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Abstract
AIM: To investigate the effect of hepatocyte nuclear 
factor 4α (HNF4α) on the differentiat ion and 
transformation of hepatic stellate cells (HSCs).

METHODS:  By construct ing the recombinant 
adenovirus vector expressing HNF4α and HNF4α 
shRNA vector, and manipulating HNF4α expression in 
HSC-T6 cells, we explored the influence of HNF4α and 
its induction capacity in the differentiation of rat HSCs 
into hepatocytes.

RESULTS: With increased expression of HNF4α 
mediated by AdHNF4α, the relative expression of 
Nanog was downregulated in HSC-T6 cells (98.33 ± 
12.33 vs  41.33 ± 5.67, P  < 0.001). Consequently, the 
expression of G-P-6 and PEPCK was upregulated (G-P-6: 
14.34 ± 3.33 vs  42.53 ± 5.87, P  < 0.01; PEPCK: 10.10 
± 4.67 vs  56.56 ± 5.25, P  < 0.001), the expression 
of AFP and ALB was positive, and the expression of 
Nanog, Type Ⅰ collagen, α-SMA, and TIMP-1 was 
significantly decreased. HNF4α also downregulated 
vimentin expression and enhanced E-cadherin 
expression. The ultrastructure of HNF4α-induced cells 
had more mitochondria and ribosomes compared with 
the parental cells. After silencing HNF4α expression, 
EPCK, E-cadherin, AFP, and ALB were downregulated 
and α-SMA and vimentin were upregulated.  

CONCLUSION: HNF4α can induce a tendency of 
differentiation of HSCs into hepatocyte-like cells. These 
findings may provide an effective way for the treatment 
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of liver diseases.
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Core tip: Hepatocyte nuclear factor 4α (HNF4α) is an 
important transcription factor in liver differentiation. 
When enhancing HNF4α expression in hepatic stellate 
cell line hepatic stellate cells (HSCs)-T6, the expression 
of G-P-6, PEPCK, and E-cadherin was upregulated, the 
expression of Type Ⅰ collagen, α-SMA, TIMP-1, and 
vimentin was downregulated, and the induced cells 
were positive for AFP and ALB. When silencing HNF4α 
expression with shRNA vector, EPCK and E-cadherin 
were downregulated and α-SMA and vimentin were 
upregulated. The results demonstrated that HNF4α 
can induce a tendency of differentiation of HSCs into 
hepatocyte-like cells. These findings may provide an 
effective method for treating liver diseases.
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INTRODUCTION
Hepatic stellate cells (HSCs) are stem-like cells that 
have recently been described as a liver-resident 
mesenchymal stem cell (MSC) population. This is 
due to their MSC-related expression profile, which 
expresses a variety of stem cell markers such as 
nestin, CD24, CD105, CD133, and c-kit, but can also 
serve as a progenitor cell population with hepatobiliary 
characteristics[1,2]. HSCs play crucial roles in liver repair 
and regeneration after liver injury[3-5]. Transplanted 
HSCs can home to the injured liver and contribute 
to tissue regeneration by developing into putative 
progenitor cells, epithelial cells, and mesenchymal 
tissues[2]. Under incubation of different cytokines in the 
culture medium, selected CD133+ cells from fresh rat 
HSCs have been shown to differentiate into stromal 
cells, endothelial cells, and hepatocyte-like cells in 
vitro[6,7]. In the glial fibrillary acidic protein (GFAP)-
Cre/green fluorescent protein (GFP) transgenic mouse 
liver injury animal model, HSCs displayed the capacity 
to develop into albumin-expressing hepatocytes[5]. 
Following liver injury, activated HSCs secret cytokines, 
such as hepatocyte growth factors (HGF), activate 
hedgehog receptors to promote liver repair and 
regeneration[8,9]. In contrast, Foxf1+/- mice exhibited 
abnormal liver repair, diminished HSC activation, 

and aggravated liver tissue damage following CCl4 
injury[10]. Therefore, differentiated HSCs can be used 
as seed cells in hepatocyte transplantation, and can 
also secrete cytokines to promote liver repair and 
regeneration. However, the differentiation capacity 
of HSCs and related molecular mechanisms remain 
unclear.

Genetic engineering techniques can regulate 
important genes in stem cell differentiation. How to 
directionally induce the differentiation of stem cells 
into hepatic cells and enhance their biological function 
by genetic techniques has become a central topic 
in the treatment of end-stage liver disease by cell 
transplantation[11,12]. The hepatocyte nuclear factor 
(HNF) family is a group of important transcription 
factors in the regulation of liver differentiation. 
Members of the HNF family include HNF1, HNF3, HNF4, 
HNF6, and CCAAT/enhancer-binding protein (C/EBP). 
Of these, HNF4 is a vital transcriptional regulator in the 
differentiation of liver function, and consists of three 
types: HNF4α, HNF4β, and HNF4γ. HNF4α regulates 
the differentiation of hepatocytes, preserves their 
biological function, and is highly expressed in mature 
hepatic cells, where it plays a vital role in maintaining 
the epithelial phenotype of hepatocytes.

The expression of HNF4α in HSCs has been 
reported to significantly decrease in hepatocyte injury 
and chronic liver disease[13]. Activated HSCs transform 
into myofibroblasts and secrete extracellular matrix 
(ECM)[14]. If the HNF4α expression in HSCs is rescued 
by transfection, the biological character of HSCs can 
be reversed, indicating that HNF4α is an important 
regulatory factor in maintaining the epithelial 
phenotype of hepatocytes. Upregulated expression 
of HNF4α can inhibit transformation of HSCs into 
stromal cells, and promote cell differentiation 
and regeneration into hepatocytes[15]. All of these 
findings indicate that HNF4α is a vital regulator that 
maintains the endothelial cell state of HSCs. Because 
of the importance of HSCs in the progression of 
liver fibrosis, we intend to clarify the functions of 
HNF4α and the mechanism by which it regulates the 
participation of HSCs in liver fibrosis. The results of 
this investigation will provide a new direction in which 
the pathogenesis and prevention of liver fibrosis can 
be studied. Therefore, in this study, we constructed a 
recombinant adenovirus expression vector (AdHNF4α) 
capable of carrying the full-length cDNA of HNF4α. 
By manipulating HNF4α expression using AdHNF4α, 
we explored the influence of HNF4α and its induction 
capacity in the differentiation of HSCs into hepatic cells 
in the rat HSC-T6 cell line.

MATERIALS AND METHODS
Amplification and purification of recombinant 
adenovirus vectors
The recombinant adenovirus vector AdHNF4α, 
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containing the human HNF4α gene (GenBank: 
NM_000457.4) expression cassette, and the control 
adenovirus vector AdGFP, containing the green 
fluorescent protein (GFP) gene, were recombined 
as previously based on the recombinant system of 
adenovirus vector AdEasy and kept in the Department 
of Gastroenterology, Shanghai Changzheng Hospital 
(Shanghai, China)[16,17]. The adenovirus AdHNF4α 
was demonstrated to efficiently express HNF4α factor 
with biological functions on both human and rat 
cells[16]. Human embryonic kidney 293 cells (HEK293, 
Shanghai Institute of Cell biology, Chinese Academy 
of Sciences) were used as the virus carrier to amplify 
the recombinant adenovirus, and the adenovirus 
vector was purified by cesium chloride density gradient 
centrifugation. The virus titer was measured by the 
tissue culture infectious dose (TCID50) method (Q 
Biogene Inc.). The AdHNF4α and AdGFP titers were 1 
× 1010 pfu/mL and 3 × 1010 pfu/mL, respectively.

Recombinant adenovirus-mediated HNF4α expression 
in rat HSC-T6 cells
The rat hepatic stellate cell line HSC-T6 was established 
by Scott L Friedman and William S Blaner’s research 
group (Department of Medicine, College of Physicians 
and Surgeons of Columbia University, NY, United 
States)[18]. The cell line was kindly gifted by Scott L 
Friedman[16,19] and cultured in Dulbecco’s modified 
Eagle’s medium (DMEM) supplemented with 10% fetal 
bovine serum, 100 units/mL of streptomycin, and 100 
units/mL of penicillin. These cells were cultured at 
37  ℃ with 5% CO2. The medium was changed once 
every 1-2 d and the cells were passaged every 2-3 d. 
For trypsinization, the cells were treated with 0.25% 
trypsin with 1 mmol/L ethylenediaminetetraacetic 
acid (EDTA) solution and incubated at 37  ℃ for 5 min. 
The reaction was stopped via the addition of Hank’
s solution and the cells were collected for subsequent 
passage. HSC-T6 cells (1 × 105) were transferred into 
a well of a 6-well plate. After 24 h, the cells adhered 
to the well and the culture medium was replaced by 
a serum-free medium. The cells were incubated with 
AdHNF4α containing supernatant at multiplicities of 
infection (MOIs) of 50, 100, 200, 400, and 600 pfu/mL 
for 2 h. The control groups were treated with virus-
free supernatant and supernatant containing AdGFP. 
After the medium was replaced by serum-containing 
medium, the cells were cultured for an additional 72 h 
and collected from both the test and control groups.

To calculate the efficiency of virus transfection, the 
GFP-positive cells in the AdGFP group were visualized 
by microscopy, and fluorescence antibodies were used 
to detect the expression of HNF4α in the AdHNF4α 
and virus-free groups. 4′,6′-Diamidino-2-phenylindole 
(DAPI) was used for nuclear staining. Goat anti-human 
HNF4α antibody (1:200), mouse anti-rat Nanog 
antibody (1:500), FITC-labeled goat anti-mouse IgG 
(1:500), and Cy3-labeled donkey anti-goat IgG (1:500) 

were purchased from Santa Cruz Biotechnology Inc. 
(Santa Cruz, CA, United States). 

Total RNA was isolated with TRIzol reagent. 
HNF4α were quantified by RT-PCR. β-actin was 
used as the control for equal cDNA inputs. Primer 
sequences for HNF4α are as follows: forward primer, 
5′-AAATGTGCAGGTGTTGACCA-3′ and reverse primer, 
5′-CACGCTCCTCCTGAAGAATC-3′. The expression of 
HNF4α at the protein level was quantified by Western 
blot analysis. Whole-cell extracts were isolated by 
incubation with 40 μL cell lysis buffer/well for 10 min. 
The cell lysate was collected and centrifuged, and 
the supernatant was transferred to an Eppendorf 
tube and boiled for 10 min. After measuring the 
protein concentration, 10 μg of the protein was 
separated by electrophoresis on 10% sodium dodecyl 
sulfate-polyacrylamide gel and transferred to a 
polyvinylidene fluoride (PVDF) membrane. Horseradish 
peroxidase (HRP)-labeled donkey anti-goat secondary 
antibodies (1:2000) were purchased from Rockland 
Immunochemicals Inc. (Gilbertsville, PA, United 
States).

HNF4α induces transformation of phenotype during the 
differentiation of rat HSC-T6 cells
To evaluate the effect of HNF4α on directional 
differentiation, immune phenotype, cell function, and 
epithelial-mesenchymal transition (EMT) index after 
transfection, RT-PCR was used to detect expression 
genes, such as stem cell markers, hepatocyte 
differentiation markers, EMT-specific markers, and 
ECM synthesized molecules. The primers used in 
this study are listed in Table 1. Products of RT-PCR 
were identified by electrophoresis on 1.5% gel. The 
gels were scanned by a UV transilluminator. The 
optical densities of the bands were analyzed by Multi-
Analyst software. The expression of G-6-P, PEPCK, 
Collagen Ⅰ, α-SMA, and TIMP-1 were detected by 
Western blotting. Primary antibodies were purchased 
from Santa Cruz Biotechnology Inc. The cells were 
fixed in 4% paraformaldehyde and 1% glutaraldehyde, 
and the EPON 812-embedded ultra-thin sections 
were prepared for observing cell ultrastructure under 
transmission electron microscope.

Interference of HNF4α expression reverses the 
phenotypic differentiation of rat HSC-T6 cells
Based on the HNF4α sequence (GenBank: NM_000457.4), 
a specific 19-bp shRNA (5′-CTGTAGCCACACTTTATGA-3′) 
was designed to bind with exon 3 of HNF4α. The 
shRNA was carried in the pGensil1.1-shHNF4α vector, 
which was transfected into HSC-T6 cells, with Western 
blotting then being used to measure indices that may 
have been altered by HNF4α interference.

Statistical analysis
Results were expressed as mean ± SD. Significance 
was established using analysis of variance by SPSS 
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that HNF4α was only expressed in the nuclei of cells 
in the AdHNF4α group, and not in the AdGFP group 
(Figure 1D). Under electron microscope, HNF4α-
induced cells had more mitochondria and ribosomes 
when compared with the parental cells (Figure 1E).

Identification of stem cell properties in rat HSC cells
In order to measure the stemness of HSCs, the 
expression levels of stem cell-related genes such as 
CD133, CD105, and nestin were measured using RT-
PCR. The results revealed that the three molecules 
were positively expressed (Figure 2A), indicating that 
the rat HSCs were progenitor cells in the liver.

After transfection of adenovirus AdHNF4α, the 
expression of HNF4α and traditional stem cell marker 
Nanog was observed by co-focal immunofluorescent 
staining. With the increased expression of HNF4α, the 
relative expression of Nanog was downregulated from 
98.33 ± 12.33 to 41.33 ± 5.67 (P < 0.001; Figures 2B 
and C). 

HNF4α induced a tendency of cell differentiation of HSC 
cells
To investigate the role of HNF4α in HSC cell 
differentiation, we detected molecular markers related 
to the differentiation of HSCs into hepatocytes by 

11.0 software. Differences were considered significant 
when P value < 0.05 and very significant when P < 
0.01.

RESULTS
HNF4α expression mediated by recombinant adenovirus 
vector in HSC-T6 cells
To optimize the transfection efficiency of recombinant 
adenovirus vector, HSC-T6 cells were transfected with 
the recombinant adenovirus vector AdGFP at MOIs of 
50, 100, 200, 400, and 600 pfu/mL. After 72 h, the 
transfection efficiency was considered proportional 
to the ratio of GFP-positive cells to the total number 
of cells. The transfection efficiencies for the different 
MOIs used were 20%, 42%, 59%, 78%, and 90%, 
respectively (Figure 1A). Based on these results, 600 
pfu/mL was the MOI used for further experiments.

After HSC-T6 cells were transfected with adenovirus 
AdHNF4α, RT-PCR and Western blot analysis were 
used to measure the expression of HNF4α. The results 
revealed that AdHNF4α can mediate highly efficient 
expression of HNF4α in HSC-T6 (Figures 1B and C). 
In order to determine the specificity of the adenovirus 
vector, HSC-T6 cells were transfected with two vectors: 
AdHNF4α and AdGFP. Immunostaining results showed 
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Table 1  Primer sequences used to identify the transformation of the immune phenotype during hepatocyte nuclear factor 
4α-induced differentiation of rat hepatic stellate cells-T6 cells

Classification Molecules Sequence (Primer sequences)

Stem cell-related CD133 F: 5′-TTAATGCAGCACCAGGTACATC-3′
R: 5′-TCGTTGAGCAGGTAGGGAGTAT-3′

CD105 F: 5′-ATCCCTCTGACCAGTGATGTCT-3′
R: 5′-CTTTTTCCGAAGTGGTGGTAAG-3′

Nestin F: 5′-GAGTGTCGCTTAGAGGTGCAA-3′
R: 5′-TGTCACAGGAGTCTCAAGGGTA-3′

Hepatocyte ALB F: 5′-TGCAGGCTTGCTGTGATAAG-3′
differentiation-related R: 5′-AGTAATCGGGGTGCCTTCTT-3′

AFP F: 5′-TACGTCCCTCCACCATTCTC-3′
R: 5′-ATCCTGGTCTTTGCAGCACT-3′

G-6-P F: 5′-AAGAGGGCATAGCCCAGACT-3′
R: 5′-TTGGAAGCTTCGTTGGTCTT-3′

PEPCK F: 5′-CAGGTTCCCAAAGGTCTGAA-3′
R: 5′-TTCACTAGGGCCTGCTTGAT-3′

Fibroblast cell-related Collagen Ⅰ F: 5′-CCGTGACCTCAAGATGTGCC-3′
R: 5′-GCTCATACCTTCGCTTCCAA-3′

α-SMA F: 5′-CCGAGATCTCACCGACTACC-3′
R: 5′-TCCAGAGCGACATAGCACAG-3′

TIMP-1 F: 5′-TCCCCAGAAATCATCGAGAC-3′
R: 5′-TCAGATTATGCCAGGGAACC-3′

EMT index Snail F: 5′-GAGGACAGTGGCAAAAGCTC-3′
R: 5′-TCGGATGTGCATCTTCAGAG-3′

Vimentin F: 5′-AGATCGATGTGGACGTTTCC-3′
R: 5′-CACCTGTCTCCGGTATTCGT-3′

E-cadherin F: 5′-GGGTTGTCTCAGCCAATGTT-3′
R: 5′-CACCAACACACCCAGCATAG-3′

Target HNF4α F: 5′-AAATGTGCAGGTGTTGACCA-3′
R: 5′-CACGCTCCTCCTGAAGAATC-3′

Control β-actin F: 5′-ACCCACACTGTGCCCATCTATG-3′
R: 5′-AGAGTACTTGCGCTCAGGAGGA-3′

F and R stand for forward and reverse primers, respectively. HNF4α: Hepatocyte nuclear factor 4α.
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A MOI = 50                             MOI = 100                            MOI = 200                             MOI = 400                            MOI = 600

HNF4α

β-actin

Figure 1  Ad-hepatocyte nuclear factor 4α-mediated hepatocyte nuclear factor 4α expression in rat hepatic stellate cells-T6 cells. A: AdGFP was transfected 
to HSC-T6 at multiplicities of infection (MOIs) of 50, 100, 200, 400, and 600 pfu/mL. After 72 h, the GFP-positive cells were counted under a microscope. The 
transfection efficiency was proportional to the MOIs; original magnification × 200 ×; B-D: 72 h after transfection of AdHNF4α, HNF4α expression in HSC-T6 cells was 
detected by RT-PCR (B), Western blotting (C), and immunofluorescence (D); original magnification × 100; The cells were harvested and fixed in 4% paraformaldehyde 
and 1% glutaraldehyde, and the EPON 812-embedded ultra-thin sections were observed under transmission electron microscope (E). HNF4α: Hepatocyte nuclear 
factor 4α; HSCs: Hepatic stellate cells.
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RT-PCR and Western blot analysis. These molecules 
included the functional genes involved in the 
differentiation of HSCs to hepatocytes and fibroblasts. 
The functional genes of hepatocytes (G-P-6 and 
PEPCK) were expressed at much higher levels in 

the AdHNF4α group than in the control group. The 
expression of AFP and ALB was detected in the 
AdHNF4α group (Figures 3A and B). Furthermore, the 
expression levels of Collagen Ⅰ, α-SMA, and TIMP-1 
were significantly decreased in the AdHNF4α group 
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Figure 2  Identification of the stemness of rat hepatic stellate cells. A: The expression of all the stem cell markers (CD133, CD105, and nestin) was positive in 
HSC-T6 cells; B: After transfection of adenovirus AdHNF4α, the expression of HNF4α and Nanog was observed by co-focal immunofluorescent staining; original 
magnification × 400; C: The relative expression levels of HNF4α and Nanog were calculated by image density analysis with the Image-Pro Plus V6.0 (Media 
Cybernetics, Inc., Rockville, MD, United States) normalized with DAPI staining. HNF4α: Hepatocyte nuclear factor 4α; HSCs: Hepatic stellate cells.

120

100

80

60

40

20

0

Re
la

tiv
e 

ex
pr

es
si

on
 (

no
rm

al
iz

ed
 w

ith
 D

AP
I)

HNF4α                                   Nanog

HSC-T6/parental

HSC-T6/AdHNF4αP  < 0.001

P  < 0.001
Expression levels

Liu K et al . HNF4α in hepatic stellate cells



5862 May 21, 2015|Volume 21|Issue 19|WJG|www.wjgnet.com

A
H

SC
-T

6/
pa

re
nt

al

H
SC

-T
6/

Ad
G

FP

H
SC

-T
6/

Ad
H

N
F4
α

H
SC

-T
6/

pa
re

nt
al

H
SC

-T
6/

Ad
G

FP

H
SC

-T
6/

Ad
H

N
F4
α

H
SC

-T
6/

pa
re

nt
al

H
SC

-T
6/

Ad
G

FP

H
SC

-T
6/

Ad
H

N
F4
α

H
SC

-T
6/

pa
re

nt
al

H
SC

-T
6/

Ad
G

FP

H
SC

-T
6/

Ad
H

N
F4
α

AFP                                     ALB                                  G-6-P                               PEPCK

B

H
SC

-T
6/

pa
re

nt
al

H
SC

-T
6/

Ad
G

FP

H
SC

-T
6/

Ad
H

N
F4
α

PEPCK

G-6-P

HNF4α

β-actin

80

70

60

50

40

30

20

10

0

Re
la

tiv
e 

ex
pr

es
si

on
 (

no
rm

al
iz

ed
 w

ith
 le

ve
ls

 o
f 
β-

ac
tin

)

HSC-T6/parental
HSC-T6/AdGFP
HSC-T6/AdHNF4α

PEPCK                    G-6-P

C

H
SC

-T
6/

pa
re

nt
al

H
SC

-T
6/

Ad
G

FP

H
SC

-T
6/

Ad
H

N
F4
α

H
SC

-T
6/

pa
re

nt
al

H
SC

-T
6/

Ad
G

FP

H
SC

-T
6/

Ad
H

N
F4
α

H
SC

-T
6/

pa
re

nt
al

H
SC

-T
6/

Ad
G

FP

H
SC

-T
6/

Ad
H

N
F4
α

H
SC

-T
6/

pa
re

nt
al

H
SC

-T
6/

Ad
G

FP

H
SC

-T
6/

Ad
H

N
F4
α

H
SC

-T
6/

pa
re

nt
al

H
SC

-T
6/

Ad
G

FP

H
SC

-T
6/

Ad
H

N
F4
α

 HNF4α                               Collagen Ⅰ                                α-SMA                                    TIMP-1                                  β-actin

Figure 3  Identification of hepatic stellate cells differentiation mediated by hepatocyte nuclear factor 4α expression. By reverse transcription-polymerase 
chain reaction and Western blotting, the expression of differentiation functional genes of hepatocytes (A and B) and genes related to fibroblast cells (C) was detected 
in the AdHNF4α- and AdGFP-infected groups. The relative expression levels of the indicated factors were calculated by image density analysis normalized with β-actin. 
aP < 0.05, bP < 0.01, HSC-T6/parental vs HSC-T6/AdHNF4α. HNF4α: Hepatocyte nuclear factor 4α; HSCs: Hepatic stellate cells.
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compared with the control group (Figure 3C).

HNF4α-mediated changes in the EMT phenotypic 
markers in HSC cells
To investigate the phenotypic character of HSCs after 
HNF4α transfection, we tested the EMT indicators by 
RT-PCR. As compared with the AdGFP control group, 
HNF4α obviously downregulated the expression of 
the mesenchymal phenotypic gene vimentin and 
significantly enhanced the expression of the epithelial 
phenotypic gene E-cadherin (Figure 4). 

HNF4α interference affects phenotypic differentiation of 
HSCs
To investigate the biological characteristics of HSCs in 
HNF4α knockdown, the pGensil1.1-shHNF4α vector 
was transfected into HNF4α-positive HSC-T6 cells. 
Western blotting analysis revealed that silencing of 
HNF4α expression resulted in obvious changes to 
many genes. With the decrease of HNF4α expression, 
AFP, ALB, PEPCK, and E-cadherin were downregulated, 
while α-SMA and vimentin were upregulated (Figure 5).

DISCUSSION
HSCs play an important role in the regulation of liver 
injury repair and in the development of liver fibrosis. 
Despite intensive research into the biological and 

pathophysiological role of HSCs in fibrogenesis, the 
states of HSCs in the different stages of fibrogenesis 
are still a matter of debate. In the quiescent state, 
HSCs exhibit properties of stem cells in the liver. 
Following liver injury, HSCs become activated. Their 
potential to differentiate into epithelial or hepatocyte 
lineages demonstrates their important functions during 
liver regeneration. HSC activation may be stimulated 
by most causes of liver injury, with injured hepatocytes 
and activated Kupffer cells being considered as the 
leading cause of HSC activation. Injured hepatocytes 
release a wide array of soluble mediators, including 
lipid peroxide, hepatotoxin, and reactive oxygen 
species (ROS). These mediators can strongly activate 
HSCs and stimulate the potential of these cells in 
fibrogenesis[20]. Meanwhile, the homeostatic states 
between the activation and quiescence of HSCs can be 
regulated by HNF4α.

HNF4α is a nuclear transcription factor that 
binds to DNA as a homodimer. It can activate the 
expression of target genes by adjusting the structure 
of chromosomes and depolymerizing them. The 
results of chromatin immunoprecipitation (ChIP) 
showed that HNF4α could combine with the promoter 
regions of up to 12% of intracellular genes, 80% of 
which are combined with RNA polymerase Ⅱ. Thus, 
we can infer that HNF4α controls a large proportion of 
active transcriptional genes in the liver[21,22]. The gain 
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or loss of HNF4α function can lead to the inhibition of 
many genes at different stages of liver development. 
By comparing the different gene expression profiles 
between HNF4α-knocked out mice and normal mice 
with a gene chip array, it was found that silencing 
HNF4α expression results in a decrease of liver 
function. Possible mechanisms for this may be through 
causing liver developmental disorders by destroying 
cellular close connections, adhesion connections, 
and gap junctions, as well as affecting the adhesion 
molecules between desmosomes and the cell matrix 
and affecting the polarity of epithelial cells and 
cytoskeleton proteins[23]. Additionally, loss of HNF4α 
function can result in cell phenotypic abnormalities, 
thereby affecting liver cell phenotypes and important 
liver functions such as liver cell metabolism, albumin 
synthesis, and drug detoxification[22-24]. Inducible 
expression of HNF4α by oncostatin M (OSM) can 

promote differentiation of hepatocytes and enhance 
the functions of hepatocytes[25]. Moreover, upregulated 
HNF4α can induce hepatoma stem cells to differentiate 
into mature hepatocytes, inhibit the proliferation 
of cancer cells, and reverse the differentiation of 
cancer cells into a differentiated state. These results 
demonstrate that upregulation of HNF4α is a promising 
candidate for the treatment of liver cancer[26]. 

In the mature liver, HNF4α expression is induced 
when oval cells differentiate into hepatocytes, 
suggesting its pivotal role in the differentiation and 
proliferation of hepatocytes from oval cells. However, 
very few studies have investigated the regulation and 
function of HNF4α in HSCs. Previous studies have 
shown that the expression of HNF4α is significantly 
decreased in liver injury and chronic liver diseases of 
different causes (e.g., viral hepatitis)[27]. Decreased 
HNF4α expression can induce EMT in hepatocytes 
and HSCs[28,29]. EMT is a phenotypic change of 
epithelial cells induced by various cytokines, such as 
transforming growth factor TGF-β, following which the 
epithelial cells exhibit properties of mesenchymal cells. 
Following EMT, HSCs proliferate rapidly, transform 
to myofibroblast cells, generate ECM, eliminate 
lipid droplets, and positively induce the expression 
of α-SMA and Snail[18]. When HNF4α is rescued by 
exogenous gene transduction, EMT can be reversed 
to mesenchymal-epithelial transition (MET)[14,30,31]. 
This observation tells us that HNF4α is an important 
regulator for maintaining the epithelial phenotype 
of HSCs. HNF4α not only inhibits the mesenchymal 
phenotype of HSCs, but also promotes the differen-
tiation of liver stem cells and the regeneration of 
hepatocytes[15]. Because of the importance of HSCs 
in liver fibrosis, understanding the function of HNF4α 
in regulating HSCs to participate in liver fibrosis will 
provide a new approach to studying the pathogenesis 
and prevention of liver fibrosis.

In this study, we sorted and cultured the HSC-T6 
cell line. In a quiescent state, the HSCs showed stem 
cell characteristics, as evidenced by the expression 
of stem cell markers (CD133, Nanog, nestin, and 
CD105). To investigate the regulatory role of HNF4α 
in hepatocyte differentiation, we transfected HNF4α 
gene in HSCs and upregulated its expression. After 
transfection with AdHNF4α, the expression levels of 
HNF4α and E-cadherin was increased while vimentin 
expression levels decreased. Moreover, the HNF4α-
induced HSC-T6 cells showed morphological changes 
that led to more mitochondria and ribosomes. 
These results suggested that HNF4α is an important 
transcriptional factor in maintaining the epithelial 
phenotype and facilitating the EMT of HSCs. In 
addition, HNF4α obviously upregulated the expression 
of genes related to hepatocyte function, such as 
ALB, AFP, G-6-P, and PEPCK, illustrating that HNF4α 
can induce a tendency of differentiation of HSCs to 
hepatocyte-like cells. Meanwhile, the transduction 
of HNF4α downregulated the expression of α-SMA, 
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type Ⅰ collagen, and TIMP-1, demonstrating that 
HNF4α inhibits the differentiation of HSCs to fibroblast 
cells.

In conclusion, HSCs have a high capacity of 
proliferation and a low level of differentiation. HNF4α 
can induce the expression of important epithelial 
cell genes in HSCs, promote HSC differentiation to 
hepatocyte-like cells, and inhibit HSC differentiation to 
the mesenchymal phenotype. All these observations 
suggest that HNF4α can induce a tendency of 
differentiation of HSCs into hepatocyte-like cells. The 
findings of this research may provide an effective 
method for treating liver diseases.
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