs of control (wild type) embryos had well developed vitelline vessels (Fig 1D). In addition,
several defects were evident in the ATX Tg embryos at E10.5 or 9.5. These included growth re-
tardation (Fig 1E), open and kinky neural tubes (Fig 1F) and abnormal allantois (Fig 1G). We

Table 1. Genotype distribution of offspring from LNL-ATX Tg females crossed with CAG-Cremales.

Number of litters Total number of neonates tested Wild type LNL-ATX Tg CAG-Cre CAG-Cre; LNL-ATX Tg

12 73 22 25 26 0

doi:10.1371/journal.pone.0126734.t001
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did not observe any abnormality of embryos at both E9.5 and E10.5 with genotypes of wild
type, CAG-Cre and LNL-ATX Tg. The expression levels of ATX mRNA in ATX Tg embryos as
judged by RT-PCR were increased about 15-fold compared with those in control embryos at
E8.5 (Fig 1H).

Overexpression of ATX delays retinal vascularization and decreases
vessel branching
Next, to assess the effect of ATX overexpression on the vasculature more precisely, we condi-
tionally overexpressed ATX (ATX conditional Tg (cTg) mice) just after birth and evaluated
blood vessel formation in neonatal retina [21, 24]. To obtain ATX cTg mice, LNL-ATX Tg
mice were crossed with mice expressing tamoxifen (TM)-inducible Cre recombinase (Cre-ER)
under the control of the CAG promoter. Gene activation in neonates was triggered by i.p. injec-
tion of tamoxifen solution once at postnatal day 1 (P1). The phenotypes of the ATX cTg mice
were analyzed at P6 (Fig 2A). ATX gene activation in ATX cTg mice significantly increased
LysoPLD activity (Fig 2B), plasma LPA levels (Fig 2C) and ATX protein level (Fig 2D) com-
pared with the levels in control mice.

ATX cTg mice also displayed a significant delay in radial expansion of vascular plexus from
the optic nerve head to the periphery in retina (Fig 3A and 3B) and decreased vascular density
and branching (Fig 3C and 3D). We did not observe any differences of retinal vasculature be-
tween the three genotypes (wild type, CAG-CreER and LNL-ATX Tg). Therefore, we used neo-
nates with a wild type genotype as a control. Phenotype of delay in radial expansion of vascular

Fig 2. ATX expression is increased in ATX conditional transgenic mice. (A) Schematic of the experimental strategy to assess formation of the retinal
vasculature in ATX conditional Tg (ATX cTg) mice. (B) LysoPLD activity of ATX cTg mice plasma. LysoPLD activity was determined by liberation of choline
from lysophosphatidylcholine (LPC) using 14:0-LPC as a substrate. Error bars indicate s.d. (control; n = 12, ATX cTg; n = 7). P-values were estimated by
student’s t-test, ***P < 0.001. (C) Relative abundance of five major LPA species (16:0, 18:1, 18:2, 20:4 and 22:6-LPA) in mice plasma. Lipids in plasma were
extracted with methanol and analyzed by LC-MS/MS. Error bars indicate s.d. (control; n = 12, ATX cTg; n = 7). P-values were estimated by one-way ANOVA
with Bonferroni’s posttest analyses, *P < 0.05, ***P < 0.001. (D) Western blot analysis of ATX in plasma isolated from CreER and ATX cTg mice. Data in (B)
and (C) were pooled from three independent experiments.

doi:10.1371/journal.pone.0126734.g002
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plexus and decreaed vascular branching was mainly caused by abnormality of angiogenic
sprouting [25, 26], vascular instability [27, 28].

Transient ATX overexpression decreased vessel branching but did not
delay retinal vascularization
To confirm the effects of ATX overexpression against vascular formation, we induced ATX
overexpression at P5 and analyzed the effects at P6 (Fig 4A). Under this condition, plasma
LysoPLD activities in ATX cTg mice increased about 4-fold compared with those in control
mice (Fig 4B). In ATX cTg mice, radial expansion of the vascular plexus was not delayed (Fig
4C and 4D) but vascular branching was slightly decreased (Fig 4E and 4F). These results indi-
cate that LPA causes vascular instability rather than prevents vascular sprouting.

Fig 3. Overexpression of ATX delays retinal vascularization and decreases vessel branching. (A and B) Vascular defects in retina from ATX cTg mice
at P6. Retina vasculature was visualized by staining the vessels with isolectin B4. Scale bar, 500 μm. (C) Magnification view of vascular plexus in retina from
ATX cTg mice at P6. Scale bar, 100 μm. (D) The vascular defects were evaluated by determining the branching points quantitatively. Error bars indicate s.d.
(control; n = 12, ATX cTg; n = 7). P-values were estimated by student’s t-test, ***P < 0.001. Data were pooled from three independent experiments.

doi:10.1371/journal.pone.0126734.g003
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Fig 4. Transient ATX overexpression decreases vessel branching but does not delay retinal vascularization. (A) Schematic of the experimental
strategy to assess initial defects in retinal vasculature in ATX cTg mice. (B) LysoPLD activity of ATX cTg mice plasma. Error bars indicate s.d. (control; n = 9,
ATX cTg; n = 4). (C and D) Vascular defects in retina from ATX cTg mice at P6. Retina vasculature was visualized by staining the vessels with isolectin B4.
Scale bar, 500 μm. (E) Magnification view of vascular plexus in retina from ATX cTg mice at P6. Scale bar, 100 μm. (F) The vascular defects were evaluated
by determining the branching points quantitatively. Error bars indicate s.d. (control; n = 9, ATX cTg; n = 4). P-values were estimated by student’s t-test,
**P < 0.01. Data in (B) and (F) were pooled from three independent experiments.

doi:10.1371/journal.pone.0126734.g004
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Overexpression of ATX causes abnormal vessel morphology and vessel
regression
At higher magnification, the formation of filopodia in both ATX cTg mice (TM injection at P1
or P5) was not affected (Fig 5A and 5B), suggesting that sprouting activity was not suppressed
by overexpressing of ATX. When retinas were stained with both anti-CD31 (an endothelial
marker) and anti-collagen IV (basement membrane marker), we found many vessels those
were positive only for collagen IV, namely endothelial cell-deficient vessels, in ATX cTg retinas
(Fig 5C–5F). The presence of endothelial cell-deficient (empty) vessels in ATX cTg retinas in-
dicates that endothelial cells regressed after basement membranes were formed around the

Fig 5. Overexpression of ATX causes abnormal vessel morphology and vessel regression. (A and B) Magnification view of angiogenic front in retina
from ATX cTg mice at P6. Control and ATX cTg retinas had similar filopodia protrusion. Scale bar, 50 μm. TM, tamoxifen. (C and D) ATX cTg retinas
displayed vessel regression at vascular plexus. Control (wild type) and ATX cTg retinas labeled for CD31 (green) and collagen IV (red). Arrows highlight
empty collagen IV sleeves, indicating vessel regression. Scale bar, 100 μm. (E and F) Vessel regression was evaluated quantitatively. Error bars indicate s.d.
(control; n = 7, ATX cTg; n = 5). P-values were estimated by student’s t-test, ***P < 0.001. Data were pooled from three independent experiments.

doi:10.1371/journal.pone.0126734.g005
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endothelial cells, as was demonstrated previously in VEGF inhibited vessels [29]. The observed
vascular regression could explain the delayed retinal vascularization and the reduced vascular
density in ATX cTg retinas because previous studies showed vessel instability (regression) led
to retardation of retinal vascularization and decreased vessel branching [27, 28].

In this study, we found that overexpression of ATX caused embryonic lethality with vascular
defects, growth retardation and failure to close the neural tube. In addition, overexpression of
ATX in the neonatal period caused vascular instability thereby inducing a delay in retinal vas-
cularization and a decrease in vessel branching. By evaluating developing retinal vasculature in
detail, we also found excess ATX-LPA signaling induced vessel regression and defects of vascu-
lar elongation (Figs 3 and 5), as was previously reported by Im et al., who showed that
ATX-LPA signaling induced hyaloid vessel regression [30].

Because knocking out ATX in mice and down-regulating ATX in zebrafish severely inhib-
ited embryonic blood vessel formation [7, 8, 31], ATX as well as its product LPA has been
thought to be an essential angiogenic factor. However, the present results show that excess
ATX-LPA signalling induces severe vascular defects and thus indicate that excess LPA signal-
ling inhibits angiogenesis. This indicates that the LPA level must be regulated tightly. Lipid
phosphate phosphatase 3 (LPP3) is a candidate enzyme for LPA degradation. Interestingly,
LPP3 knockout mice were also embryonic lethal with vascular defects similar to those of
ATX-Tg mice [32]. It would be interesting to know whether LPP3 knockout elevates the LPA
level and strengthens LPA signaling. In addition, because ATX levels are high in patho-physio-
logical states such as cirrhosis, pruritus, pregnancy and various cancers [15, 33–35], it would be
interesting to know if the increased ATX level affects blood vessel formation in
clinical conditions.

Supporting Information
S1 Table. Genotype distribution of offspring from LNL-ATX Tg females (D and F line)
crossed with CAG-Cre males.
(DOCX)
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