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Abstract

Background—Finding the optimal location for the implantation of the electrode in Deep Brain 

Stimulation (DBS) surgery is crucial for maximizing therapeutic benefit to the patient. Such 

targeting is challenging for several reasons including anatomical variability between patients as 

well as lack of consensus about the location of the optimal target.

Objective—To compare the performance of popular manual targeting methods against a fully 

automatic non-rigid image registration based approach.

Methods—In 71 Parkinson's disease STN-DBS implantations, an experienced functional 

neurosurgeon selected the target manually using three different approaches; indirect targeting 

using standard stereotactic coordinates, direct targeting based on the patient MRI, and indirect 

targeting relative to the red nucleus. Targets were also automatically predicted using a leave-one-

out approach to populate the CranialVault atlas using non-rigid image registration. The different 

targeting methods were compared against the location of the final active contact, determined 

through iterative clinical programming in each individual patient.

Results—Targeting using standard stereotactic coordinates corresponding to the center of the 

motor territory of the STN had the largest targeting error (3.69 mm), followed by direct targeting 

(3.44 mm), average stereotactic coordinates of active contacts from this study (3.02 mm), red 

nucleus based targeting (2.75 mm), and non-rigid image registration based automatic predictions 

using the CranialVault atlas (2.70 mm). The CranialVault atlas method had statistically smaller 

variance than all manual approaches.

Conclusions—Fully automatic targeting based on non-rigid image registration using the 

CranialVault atlas is as accurate and more precise than popular manual methods for STN-DBS.
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Introduction

Deep brain stimulation (DBS) is a therapy used to alleviate symptoms related to movement 

disorders such as Parkinson's disease by stimulating deep brain nuclei. Because of the small 

size of the nuclei, and a relatively narrow therapeutic window of stimulation therapy, such 

functional neurosurgical procedures require precise targeting so that the final implant can be 

placed in an optimal location to achieve therapeutic benefit without causing side effects. 

Traditionally, this requires modification of an initial approximate target location (selected 

pre-operatively by a neurosurgeon) using exploratory electrodes to map the 

electrophysiology of the brain and stimulate the regions around the planned target. Although 

this process compensates for initial inaccuracies in pre-operative targeting and allows 

adjustment for the anatomical and physiological variability across patients, it is time 

consuming, invasive and may increase operative risk when multiple penetrations are 

required 1, 2.

Given the importance of accurate localization of the optimal target 3-8 there has been much 

effort over the last few decades towards the use of different approaches including indirect 

targeting based on anatomical landmarks and direct targeting using various imaging 

modalities 9, 1011-1819, 2021, 2214, 23-25. Pallavaram et al. showed that there is significant inter-

surgeon variability in the selection of ACPC-based stereotactic reference system and that 

this has a substantial effect on the localization of targets 26. Moreover, there has been a lack 

of consensus on the ideal anatomical location for maximum therapeutic relief in 

PD 5, 21, 27-33. Therefore, several functional atlases have also been developed based on intra- 

and post-operatively acquired electrophysiological data mapped using non-linear image 

registration techniques 34-41. Castro et al. compared the accuracy of ACPC-based targeting 

of the STN against several image registration techniques 42, 43. They found non-linear image 

registration to produce the highest accuracy in predicting the anatomical target inside the 

STN. The ground truth used in their study was direct-targeting based on selection of STN by 

two experts on high resolution MRI T2 scans. Chakravarty et al. 44, 45 took a similar 

approach to validate their method for segmentation of basal ganglia structures and showed 

that non-linear techniques perform statistically better than linear and piece-wise linear 

techniques. Yelnik and Bardinet et al. 46, 47 showed how a histological and deformable 3D 

atlas based on non-linear image registration could be used to accurately project 

segmentations of structures onto patients for anatomical targeting of the STN. The ground 

truth for validating STN segmentations using their methods were intra-operative 

electrophysilogical recordings and post-operative therapeutic contacts. D'Haese et al. 

recently showed that maps produced using nonlinear techniques correlate with their 

expected anatomic positions 48.
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In this study, we compare a fully automatic method for predicting the optimal functional 

target for STN-DBS in Parkinson's disease patients using non-rigid image registration and 

three popular manual targeting methods: direct targeting of the center of the STN based on 

MRI images, indirect targeting with respect to the location of the red nucleus, and indirect 

targeting based on stereotactic coordinates, against the clinically active contacts as the 

ground truth.

Data and Method

In this study we retrospectively examined 71 STN-DBS implantations in 37 PD patients. 

With IRB approval each patient had pre-operative MRI (T1 and T2) and CT acquisitions of 

the brain as well as a delayed post-operative CT acquired approximately one month after 

surgery. Typical CT images were acquired at kVp = 120 V, exposure 350 mAs and 512×512 

pixels. In-plane resolution and slice thickness were approximately 0.5 mm and 0.75 mm, 

respectively. MRI T1 (TR 7.9 ms, TE 3.8 ms, 256 × 256 × 170 voxels, with typical voxel 

resolution of 1 × 1 × 1 mm3) were acquired using the SENSE parallel imaging technique 

(T1W/3D/TFE) from Philips on a 3T scanner. MRI T2 (TR 3000 ms, TE 80 ms, 512 × 512 × 

45 voxels, with typical voxel resolution of 0.47 × 0.47 × 2 mm3) were acquired using the 

SENSE parallel imaging technique (T2W/TSE) from Philips on a 3T scanner.

Planning was subsequently performed using the FDA approved clinical version of the 

CranialVault Explorer software suite 49 called WayPoint Navigator (distributed by FHC, 

Inc. Bowdoin, ME, USA) shown in figure 1. This involved the importation of pre-operative 

MRI and CT, identification of anatomical landmarks (e.g. anterior commissure, posterior 

commissure, mid-plane, and red nucleus), surgeon selection of optimal target and entry 

points; and confirmation of design for a customized miniature stereotactic frame called the 

mT platform (FHC, Inc.; Bowdoin, ME) to be used in surgery. Details on the platform 

including a study of its accuracy demonstrating it to be at least as accurate as standard 

frames have been previously published 50-52.

During surgery, targeting was modified through the use of micro-electrode recording and 

stimulation response observations recorded in 3-4 tracks parallel to the planned trajectory 

using a Ben gun approach. The optimal location for DBS lead implantation was determined 

by the multidisciplinary surgical team (neurosurgeon, neurologist and neurophysiologist) 

and defined as the location of the centerpoint of the 4-contact 3389 lead. Post-operatively the 

locations of the leads and the individual contacts were extracted from the delayed post-op 

CT. The individual contacts were projected onto the patient pre-op MRIs using rigid 

registration as shown in figure 2. These were then projected onto the CranialVault atlas using 

fully automatic non-rigid registration between the patient pre-op MRIs and the atlas MRI. 

Using a leave-one-out approach, the centroid of the atlas cluster was projected onto each 

patient's preop MRI using non-rigid registration and subsequently projected onto the delayed 

post-op CTs using rigid registration between the delayed post-op CT and the pre-op MRI of 

the patient. This point is referred to as the atlas-based target prediction and the process is 

illustrated in figure 3. Briefly, the non-rigid registration algorithm we use computes a 

deformation field that is modeled as a linear combination of radial basis functions with finite 

support. This results in a transformation with several thousands of degrees of freedom. Two 
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transformations (one from the atlas to the subject and the other from the subject to the atlas) 

that are constrained to be inverses of each other are computed simultaneously. Details on this 

procedure and the algorithms that have been used can be found in several previous 

publications 5334. Our registration algorithms are based on mutual information between the 

two images as the similarity metric 54, 55 and it's accuracy was validated in a population of 

patients at known anatomical landmarks by Pallavaram et al. 56. Two variations of the non-

rigid registration based target predictions were produced; one used data from both surgeons 

to make predictions while the other was ‘surgeon-specific’ where predictions for a particular 

surgeon's patient were based on that particular surgeon's average selection in a population.

The manual approaches used in this study are commonly used approaches; namely indirect 

targeting using stereotactic coordinates based on localizing the anterior commissure (AC) 

and posterior commissure (PC) referred here as ACPC-based targeting, direct targeting 

based on high resolution MRI T1 and T2 weighted images, and indirect targeting based on 

standard coordinates defined with respect to the red nucleus referred here as RN-based 

targeting (11 mm Lateral, -2.3 Anterior, -2.6 Superior), that require the expertise of an 

experienced functional neurosurgeon. Indirect targeting based on the stereotactic coordinates 

(12 mm Lateral, -3 mm Anterior, and -4 mm Superior) with respect to the mid-commissural 

point used to target the center of the motor territory of the STN 3, 9, 21, 31, 57, 58, (11.8 mm 

Lateral, -2.4 mm Anterior, and -3.9 mm Superior) which represent the centroid of active 

contacts from a widely cited study 57, as well as the centroid of active contacts from our 

dataset (11.0 mm Lateral, -2.0 mm Anterior, and -2.4 mm Superior) which represent the 

optimized stereotactic coordinates for this dataset were included. The coordinates for RN-

based targeting were 3 mm lateral to the lateral edge, -2 mm superior to the superior edge, 

and the anterior edge of the RN. For direct targeting, the surgeon selected the center of the 

STN as visualized on T2 axial images (TR: 3000 mS, TW: 80 ms, imaging frequency: 128 

Hz, magnetic field strength: 3T, in-plane resolution: 0.47 mm X 0.47 mm, slice thickness: 2 

mm).

The manual selections used in the study to be tested against the CranialVault atlas prediction 

were performed retrospectively by a single neurosurgeon (S2). To avoid bias in planning, the 

patients were anonymized and randomized in the order in which they were shown to the 

surgeon. Furthermore, the surgeon was provided only pre-op imaging for the retrospective 

target selections and was also blinded to the location of the implantation making the process 

identical to pre-op planning. Predictions based on the CranialVault atlas and the various 

manual target selections were validated against the final location of the active contact in the 

patient achieved through iterative testing and programming and evaluated by each patient's 

treating neurologist to be the location for optimal therapeutic benefit in that patient.

Results

Figure 4 shows a bar chart of the accuracy of different targeting methords compared in this 

study with respect to the final active contacts in 71 STN-DBS cases. On average, targeting 

using standard stereotactic coordinates corresponding to the center of the motor territory of 

the STN (12 mm Lateral, -3 mm Anterior, and -4 mm Superior) had the largest error (mean 

3.69 mm, standard deviation 1.78 mm). Literature coordinates of the centroid of active 
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contacts (11.8 mm Lateral, -2.4 mm Anterior, and -3.9 mm Superior) had better accuracy 

(mean 3.49 mm, standard deviation 1.70 mm). Direct targeting performed comparably to 

these standard stereotactic coordinates (mean 3.44 mm, standard deviation 1.49 mm). 

However, average stereotactic coordinates of the active contacts from the 71 cases in this 

study (11 mm Lateral, -2 mm Anterior, and -2.4 mm Superior) performed substantially 

better (mean 3.02 mm, standard deviation 1.48 mm). Red nucleus based targeting and the 

fully automatic CranialVault atlas method of targeting using non-rigid registration performed 

substantially better than all other methods and were comparable to each other on mean 

accuracy. Red nucleus based targeting had mean accuracy of 2.75 mm and a standard 

deviation of 1.49 mm, fully automatic CranialVault atlas based predictions using both 

surgeons had a mean accuracy of 2.75 mm (same as red nucleus) and a standard deviation of 

1.40 mm while the accuracy of the CranialVault atlas improved marginally when using 

surgeon-specific data for predictions to a mean of 2.70 mm and a standard deviation of 1.17 

mm. To be even more comprehensive on the wide range of stereotactic coordinates used 

across practices, we tested a number of other popular AC-PC based coordinates. For (12 mm 

Lateral, -2 mm Anterior, -4 mm Superior), the mean accuracy was 3.57 mm (standard 

deviation 1.65 mm), for (12 mm Lateral, -2 mm Anterior, -3 mm Superior), the mean 

accuracy was 3.22 mm (standard deviation 1.54 mm), and for (12 mm Lateral, -3 mm 

Anterior, -5 mm Superior), the mean accuracy was 4.22 mm (standard deviation 1.91 mm).

Of all the tested methods, the non-rigid registration based CranialVault atlas predictions 

using surgeon-specific data had the highest accuracy and the smallest standard deviation. 

Performing t-test at 5% level of significance showed that there was a statistically significant 

difference in accuracy between CranialVault atlas based targeting using non-rigid 

registration and three manual approaches; standard stereotactic coordinates targeting the 

center of the motor territory of the STN, standard stereotactic coordinates from literature 

targeting the centroid of active contacts, as well as Direct targeting of the STN using MRI 

imaging. There was no statistically significant difference between red nucleus based 

targeting and the CranialVault atlas targeting using non-rigid registration although the latter 

had marginally higher accuracy and substantially smaller standard deviation. Performing a 

two-sample F-test at 5% level of significance revealed a statistically significant difference 

between the standard deviations of red nucleus based targeting and our atlas-based targeting. 

This suggests that automated atlas based targeting is no less accurate than traditional 

methods including red nucleus based targeting, but is also more precise than all manual 

methods evaluated in this study. Figure 5 shows the location of the atlas centroid overlaid on 

the 3D renderings of the segmentations of STN and SNr.

Discussion

Our results show that among the manual methods evaluated in this study, targeting using 

standard stereotactic coordinates in the literature corresponding to the center of the motor 

territory of the STN has the largest error while that using standard coordinates relative to the 

red nucleus has the smallest error. Targeting based on the centroid of surgeon-specific active 

contacts from the CranialVault atlas projected using fully automatic non-rigid image 

registration had the smallest error of all methods, was statistically better than standard 

stereotactic coordinates from literature and direct targeting, and was more precise than any 
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of the manual methods. The use of surgeon-specific data for predictions seems to marginally 

improve targeting accuracy. Andrade-Souza et al. 11 had compared modified direct targeting, 

indirect targeting using standard stereotactic coordinates, and red nucleus based targeting in 

28 STN implants against the active contacts. They reported that red nucleus targeting was 

the best among the manual methods while direct targeting and indirect targeting using 

standarad stereotactic coordinates had substantially inferior accuracy. These are consistent 

with our results. Our study can be considered an extension over their work using not only a 

substantially larger dataset but also additionally evaluating a fully automatic method of atlas 

based targeting using non-rigid registration.

We also examined the difference in the AC-PC or stereotactic space for the different 

methods as shown in Table 1. We found that the CranialVault atlas-based target predictions 

seem to differ substantially from standard stereotactic coordinates in literature along all three 

directions with most standard AC-PC coordinates being more lateral, posterior and inferior 

to atlas-based predictions. With respect to direct targeting the predominant difference is in 

the superior-inferior direction with direct targeting being substantially inferior to atlas 

predictions. Targeting based on red nucleus and centroid of stereotactic coordinates of the 

active contacts from the study have negligible difference in the lateral component and 

posterior components, but noticeable difference in the superior-inferior component. Such 

direct comparison of the ultimate location, however, belies the real power of the 

CranialVault process, which is its ability to account for anatomical variation. This is best 

demonstrated in the decreased variance that it exhibits versus all other techniques, 

suggesting a greater precision in the face of anatomical variation. We presume that of the 

manual techniques red nucleus based targeting performed best because its proximity to the 

STN makes its ultimate relationship to the later structure more constant despite variations 

that may exist in anatomy (in effect the red nucleus moves with the STN in most cases). 

Although, using this same logic, one might expect direct targeting to ourperform other 

techniques it ultimately was inferior to red nucleus and CranialVault atlas-based targeting. 

This is perhaps due to inconsistancies in the appearance of the STN even on our high 

resolution images.

One potential confound to these findings is the extent to which the dominance of one 

method in our original surgical targeting between the two surgeons might favor the 

performance of one technique over another when evaluated retrospectively. Our surgeons 

used a combined approach when choosing their initial target, combining red nucleus based, 

standard stereotactic coordinates based, and direct targeting methods. The actual weighting 

of these methods used for targeting the STN was variable between the two surgeons 

performing these cases. One of the two surgeons, in addition to these manual approaches, 

had access to the atlas predictions of the middle of the leads but not active contacts and 

could have been influenced by it in his targeting. Both surgeons however used intra-

operative MER and stimulation response (efficacy and side effects) to arrive at their final 

target for implantation moving from their original target (center track on the BenGun) in 

greater than 50% of implanted leads. To test if the locations of implantations for the 

surgeons were impacted differently by their planning approaches we compared the accuracy 

of the atlas prediction of active contacts between the two surgeons. There was no statistically 
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significant difference between these two subgroups at 5% level of significance using a two-

sample t-test.

Conclusions

Predictions based on non-rigid image registration using the surgeon-specific CranialVault 

atlas had the highest accuracy among all the validated methods and the difference was 

statistically significant when compared to a variety of standard stereotactic coordinates cited 

in the literature and used in practice as well as with respect to direct targeting. The accuracy 

of red nucleus based targeting was the best among the manual methods and not statistically 

different from the CranialVault atlas based predictions. However, predictions based on the 

CranialVault atlas had the smallest variance of all tested methods and the difference was 

statistically significant.

Therefore, fully automatic targeting based on non-rigid image registration using the 

CranialVault atlas is as accurate and more precise than popular manual methods for STN-

DBS. A fully automatic targeting method that performs as good as the manual selections by 

experienced neurosurgeons is not only useful to them but could provide significant 

assistance to surgeons less experienced in DBS and help make the surgery accessible to 

more patients. With the increasing accessibility of sophisticated non-rigid image registration 

packages within and outside of clinical software we believe that fully automatic targeting 

can become part of routine clinical practice.
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Figure 1. 
WayPoint Navigator software made available to the surgeons for clinical planning as well as 

for manual target slections in this study. A 3D rendering of the platform and the patient's 

head based on the CT is also shown along with a sample trajectory for an STN-DBS patient.
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Figure 2. 
Individual contacts in a 3389 lead extracted from the delayed post-op CT and overlaid on the 

pre-op MRI using rigid registration.
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Figure 3. 
Flowchart showing how target predictions based on non-rigid image registration are made 

using the CranialVault atlas by projecting contacts positions from a population of patients 

onto a new patient.
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Figure 4. 
Bar chart showing the average and standard deviation of the Euclidean distances for different 

targeting methods from active contacts in 71 STN-DBS implants.
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Figure 5. 
Coronal and axial views showing the location of the atlas centroid overlaid on the 3D 

renderings of the segmentations of STN and SNr.
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Table 1

Components of stereotactic coordinates for different targeting methods.

Mean Stereotactic coordinates of various targeting methods Lateral Anterior Superior

Direct Targeting 11.19 -1.59 -4.31

RN-based Targeting 11.05 -2.26 -2.62

Non-Rigid Registration based targeting using CranialVault Atlas 11.01 -2.01 -2.02

Active contacts from literature 11.80 -2.40 -3.90

Motor segment of the STN from literature 12.00 -3.00 -4.00

Active contacts from the study 11.09 -2.00 -2.40
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