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Introduction

Epidemiological data are often clustered (hierarchical or 
nested) in nature; a simple example of clustered data is 
where students are clustered within a class and classes clus-
tered within schools. This situation is a 3-level data struc-
ture, the first level being the students, the second level being 
the classes, and the third level being the schools. In broader 
scenarios, clustering can be seen in any setting, for exam-
ple, in social settings (e.g., individuals → families → neigh-
borhoods) or in geographical settings (e.g., wards → cities 
→ counties → countries). In addition, in longitudinal stud-
ies or clinical trials, clustering appears due to aggregates of 
individuals or repeated measurement of the same subject 
(Masood, Yusof, et al. 2012a, 2012b; Fleming et al. 2013). 
However, in dental research, a special type of natural clus-
tering is encountered, where surfaces are clustered within 
teeth and teeth clustered within individuals. However, fre-
quently in dental research, the surface or tooth is taken as 
the unit of analysis and the clustering structure of surfaces 
→ teeth → individuals is ignored, and thus each surface or 

tooth is treated as an independent observation. This inde-
pendence of observations treats 5 teeth from 20 patients 
(i.e., 100 observations) as equivalent to observations of 1 
tooth from 100 patients. However, outcomes such as caries 
experience are likely to be more closely correlated within 
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Abstract
The objectives of this study were 1) to provide an estimate of the value of the intraclass correlation coefficient (ICC) 
for dental caries data at tooth and surface level, 2) to provide an estimate of the design effect (DE) to be used in the 
determination of sample size estimates for future dental surveys, and 3) to explore the usefulness of multilevel modeling 
of cross-sectional survey data by comparing the model estimates derived from multilevel and single-level models. Using 
data from the United Kingdom Adult Dental Health Survey 2009, the ICC and DE were calculated for surfaces within 
a tooth, teeth within the individual, and surfaces within the individual. Simple and multilevel logistic regression analysis 
was performed with the outcome variables carious tooth or surface. ICC estimated that 10% of the variance in surface 
caries is attributable to the individual level and 30% of the variance in surfaces caries is attributable to variation between 
teeth within individuals. When comparing multilevel with simple logistic models, β values were 4 to 5 times lower and the 
standard error 2 to 3 times lower in multilevel models. All the fit indices showed multilevel models were a better fit than 
simple models. The DE was 1.4 for the clustering of carious surfaces within teeth, 6.0 for carious teeth within an individual, 
and 38.0 for carious surfaces within the individual. The ICC for dental caries data was 0.21 (95% confidence interval [CI], 
0.204–0.220) at the tooth level and 0.30 (95% CI, 0.284–0.305) at the surface level. The DE used for sample size calculation 
for future dental surveys will vary on the level of clustering, which is important in the analysis—the DE is greatest when 
exploring the clustering of surfaces within individuals. Failure to consider the effect of clustering on the design and analysis 
of epidemiological trials leads to an overestimation of the impact of interventions and the importance of risk factors in 
predicting caries outcome.

Keywords: dental public health, caries, statistics, intra-class correlation coefficient (ICC), design effect (DE), multilevel 
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clusters than between them. For example, the magnitude of 
caries risk is likely to be more comparable for different 
teeth within the same individual than would be the case 
between separate individuals (Hannigan and Lynch 2013).

When the within-cluster correlation or intraclass correla-
tion coefficient (ICC) is very small (i.e., observations within 
the cluster are almost independent), the impact of the clus-
tering on analysis can be ignored. However, where the ICC 
is high, the impact of clustering is likely to be much greater. 
Therefore, the degree to which statistical analysis should be 
modified as a result of clustering can be assessed by exam-
ining the estimated within-cluster correlation or ICC of dif-
ferent clusters. The ICC measures the similarity among 
outcome observations within the same cluster compared 
with that among observations in different clusters. The 
information contributed by each cluster in data analysis is 
inversely proportional to the ICC of the observations (Kerry 
and Bland 1998; Eldridge et al. 2006). Clustering of data 
has 2 important implications for the design and analysis of 
studies: a design effect (DE) whereby the sample size calcu-
lation is adjusted to account for clustering and the analytical 
methods selected to adjust estimates for clustering effects 
(Fleming et al. 2013).

Higher ICC values necessitate an increase in the required 
sample size in a clustered survey to maintain power analo-
gous to a nonclustered survey. This increase in sample size 
can be determined by the DE, which is related to the ICC. 
The DE must be considered in the planning of oral health 
studies to ensure adequate statistical power. The DE is the 
ratio of the sample size required for a clustered design to 
that required for a design with independent samples to 
achieve the same power. For example, to obtain equal statis-
tical power, a clustered design with DE = 2 requires twice as 
many observations as a nonclustered design. To calculate 
the sample size needed for a study, the DE for the antici-
pated cluster sizes and ICC must be considered. In study 
designs with more than one level (e.g., 3 levels in surfaces 
→ teeth → individuals) of clustering, separate estimates of 
ICC and DE can be calculated for each level of clustering 
and used sequentially to adjust the required sample size 
(Litaker et al. 2013).

Clustered dental data are often analyzed by using classic 
statistical techniques, which are mostly based on the assump-
tion of independent observations. Because observations 
within clusters violate the assumption of independence, 
these methods may not be appropriate (Litaker et al. 2013). 
For example, using classic regression approaches in analyz-
ing clustered data results in biased regression estimates and 
standard errors (Loc Giang et al. 2011; Mamai-Homata et al. 
2012). Therefore, if there is a significant correlation between 
the observations (i.e., a high ICC), the possibility of a type I 
error increases (Burnside et al. 2007, 2013). One alternative 
is to ignore clustering by undertaking a separate analysis for 
each subject—such an approach reduces the number of 

observations considerably in each analysis, leading to an 
increased risk of type II errors. The most appropriate method 
of analysis for clustered data is multilevel modeling, which 
accounts for the correlation between clusters by modeling 
intercepts and regression coefficients as random (Diez Roux 
2002). Caries data naturally fall into a 3-level structure, with 
the individual participant as the top or level 3 unit, tooth as 
the level 2 unit, and surface as the level 1 unit. Multilevel 
models work by splitting the variance in outcome into com-
ponents for each level of the model, so random effects at 
tooth and participant levels are estimated in the modeling 
process. These random effects are assumed to follow a nor-
mal distribution with a mean of 0 and a variance that is esti-
mated in the modeling process. Simulation studies have 
shown that parameter estimates are fairly robust to viola-
tions of this assumption (Burnside et al. 2007).

To date, multilevel models have not been used for the 
analysis of caries data from epidemiological surveys, and 
thus the potential of multilevel modeling to enhance 
efficiency and understanding of the risk factors is unknown. 
Therefore, there are 3 objectives of this study: 1) to provide 
an estimate of the value of the ICC for dental caries data at 
the tooth and surface levels, 2) to provide an estimate of the 
DE to be used in the determination of sample size estimates 
for future dental surveys, and 3) to explore the usefulness of 
multilevel modeling of cross-sectional survey data by com-
paring the model estimates derived from multilevel and 
single-level models of the same data.

Methods

Data from United Kingdom Adult Dental Health Survey 
2009 (ADHS) were analyzed. A description of the ADHS is 
provided in the Appendix. The outcome variable was caries 
experience at the surface or tooth level. We recoded each 
tooth or surface as 0 for sound or 1 for carious or restored. 
Missing surfaces or teeth were excluded from the analysis as 
the reason for the missing surface or tooth was not known—
assuming that they were missing as a result of caries would 
overestimate the ICC. This excluded 19,025 of 180,889 
teeth (10.5%) and 98,612 of 904,400 surfaces (10.9%).

There are various methods available to calculate ICC for 
a binary outcome, as discussed by Wu et al. (2012) for ran-
domized controlled trials and Fenn et al. (2004) for cross-
sectional survey data. The ICC estimation from the random 
intercept logistic method suggested by Wu et al. has some 
limitations. In most cases, this method substantially overes-
timates the ICC values. Therefore, we used the formula sug-
gested by Fenn et al. for cross-sectional survey data.

ICC =
σ
σ
b

x

2

2
,

Equation 1 (Donald and Donner 1987; Fenn et al. 2004)
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ICC =
−
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Equation 2 (Donald and Donner 1987; Fenn et al. 2004)
where σ2

b is the between-cluster variance of the outcome 
variable. For binary outcome measures, σ π πx

2 1= −( ), 
where p is the average cluster-specific proportion.

Multilevel logistic regression was used to produce an 
estimate of the ICC using a model that contains no explana-
tory variables, the so-called intercept-only model or null 
model. This model partitions the variance in the outcome 
variable into 2 independent components: σ2

b and σ2
w . Three 

null models—model N
1
 (surfaces within a tooth), model N

2
 

(teeth within individual), and model N
3
 (surfaces within 

individual)—were used to calculate the 3 ICC values using 
equations 1 and 2 (Diez Roux 2002). The sampling distribu-
tion of the variance estimates in multilevel logistic regres-
sion models is, in general, strongly asymmetric. Therefore, 
the standard error (SE) may be a poor characterization of 
the distribution, and confidence intervals (CIs) derived 
from the SE are likely to be unrepresentative of the data 
(Wu et al. 2012). Given this difficulty, we estimated the 
95% CI of the ICC and DE by using “bootstrapping”—a 
technique for generating a description of the sampling prop-
erties of empirical estimators using random sampling with 
replacement from the original data set (Hox 2010).

The relationship between DE, cluster size, and ICC is 
represented in the following equation:

DE ICC,= + −1 1( ).m

Equation 3 (Fenn et al. 2004)
where DE is the design effect, and m is the average number 
of respondents per cluster, or average cluster size.

First, we performed an analysis for teeth clustered within 
individuals; the outcome variable was caries at the tooth level 
and took the value 0 if the tooth did not have caries and 1 if it 
had caries. The first model, model 0

t
, was a simple logistic 

regression with no multilevel structure. This model was fitted 
only as a baseline for comparison with later model 1

t
. The 

next model, model 1
t
, was the 2-level model, allowing clus-

tering of the teeth within individuals (Gilthorpe et al. 2000).
Second, the analysis of surfaces within teeth and teeth 

within individuals was performed; the outcome variable 
was caries at the surface level, which took the value 0 if the 
surface did not have caries and 1 if it had caries. Model 0

s
 

was a simple logistic regression with no multilevel structure 
and formed the point of comparison for model 1

s
, model 2

s
, 

and model 3
s
. Model 1

s
 and model 2

s
 were 2-level models, 

model 1
s
 incorporated clustering of the surface within teeth, 

and model 2
s
 incorporated clustering of the surfaces within 

individuals. Finally, model 3
s
 was a 3-level model allowing 

clustering of the surface within teeth and teeth within indi-
viduals (Gilthorpe et al. 2000).

All analyses were performed with R software; for multi-
level analysis, the lme4-package of R software was used 
(Bates et al. 2014). For each model, a set of explanatory 
variables was included comprising age, sex, educational 
qualification, brushing, sugar intake, and use of fluoridated 
toothpaste. See the Appendix for the description of all these 
variables. All explanatory variables were modeled at the 
same level as the outcome variable in model 0

t
 and model 0

s
 

since they were simple logistic regression models. However, 
in model 1

t
, model 1

s
, model 2

s
, and model 3

s
, the explana-

tory variables were modeled at the individual level (i.e., at 
level 2 in 2-level models and at level 3 in 3-level models). 
Regression estimates (β), SE, and level of significance were 
compared for all the models. Model fit was assessed by 
examining various fit indices: Akaike information criterion 
(AIC), Bayesian information criterion (BIC), deviance, –2 
log-likelihood, and the chi-square test (Burnside et al. 2007, 
2013).

Results

A total of 6,469 dentate adults were examined for dental 
caries; 9 individuals had only 1 tooth and were therefore 
excluded from the clustered analyses. The final sample size 
included 6,460 individuals, 161,855 teeth, and 805,788 sur-
faces. The mean number of teeth per person was 25.0, with 
an average of 4.97 surfaces per tooth and 124.5 surfaces per 
individual. Table 1 gives the descriptive analysis of all vari-
ables at the individual, tooth, and surface levels.

Table 2 displays the ICC and DE for teeth within indi-
viduals, surfaces within teeth, and surfaces within individu-
als. All values of the ICC are greater than 0.1, with the 
highest ICC being that for surfaces clustered within the 
individual. The most obvious feature of the results is the 
inverse relation between cluster size and ICC. For larger 
cluster sizes, even small ICCs might be associated with a 
substantial DE that should not be ignored in designing stud-
ies. The ICC estimate shows that 21% of the variance can 
be attributed to variation between individuals, 10% of the 
variance in surface caries is attributable to the individual 
level, and 30% of the variance in surface caries is attribut-
able to variation between teeth within individuals.

Table 3 shows the values of β, SE(β) for models 0
t
 and 

model 1
t
, and the ratio of coefficients and SE for model 0

t
/

model 1
t
. Both models show a significant positive relation-

ship of caries with older age, being female, higher educa-
tional qualification, and high sugar intake. Significant 
negative relationships exist between caries and brushing 
frequency, as well as fluoride usage. The relationship 
between caries and fluoride usage was not significant in the 
multilevel analysis for the category of 1,000 to 1,300 parts 
per million (ppm). If we consider only those results where 
P ≤ 0.01, the relationship becomes insignificant for all the 
fluoride categories. Comparing the multilevel model with 
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the simple logistic model, values of β were 4 to 5 times 
lower and the SE(β) 2.3 times lower in multilevel models. 
All the fit indices suggested that the multilevel models were 
a better fit than the standard regression models.

Table 4 describes the results of the multivariate regres-
sion analysis of caries at the surface level, showing a simple 
logistic regression (model 0

s
), a 2-level multilevel model 

where surfaces were clustered within individuals (model 

Table 1.  Descriptive Analysis of Data at Individual, Tooth, and Tooth Surface Levels.

Individual (n = 6,469), n (%) Teeth (n = 161,855), n (%) Surfaces (n = 805,788), n (%)

Age, y
  16–44 2,837 (43.86) 79,606 (49.18) 396,397 (49.19)
  45–64 2,355 (36.4) 57,678 (35.64) 287,114 (35.63)
  65 and older 1,277 (19.74) 24,571 (15.18) 122,277 (15.17)
Sex
  Male 2,961 (45.77) 73,795 (45.59) 367,242 (45.58)
  Female 3,508 (54.23) 88,060 (54.41) 438,546 (54.42)
Educational qualification
  No 1,499 (23.17) 31,999 (19.77) 159,151 (19.75)
  Yes 4,966 (76.77) 129,766 (80.17) 646,192 (80.19)
Brushing frequency
  <Once a day 181 (2.80) 3,897 (2.41) 19,354 (2.40)
  Once a day 1,450 (22.41) 34,617 (21.39) 172,365 (21.39)
  ≥Twice or more a day 4,823 (74.56) 122,994 (75.99) 612,340 (75.99)
Sugar intake
  Low 3,256 (50.33) 81,099 (50.11) 402,109 (49.90)
  High 3,213 (49.67) 80,756 (49.89) 403,679 (50.10)
Toothpaste fluoride concentration, ppm
  ≤550 996 (15.40) 24,562 (15.18) 122,267 (15.17)
  1,000–1,300 1,061 (16.40) 26,591 (16.43) 132,404 (16.43)
  1,350–1,500 4,351 (67.26) 109,434 (67.61) 544,819 (67.61)
Carious tooth
  No 4,543 (70.2) 106,863 (66.02) —
  Yes 1,926 (29.8) 54,992 (33.98) —
Carious surface
  No 4,543 (70.2) — 667,478 (82.84)
  Yes 1,926 (29.8) — 138,310 (17.16)

—, blank.

Table 2.  ICC and Design Effect for Various Oral Health–Related Outcome Variables.

Model N
1

Model N
2

Model N
3

Outcome Carious tooth = Yes/No Carious surface = Yes/No Carious surface = Yes/No
Clustering Individual Tooth Individual
Number of individuals 6,469 — 6,469
Number of teeth 161,855 161,855 —
Number of surfaces — 805,788 805,788
Average cluster size 25.0 4.97 124.5
Individual-level variance (SD) 0.047 (0.216) — 0.029 (0.170)
Tooth-level variance (SD) — 0.015 (0.121) —
Residual variance (SD) 0.179 (0.423) 0.104 (0.323) 0.104 (0.323)
Average proportion (π) 0.34 0.17 0.11
ICC (95% CI) 0.21 (0.204–0.220) 0.10 (0.063–0.159) 0.30 (0.284–0.305)
DE (95% CI) 6.04 (5.89–6.30) 1.40 (1.24–1.59) 38.0 (36.85–39.11)

CI, confidence interval; DE, design effect; ICC, intraclass correlation coefficient; SD, standard deviation; —, blank.
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1
s
), a 3-level multilevel model where surfaces were clus-

tered within teeth and teeth were clustered within individu-
als (model 2

s
), and the ratio of regression coefficients (β

r
) 

and standard error (SEβ
r
). All models again showed a sig-

nificant positive relationship between having carious sur-
faces and older age, being female, higher educational 
qualification, and high sugar intake. Similarly, both models 
found a significant negative relationship between caries at 
the surface level and brushing frequency and fluoride usage. 
However, if we consider only P ≤ 0.01, the relationship 
between caries at the surface level and fluoride intake 
becomes insignificant.

Discussion

The first aim of this report was to investigate the degree to 
which caries experience is correlated between teeth in the 
same mouth and across surfaces on the same tooth. A sig-
nificant amount of the variability in caries experience at the 
surface level was explained by being on the same tooth—
caries on the surfaces of the same tooth is more highly cor-
related than surfaces from different teeth. Similarly carious 
teeth in the same individual are more highly clustered than 
caries in different individuals. Thus, caries levels in the 
same individual or the same tooth are more correlated than 

Table 3.  Multivariate Regression Analysis of Carious Teeth as an Outcome Variable, Showing Results of Simple Logistic Regression 
(Model 0t), Multilevel Model (Model 1

t
) (Level 1 = Tooth; Level 2 = Individual), and Ratio of Regression Coefficients (β

r
) and Standard 

Error (SE
r
).

Model 0
t

Model 1
t

Ratio of Model 0
t
/Model 1

t

  β SE β SE β
r

SE
r

Fixed Effect
  Age, y
    16–44 Reference group
    45–64 1.15 0.012*** 0.245 0.0054*** 4.7 2.2
    65 and older 1.38 0.016*** 0.294 0.0070*** 4.7 2.3
  Sex
    Male Reference group
    Female 0.10 0.011*** 0.019 0.005*** 5.3 2.2
  Education qualification
    No Reference group
    Yes 0.14 0.014*** 0.034 0.0061*** 4.1 2.3
  Brushing frequency
    <Once a day Reference group
    Once a day –0.238 0.040*** –0.056 0.017** 4.3 2.3
    ≥Twice or more a day –0.226 0.039*** –0.054 0.017** 4.2 2.3
  Sugar intake
    Low Reference group
    High 0.06 0.011*** 0.015 0.0047** 4.0 2.3
  Toothpaste fluoride concentration, ppm
    ≤550 Reference group
    1,000–1,300 –0.056 0.019** –0.014 0.0085 4.0 2.2a

    1,350–1,500 –0.064 0.015*** –0.015 0.0068* 4.2 2.2b

Random Effect
  Individual — — 0.02956 0.171  
  Residual — — 0.1787 0.422  
Model Fit
  AIC 192,825 189,089.1  
  BIC 192,924.9 189,208.9  
  Deviance 192,805 189,065.1  
  –2 Log-likelihood –96,402.52 –94,532.56***  

AIC, Akaike information criterion; BIC, Bayesian information criterion; —, blank.
aSignificantly different at P ≤ 0.05.
bSignificantly different at P ≤ 0.01.
*P ≤ 0.05. **P ≤ 0.01. ***P ≤ 0.001.
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dental caries measured in different individuals or different 
teeth. These findings have significant implications for the 
modeling of dental caries, in that ignoring within-individual 
or within-tooth correlation could result in biased regression 
estimates and standard errors. The regression models with 
and without consideration of the intraclass correlation com-
pared in this study quantify the extent of this bias in esti-
mates of regression statistics (Gunsolley et al. 1994; Chuang 
et al. 2005).

The effect of clustering on sample size requirements can 
be substantial, especially for large cluster sizes. Failure to 
account for clustering typically leads to an underestimation 

of the required sample size. If the cluster size is large, even 
low values of ICC have a considerable impact, for example, 
in the case of surfaces clustered in an individual. It is also 
important to note that for dichotomous variables such as 
caries experience (yes or no), the ICC varies with the preva-
lence of the outcome, tending to increase with higher preva-
lence (Litaker et al. 2013). Therefore, the DE values 
identified in this study should be considered in the light of 
the prevalence of the carious tooth and carious surfaces in 
this sample (Table 1), as suggested by Gulliford (2005).

The ICC is a portable parameter that can be compared 
across studies since it does not depend on the cluster size or 

Table 4.  Multivariate Logistic Regression Analysis of Carious Surfaces as an Outcome Variable, Showing Results of Simple Logistic 
Regression (Model 0

s
), 2-Level Multilevel Model (Model 1

s
) (Level 1 = Surfaces; Level 2 = Individual), 3-Level Multilevel Model (Model 

2
s
) (Level 1 = Surfaces; Level 2 = Tooth; Level 3 = Individual), and Ratio of Regression Coefficients (β

r
) and Standard Error (SE

r
).

Model 0
s

Model 1
s

Model 2
s

Ratio of Model 0
s
/

Model 1
s

Ratio of Model 0
s
/

Model 2
s

  β SE β SE β SE β
r

SE
r

β
r

SE
r

Fixed Effect
  Age, y
    16–44 Reference group
    45–64 1.20 0.007*** 0.157 0.004*** 0.169 0.004*** 7.6 1.8 7.1 1.8
    65 and older 1.45 0.009*** 0.197 0.005*** 0.230 0.005*** 7.4 1.4 6.3 1.4
  Sex
    Male Reference group
    Female 0.10 0.006*** 0.012 0.004** 0.012 0.004*** 8.3 1.5 8.3 1.5
  Education qualification
    No Reference group
    Yes 0.15 0.008*** 0.026 0.004*** 0.013 0.005** 5.8 2.0 11.5 1.6
  Brushing frequency
    <Once a day Reference group
    Once a day –0.29 0.021*** –0.052 0.012*** –0.053 0.012*** 5.6 1.8 5.5 1.8
    ≥Twice a day –0.28 0.021*** –0.049 0.012*** –0.056 0.012*** 5.7 1.8 5.0 1.8
  Sugar intake
    Low Reference group
    High 0.09 0.006*** 0.014 0.004*** 0.016 0.0036*** 6.4 1.5 5.6 1.7
  Toothpaste fluoride concentration, ppm
    ≤550 Reference group
    1,000–1,300 –0.08 0.010*** –0.014 0.006* –0.013 0.006* 5.7 1.7a 6.2 1.7a

    1,350–1,500 –0.07 0.008*** –0.013 0.005** –0.012 0.005* 5.4 1.6 5.8 1.6a

Random Effect
  Individual — 0.0182 0.1349 0.0191 0.138 — — — —
  Tooth — — — 0.0147 0.121 — — — —
  Residual — 0.1188 0.3447 0.1038 0.322 — — — —
Model Fit
  AIC 688,820 583,111.5 477,469.3 — — — —
  BIC 688,935.7 583,250.6 477,619.9 — — — —
  Deviance 688,799.8 583,087.5 477,443.3 — — — —
  –2 Log-likelihood –344,399.9 –291,543.8 –238,721.6 — — — —

AIC, Akaike information criterion; BIC, Bayesian information criterion; —, blank.
aSignificantly different at P ≤ 0.01.
*P ≤ 0.05. **P ≤ 0.01. ***P ≤ 0.001.
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on the numbers of clusters. The DE, on the other hand, is 
affected by the sample design and is strongly dependent on 
cluster size (Fenn et al. 2004). Therefore, not only DE but 
also ICC should be considered for accurate sample size cal-
culation for future studies (Litaker et al. 2013).

This study has shown a substantial difference between 
the estimated power of multilevel models and classic regres-
sion analysis. Traditional regression analysis is known to 
overestimate the beneficial effects of interventions where 
clustering is present (Shaffer et al. 2013; Masood and 
Reidpath 2014). In this analysis, we used fluoridation and 
frequency of brushing as examples of preventive measures: 
simple regression analysis ascribes a nearly 6 times greater 
beneficial effect to such interventions than 2- or 3-level 
multilevel analysis. It was interesting to see that if we 
require more precise results with a P value of 0.01, then the 
preventive effect of fluoride becomes insignificant in multi-
level models. Similarly, traditional analysis also overesti-
mates the effect of risk factors; in this analysis, the effect of 
sugar consumption on dental caries was nearly 6 times 
higher in the classic logistic regression than in the 2- and 
3-level multilevel analysis (Chuang et al. 2001; Masood, 
Masood, et al. 2012). Although this was not an objective for 
this study, it is important to discuss the unexpected positive 
relationship between educational qualification and caries. 
There could be 2 possible reasons for this relationship: 1) 
the educational qualification was coded as “yes” or “no,” 
which might not capture the education effect well, and 2) 
the outcome was whether or not the tooth or surface was 
sound or carious/restored. Education may be related to res-
toration via use of dental services.

There may be a number of reasons why an investigator 
or health care provider would be interested in the multilevel 
analysis of caries data, especially for preventive agents or 
treatments at different levels. Multilevel modeling offers 
the advantage of allowing greater understanding of the pat-
terns of caries development within the mouth since it allows 
estimates to be made of the relative variance at individual, 
tooth, and surface levels (Burnside et al. 2007). Therefore, 
investigators who are interested in exploring the effect of 
their intervention in more detail may wish to consider the 
use of multilevel modeling (Burnside et al. 2013). The abil-
ity to quantify relative treatment effect sizes at the tooth 
level may be important when dental caries presents more 
commonly on different tooth types, for example, the rela-
tive benefit of fluoride varnish on molars and incisors. 
Investigators may also need to measure the comparative 
benefit at the surface level, or level 1 (e.g., being able to 
determine whether a preferential benefit is found on fissures 
compared with smooth surfaces).

It should be noted that although the results are based on 
a large sample size, the data set comprises a sample of the 
population of UK adults with a particular disease level, and 
the results may vary in populations with higher or lower 

levels of caries. Younger age groups will certainly show dif-
ferent patterns due to the different teeth present, deciduous 
teeth in very young children, and a mixture of deciduous 
and permanent teeth in older children. The finding of differ-
ing probabilities of caries according to differing tooth types, 
with molars most susceptible, is well established (Reidpath 
et al. 2014). The current work indicates that the advantages 
of multilevel modeling in dental caries may lie in a greater 
understanding of the data structure and within-mouth pat-
terns of caries development, rather than a reduction in 
required sample sizes (Hannigan and Lynch 2013). In addi-
tion to the hierarchy reported here, further levels of cluster-
ing exist in this data set, such as individual → neighborhood 
→ district → county. Data on these clusters were not avail-
able in the data set owing to confidentiality issues. Another 
limitation was the inability to include survey design fea-
tures in this analysis. Multilevel analysis for logistic regres-
sion models incorporating survey design features is not 
currently available (Thomas Lumley, developer of the sur-
vey package in R-project, personal communication 
[StataCorp 2013]).

Conclusion

This study has provided estimates of the ICC for dental car-
ies data: 0.21 (95% CI, 0.204–0.220) at the tooth level and 
0.30 (95% CI, 0.284–0.305) at the surface level. The DE 
used for sample size calculation for future dental surveys 
will vary on the level of clustering, which is important in 
the analysis—the DE is greatest when exploring the cluster-
ing of surfaces within individuals. In such instances, clus-
tering will have a considerable effect on the required sample 
size. Failure to consider the effect of clustering on the 
design and analysis of epidemiological trials leads to an 
overestimation of the impact of interventions and the impor-
tance of risk factors in predicting caries outcome.
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