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Abstract
The aim of this review is to explore the role of mito-
chondria in regulating macrophage sterol homeostasis 
and inflammatory responses within the aetiology of 
atherosclerosis. Macrophage generation of oxysterol 
activators of liver X receptors (LXRs), via  sterol 27- 
hydroxylase, is regulated by the rate of flux of cholesterol 

to the inner mitochondrial membrane, via  a complex of 
cholesterol trafficking proteins. Oxysterols are key signalling 
molecules, regulating the transcriptional activity of LXRs 
which coordinate macrophage sterol metabolism and 
cytokine production, key features influencing the impact 
of these cells within atherosclerotic lesions. The precise 
identity of the complex of proteins mediating mitochondrial 
cholesterol trafficking in macrophages remains a matter 
of debate, but may include steroidogenic acute regulatory 
protein and translocator protein. There is clear evidence 
that targeting either of these proteins enhances removal of 
cholesterol via  LXRα-dependent induction of ATP binding 
cassette transporters (ABCA1, ABCG1) and limits the 
production of inflammatory cytokines; interventions which 
influence mitochondrial structure and bioenergetics also 
impact on removal of cholesterol from macrophages. Thus, 
molecules which can sustain or improve mitochondrial 
structure, the function of the electron transport chain, or 
increase the activity of components of the protein complex 
involved in cholesterol transfer, may therefore have utility 
in limiting or regressing atheroma development, reducing 
the incidence of coronary heart disease and myocardial 
infarction. 
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Core tip: Mitochondrial cholesterol trafficking to CYP27A1 
located on the inner mitochondrial membrane regulates 
the formation of oxysterol ligands for liver X receptors 
(LXRs) in sterol-laden macrophage “foam” cells. In turn, 
ligation of LXRα has profound implications for sterol 
removal and inflammatory responses in macrophage 
“foam” cells, both factors which may contribute to 
the effective resolution of atherosclerotic lesions and 
reductions in the incidence of coronary heart disease and 
its sequelae. 
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INTRODUCTION
Coronary heart disease (CHD) is the major cause of 
morbidity and mortality worldwide, and the single 
largest cause of disease burden, determined according 
to disability-adjusted life years, the sum of life lost and 
years lived with disability[1,2]. Genetic factors contribute 
to coronary heart disease, fuelled by behavioural 
(smoking, physical inactivity, unhealthy diet, excess 
alcohol intake), metabolic (hypertension, diabetes, 
elevated serum cholesterol, overweight and obesity) 
and environmental (poverty, stress, educational status) 
factors[1-3]. 

Atherosclerosis is the primary cause of coronary 
heart disease characterised by chronic and unresolved 
inflammatory responses at sites of perturbed laminar 
blood flow in large and medium-sized arteries[4-6]. 
Activation of the arterial endothelial layer allows the 
accumulation of low density lipoprotein (LDL) within 
the intima of the vessel, where it can become modified 
via oxidation or crosslinking, triggering the recruitment 
of monocytes, neutrophils, lymphocytes and circulating 
stem cells to sites of inflammation[4-6]. Within this 
complex microenvironment, monocytes differentiate 
into macrophages which lie within a broad phenotypic 
spectrum, ranging from pro- (M1) to anti-inflammatory 
(M2)[6]. 

Arterial macrophages become laden with excess 
cholesterol and cholesteryl esters, part via the unregulated 
uptake of modified LDL by scavenger receptors (e.g., 
CD36, CD68, LOX-1 and SR-AI/AII), and by phagocytosis 
of apoptotic cells, resulting in formation of “foam cells”, 
a hallmark of early “fatty streak”, developing, and 
unstable atherosclerotic lesions[7-10]. During the early 
phase of lesion development, this process may represent 
a protective mechanism; however, in more advanced 
lesions, cholesterol-laden macrophages, by releasing 
inflammatory cytokines and matrix metalloproteinases, 
contribute to chronic unresolved inflammation[10], 
accelerating the disease process and acute thrombotic 
events such as cerebrovascular stroke or myocardial 
infarction. 

Thus, removal of cholesterol from macrophage 
“foam cells” may achieve successful regression and 
stabilisation of atheroma, and the importance of this 
pathway in protecting against CHD is supported by 
epidemiological studies in humans, and in genetically 
modified mice in which components of this pathway 
have been overexpressed or deleted. For example, 
HDL-cholesterol (HDL-C) emerged as an independent 
risk factor for cardiovascular disease in the Framingham 

Heart Study, offering a risk reduction of 2%-3% for 
each 1 mg/dL increase in HDL-C concentration[11,12]. 
HDL particles also possess antioxidant, anti-thrombotic 
and pro-fibrinolytic properties, and can counteract 
the chronic inflammation[13-16], proliferation of haem-
atopoietic stem cells[17] and leucocytosis[10,18] which 
promote atherosclerosis. However, increasing the level 
of HDL-C, with niacin[19,20], fibrates[20] or dolcetrapib 
(dal-OUTCOMES Ⅲ trial)[20,21], does not necessarily 
confer protection against CHD[19-21] and in patients with 
systemic inflammation, coronary heart disease, chronic 
renal disease or diabetes, the protective properties of 
HDL are lost, and the particles transformed into those 
with pro-atherogenic potential[22-24]. Thus, it is not just 
the level, but the quality, composition (including levels 
of cargo molecules such as sphingosine-1-phosphate)[25] 
and function of HDL particles that are important. 

Some, but not all, of the beneficial effects associated 
with HDL are mediated via the interaction of ATP 
binding cassette (ABC) transporters, such as ABCA1, 
ABCG1 and ABCG4, with apolipoproteins and HDL 
(Figure 1). While ABCA1 promotes efflux of cholesterol 
and phospholipids to lipid-poor apolipoproteins, such as 
apoA-I and apoE[13], ABCG1 and ABCG4 promote efflux 
of cholesterol, oxysterols and desmosterol to HDL[26]. 
Thus, these transporters together in a sequential manner 
to generate nascent HDL, which can then mature to 
HDL3 and HDL2 within the reverse cholesterol transport 
pathway in the bloodstream[25]. 

Both rare and common genetic variations in ABCA1 
influence the levels of HDL-C[26] and risk of ischaemic 
heart disease (IHD). However, the association between 
ABCA1 variants and coronary disease seem to be 
independent of the plasma level of HDL-C[27]. Instead, 
cholesterol efflux from macrophages is strongly linked to 
atherosclerosis and provides a novel way of assessing 
cardiovascular risk that provides a greater level of 
prediction than HDL-C[28]. Thus the expression and 
activity of the ABCA1 protein, and the quality and 
functionality of the nascent HDL generated, may prove 
valuable discriminants of the risk of cardiovascular 
disease[29]. 

Importantly, macrophage ABCA1 expression and 
cholesterol accumulation are intrinsically linked to the 
inflammatory status of these cells. Excess cholesterol 
proves cytotoxic and pro-inflammatory if recycling via 
ABCA1 is disrupted in macrophages[30-33]. Enhanced 
Toll-like receptor signalling is noted in ABCA1/ABCG1 
null macrophages, resulting in increased expression 
of pro-inflammatory genes, and free cholesterol 
accumulation[34], while activation of Toll-like receptors 
3 and 4 represses induction of ABCA1 and reduces 
macrophage cholesterol efflux[35]. Conversely, interleukin-6 
(IL-6) attenuates pro-inflammatory responses and 
stimulates efflux of cholesterol via ABCA1 in human 
macrophages[36]. In good agreement with this integrated 
paradigm, macrophage ABCA1 limits inflammatory 
responses via ApoA-I dependent activation of the 
Jak2/Stat3 pathway[37,38], while macrophage sterol 
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accumulation activates Liver X Receptor nuclear (LXR) 
transcription factors, achieving induction of ABCA1 and 
ABCG1 and repression of inflammation (below)[39,40].

MACROPHAGE LIPID METABOLISM AND 
INFLAMMATION ARE REGULATED BY 
LIVER X RECEPTORS
Activation of nuclear LXRs (LXRα/b) is marshals cellular 
responses to increasing levels of sterol, promoting 
cholesterol efflux (above)[39-43]. Liver X receptors form 
heterodimeric complexes with retinoic acid receptors 
(RXRs), and bind to imperfect direct repeats of the nuclear 
receptor half-site TGACCT[39-43]. Ligand binding dissociates 
co-repressor proteins, destined for ubiquitination and 
proteasomal degradation, and engages co-activator 
proteins such as histone demethylases and G-protein 
pathway suppressor-2 (GPS2), stimulating target gene 
transcription[44]. 

Activation of LXRα also represses cholesterol 
biosynthesis via novel negative LXR DNA-response 
elements within the promoter region of squalene synthase 
and lanosterol 14α-demethylase and suppresses uptake 

of LDL[45,46]. Oxysterols also bind to Insig-1/2, facilitating 
sequestration of sterol-regulatory element binding 
proteins (SREBPs) at the endoplasmic reticulum, ensuring 
repression of cholesterol biosynthesis and uptake[45]. 
Deletions of LXRα and LXRb in murine models of atheroma 
cause lipid accumulation within the aortic root, even in the 
absence of an atherogenic diet[47,48]. 

It is also evident that LXRs modulate innate and 
adaptive immune responses mediated by macrophages, 
neutrophils, lymphocytes, neutrophils and dendritic 
cells[45], decreasing cytokine-mediated expression of a 
range of pro-inflammatory genes. This is achieved via 
a mechanism involving nuclear receptor co-repressor 
(NCoR), silencing mediator of retinoid and thyroid 
receptors (SMRT) and inhibition of nuclear factor 
kappa B (NFκB) signalling[45,48,49]. Activation of LXRs 
is also achieved by phagocytosis of apoptotic cells 
by macrophages increasing expression of receptor 
tyrosine kinase (Mertk), amplifying phagocytosis and 
cell clearance, and reducing production of inflammatory 
mediators[50]. Absence of LXR signalling enhances the 
apoptosis of macrophages challenged with Listeria 
monocytogenes, Escherichia coli or Salmonella 
typhinurium, via loss of the anti-apoptotic factor AIM/
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Figure 1  The role of mitochondrial cholesterol trafficking in regulation of macrophage sterol metabolism. Increased expression of steroidogenic acute 
regulatory protein (StAR, STARD1) or 18 kDa translocator protein (TSPO) drive cholesterol trafficking to mitochondrial sterol 27-hydroxylase (CYP27A1), enhancing 
endogenous production of oxysterols (24-, 25- and 27-hydroxycholesterol), in turn activating liver X receptors (LXR) and enhancing cholesterol efflux to apolipoprotein 
A-I (Apo AI) via ATP binding cassette transporter A1 (ABCA1). One current model for cholesterol transfer from the outer (OMM) to inner (IMM) mitochondrial 
membrane, derived from studies in steroidogenic cells, involves a complex of proteins, including StAR, TSPO, voltage-dependent anion channel (VDAC), regulatory 
subunits of protein kinase A (PKA-R1α), acyl CoA binding domains-1 and -3, ATPase family AAA domain-containing protein 3A (ASTAD3A) and optic atrophy type 1 
proteins. Exogenous cholesterol delivered to the endocytic pathway via lipoprotein or scavenger receptors is transported either to the plasma membrane, enhancing 
cholesterol efflux via ABCA1, to lipid poor acceptors such as Apo AI or Apo E, or delivered to the endoplasmic reticulum (ER), retaining the Sterol Regulatory Element 
Binding Protein (SREBP)/SREBP-cleavage activating protein (SCAP) complex, in turn reducing cholesterol biosynthesis. Oxysterols enhance this process by binding 
to Insig-1/2 (insulin-induced gene-1 or -2). Excess cholesterol is esterified via Acyl CoA: Cholesterol Acyltransferase-1 (ACAT-1), and stored in lipid droplets within the 
cytoplasm as “foamy” droplets. nCEH: Neutral cholesteryl ester hydrolase; FC: Free cholesterol; CE: Cholesteryl ester: NPC-1/NPC-2: Niemann-Pick C1/C2 protein; 
StAR: Steroidogenic acute regulatory protein: RXR: Retinoic acid receptor. 
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and ER stress[69], although the role of endogenously 
generated oxysterols in these processes remains unknown 
at present. Certainly, chronic exposure to exogenous 
oxysterol congeners can activate calcium release from the 
ER, increasing dephosphorylation of Bcl-2 antagonist of cell 
death by the calcium-dependent phosphatase calcineurin, 
and promoting apoptosis[68].

TARGETING PROTEIN CONSTITUENTS 
OF THE MITOCHONDRIAL CHOLESTEROL 
TRAFFICKING COMPLEX: IMPACT ON 
MACROPHAGE STEROL METABOLISM 
AND INFLAMMATION
Despite intensive investigations in steroidogenic cells 
and tissues, the nature of the mitochondrial cholesterol 
trafficking complex remains a matter of debate. One 
recent model suggests a basal complex, forming contact 
sites between the outer and inner mitochondrial mem-
branes, composed of the 18 kDa translocator protein 
(TSPO), adenine nucleotide transporter (ANT) and voltage-
dependent anion channel (VDAC)[70-72]. In hormone-
stimulated steroidogenic tissues, a “transduceosome” 
complex is formed, involving recruitment of the regulatory 
subunits of protein kinase A (PKA-R1α) and acyl CoA 
binding domain proteins-1 and -3. Elevated levels of 
cyclic adenosine monophosphate (cAMP) release PKA 
catalytic subunits to phosphorylate 37 kDa steroidogenic 
acute regulatory protein at the outer mitochondrial 
membrane; import of both StAR and cholesterol into 
the inner mitochondrial membrane and matrix facilitate 
both proteolytic processing of StAR to its 30 kDa form, 
and conversion of cholesterol into pregnenolone by 
CYP11A1[70-72]. However, a dynamic 800 kDa bioactive 
protein complex in steroidogenic cells has also been 
described, which does not involve ANT, but is composed 
of TSPO, VDAC, CYP11A1, ATPase family AAA domain-
containing protein 3A (ASTAD3A) and optic atrophy 
type 1 proteins[73]; in this model, StAR facilitated binding 
of cholesterol to the 800 kDa complex, enhancing 
steroidogenesis. 

Importantly, there is a growing realisation that key 
mitochondrial cholesterol trafficking proteins, such 
as StAR, play an important role in non-steroidogenic 
tissues[74]. This, combined with conflicting results 
regarding the impact of genetic deletion of TSPO on 
steroidogenesis and viability in mice[75-78], may lead 
to increased consideration of alternate functions for 
these proteins[74]. For example, StAR is expressed in 
endothelial cells, monocytes and macrophages[79-82], 
albeit at levels far lower than those found in adrenal or 
gonadal tissues[74]. By contrast, other components of 
the mitochondrial trafficking complex, such as TSPO, 
are widely expressed in a variety of tissues, including 
macrophages[78,81].

Importantly, both StAR and TSPO appear to impact 
on macrophage lipid and inflammatory phenotype, in 

Spα[51,52]. 

MACROPHAGE GENERATION OF 
OXYSTEROL LIGANDS FOR LIVER X 
RECEPTORS
High levels of mitochondrial sterol 27-hydroxylase 
(CYP27A1) are found in human macrophages, and this 
enzyme can produce modified sterols, proven to act as 
LXR ligands in vitro and in vivo[53-56]. Loss of CYP27A1 
leads to the lipid storage disease, cerebrotendinous 
xanthomatosis (CTX), which triggers accumulation 
of cholesterol and cholestanol in brain and tendons, 
progressive neurological deterioration, xanthomas 
and, as a secondary complication, accelerated ather-
osclerosis[57,58]. 

The rate-limiting step controlling CYP27A1 activity 
is the flux of cholesterol from the outer to the inner 
mitochondrial membrane, via a mitochondrial cholesterol 
trafficking complex (discussed below)[59]. Mitochondrial 
oxysterols therefore act as key cell signalling molecules, 
the levels of which can be moderated by sulfation 
(SULT2B1b), esterification (ACAT-1) or metabolism to 
soluble bile acid derivatives[53]. Conceivably, this process 
could be “uncoupled” by accumulation of free cholesterol 
at the interface between endoplasmic reticulum (ER) 
and mitochondrial membranes, triggering ER stress 
and proteasomal degradation of ABCA1, and opening 
of the permeability transition pore in mitochondria[53]. 
Esterification of excess oxysterols may then result: 
over 85% of the 27-hydroxycholesterol in human ather-
osclerotic lesions is esterified and incapable of activating 
LXRα and its downstream pathways[60,61]. Loss of this 
protective pathway predicates mitochondrial damage, 
apoptosis and cytotoxicity, features associated with 
addition of exogenous atheroma-relevant oxysterols (≥ 
20 μmol/L) to cultured cells[62]. 

Thus, it is clear that the biological impact of oxysterols 
are not solely restricted to LXR activation[63-67]. For 
example, oxysterols also serve as endogenous ligands 
for G-protein coupled receptor 183 (Epstein-Barr virus-
induced gene 2, EBI2)[63], function as selective estrogen 
receptor modulators[64], bind to the Smoothened molecule 
to modulate Hedgehog signalling[65], while CYP27A1-
derived 7α and 7b, 27-hydroxycholesterol modify innate 
and adaptive immune responses by acting as agonists 
of retinoic acid-related (RAR) orphan receptor gamma t 
(ROPRγτ)[66]. 

Acute exposure of macrophages to exogenous oxysterols 
induce rapid (< second) oscillations in cytoplasmic [Ca2+] 
triggered by influx from the extracellular medium, followed 
by sustained increases in [Ca2+] mediated by translocation 
of TRPC1 (transient receptor potential, canonical) channels 
into lipid rafts in the plasma membrane[68]. Calcium 
transfer between ER and mitochondria is facilitated by 
mitochondria-associated membranes, which act as a hub 
for lipid transfer, regulation of mitochondrial morphology 
(fission, fusion and trafficking), apoptosis, autophagy 

280

Graham A et al . Mitochondrial regulation of macrophage sterol metabolism



May 26, 2015|Volume 7|Issue 5|WJC|www.wjgnet.com

posited as a novel target for Alzheimer’s disease[95], 
anxiety, psychiatric and neurologic disorders[96-99], 
pain[100], cancer[101] and vascular dysfunction[88-90,102]. At 
present, it is not known how many of these effects are 
related to the cholesterol trafficking function of TSPO, 
although LXRs influence expression of an array of genes 
involved in cholesterol homeostasis, glucose metabolism, 
inflammation and Alzheimer’s disease[103]. It is also clear 
that some of the reported effects of TSPO and its ligands 
may require re-evaluation, given the lack of phenotype 
recently reported in healthy TSPO -/- mice[75,76]. 

MITOCHONDRIAL STRUCTURE 
AND BIOENERGETICS: IMPACT ON 
CHOLESTEROL HOMEOSTASIS
Mitochondria exhibit constant movement, fusion and 
fission[104]. The mitochondrial membrane protein 
mitofusin (Mfn2) is involved in maintaining mitochondrial 
morphology, energy provision, and cellular growth 
and apoptosis[105-107]. Recently, Mfn2 has emerged 
as a regulator of macrophage cholesterol efflux, via 
upregulation of peroxisome proliferator activated receptor-γ 
(PPARγ) ABCA1, ABCG1 and scavenger receptor-B1 
(SR-B1), reflected in marked reductions in cholesterol 
mass[107]. Overexpression of Mfn2 attenuates the formation 
of atherosclerotic lesions in rabbit carotid arteries, and 
levels of Mfn2 are progressively reduced during lesion 
formation in apoE-/- mice during atherogenesis; levels of 
Mfn2 are also reduced in atherosclerotic, compared with 
non-atherosclerotic, human arteries[107]. 

Remodelling of the inner mitochondrial membrane 
by optic atrophy 1 (OPA1) also alters the efficiency 
of mitochondrial cholesterol trafficking, at least in 
steroidogenic cells[108,109]. Increased steroidogenesis is 
reported in trophoblasts undergoing syncytilisation, which 
express increased levels of the pro-fission mitochondrial 
shaping protein Drp1 increased, and decreased levels 
of Opa1 and mitofusin. An inverse relationship between 
levels of Opa1 and steroidogenesis were also evidenced 
in cells genetically manipulated to express higher levels 
of Opa1, while accumulation of cholesterol at the inner 
mitochondrial membrane was observed in mitochondria 
lacking Opa1[108,109]. 

Finally, it is self-evident that ATP is needed to mount 
an effective non-adaptive immune response, and to 
fuel cholesterol biosynthesis and the activity of ABC 
transporters that determine the rate of macrophage 
cholesterol efflux. However, more subtle changes in 
mitochondrial function or loss of bioenergetic capacity, 
the emerging concept of the Bioenergetic Health Index 
(BHI)[110], have been shown to reduce the efficiency 
of mitochondrial cholesterol trafficking and hormone 
biosynthesis in steroidogenic tissues[111,112]. Dissipation 
of the mitochondrial membrane potential (∆ψm 
using carbonyl cyanide m-chlorophenylhydrazone), 
inhibition of electron transport at complex Ⅲ (using 
antimycin), reduction of pH (nigericin) and inhibition 

part via the pathway involving sterol 27-hydroxylase, 
activation of LXRα and upregulation of ABCA1/ABCG1 
mRNA and protein[81-83], arguing a functional role for these 
proteins in mediating cholesterol supply to CYP27A1. 
Overexpression of StAR decreased macrophage lipid 
content[82,83], repressed inflammation[82] and apoptosis[84] 
and increased macrophage cholesterol efflux[82,83], while 
a viral vector expressing StAR reduced aortic lipids 
and atheroma in apoE-/- mice[85]. However, exploiting 
any putative anti-atherogenic properties of StAR could 
prove problematic, due to the associated induction of 
lipogenesis in macrophages[83,86], presumably via LXRα 
dependent induction of Srebp1c[87]. 

This led to focus on other components of the mito-
chondrial cholesterol trafficking complex and, in particular, 
TSPO[81]. Transient overexpression of TSPO in human 
(THP-1) macrophages increased the levels of ABCA1 
mRNA and protein, and enhanced efflux of cholesterol 
to apoA-I, HDL and human serum, a finding reversed 
by gene knockdown of TSPO. Small molecule TSPO 
ligands also increased cholesterol efflux, an effect that 
was amplified in macrophages genetically engineered 
to overexpress TSPO[81]. Notably, TSPO overexpression 
caused a decline in macrophage total neutral lipid mass, 
without induction of lipogenesis, and effectively prevented 
“foam cell” formation following exposure to modified 
LDL[81]. These effects were associated with induction of 
both LXRα and PPARα the latter providing a plausible 
mechanism for the observed reductions in macrophage 
lipid mass[81]. Notably, overexpression of some of 
the other proposed components of the mitochondrial 
cholesterol trafficking complex, such as VDAC, ANT and 
ACBD1, discussed above, exerted minimal effects on the 
macrophage cholesterol efflux pathway[81]. 

Expression of TSPO is upregulated by exposure to 
modified LDL in human macrophages[81], and TSPO 
ligands have been used to image vascular inflammation 
in CD68 positive macrophages at sites of disturbed flow 
in murine carotid arteries[88], and macrophage burden[89] 

and intraplaque inflammation[90] within human carotid 
atherosclerotic lesions. Despite this evident association 
with inflammation, it appears that upregulation of 
TSPO, or signalling via this protein, may represent an 
adaptive mechanism designed to limit tissue damage. 
Overexpression of TSPO in microglia decreased production 
of pro-inflammatory cytokines, reflected in increased 
expression of alternately activated M2 stage-related 
genes and mediated via repression of NF-κB activation[91]. 
Similarly, TSPO ligands inhibited the proliferation of retinal 
microglial cells, and repressed the output of reactive 
oxygen species and TNFα[92]. In good agreement, levels 
of TSPO are higher in dystrophic murine retina, and in 
microglia treated with LPS, while TSPO ligand XBD173 
repressed the expression of chemokine (C-C motif) ligand 
2 (CCL2), IL-6 and iNOS[93]. The TSPO ligand, PK11195 
has proved effective in ameliorating the severity of disease 
in an experimental murine model of multiple sclerosis, 
by reducing inflammatory responses and promoting 
oligodendroglial regeneration[94]. TSPO has also been 
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H, Wiebe N, Wiersma ST, Wilkinson JD, Williams HC, Williams 
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of Disease Study 2010. Lancet 2012; 380: 2197-2223 [PMID: 
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3 Dawber TR, Moore FE, Mann GV. Coronary heart disease in the 
Framingham study. Am J Public Health Nations Health 1957; 47: 
4-24 [PMID: 13411327 DOI: 10.2105/ajph.47.4_pt_2.4]

4 Libby P, Ridker PM, Hansson GK. Progress and challenges 
in translating the biology of atherosclerosis. Nature 2011; 473: 
317-325 [PMID: 21593864 DOI: 10.1038/nature10146]

of ATP synthase (oligomycin) blocked the formation of 
progesterone and synthesis or import of StAR protein in 
Leydig cells[111,112]. 

A parallel study in macrophages supports the notion 
that acute loss of mitochondrial function is also associated 
with dysregulated cholesterol homeostasis[113]. Cholesterol 
efflux was inhibited by nigericin and oligomycin in RAW 
264.7 macrophages; levels of ABCA1 protein decreased 
in response to oligomycin treatment, despite paradoxical 
increases in Abca1 mRNA[113,114], reflecting findings 
in carotid atherosclerotic lesions[114] Further, while 
oligomycin treatment did not alter cholesterol biosynthesis, 
cholesterol esterification was significantly inhibited, 
promoting apoptosis. Oligomycin induced expression 
of genes involved in cholesterol efflux (Abca1, Abcg4, 
Stard1) and cholesterol biosynthesis (Hmgr, Mvk, Scap, 
Srepb2) arguing that loss of coordinated regulation of 
sterol homeostasis is caused by loss of mitochondrial ATP 
generation[113]. In turn, accumulation of free cholesterol 
or fatty acids can trigger mitochondrial dysfunction, which 
could promote inflammation via loss of LXRα-dependent 
repression of NF-κB (above) and upregulation of cytokine 
expression, but also by NLRP3 inflammasome-dependent 
and –independent pathways[115]. 

QUESTIONS FOR THE FUTURE
This review summarizes the current evidence that, in 
part, macrophage sterol homeostasis, and inflammatory 
responses, can be linked to mitochondrial cholesterol 
trafficking, and mitochondrial structure and bioenergetics. 
Whether proteins involved in mitochondrial structure, 
fission, fusion or organelle dynamics can also impact on 
these processes is currently uninvestigated and an area 
of keen interest. More particularly, mitochondria-mediated 
hormetic effects in aging[116,117] suggest a retrograde 
signalling pathway by which mitochondrial dysfunction 
in a single distinct tissue elicits the mitochondrial stress 
response in some (but not all) distal tissues. In turn, this 
suggests that loss of effective mitochondrial function, such 
as that caused by hepatic insulin resistance for example, 
may be transmitted via “mitokines” to peripheral tissues, 
promoting vascular dysfunction and cardiovascular 
disease. These exciting findings offer some intriguing 
possibilities for therapeutic strategies aimed at sustaining 
or improving mitochondrial function. 
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