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Abstract Many cellular proteins are multi-domain proteins.
Coupled domain–domain interactions in these multidomain
proteins are important for the allosteric relay of signals in the
cellular signaling networks.We have initiated the application of
neutron spin echo spectroscopy to the study of nanoscale pro-
tein domain motions on submicrosecond time scales and on
nanometer length scale. Our NSE experiments reveal the acti-
vation of protein domain motions over a long distance of over
more than 100 Å in a multidomain scaffolding protein
NHERF1 upon binding to another protein, Ezrin. Such activa-
tion of nanoscale protein domain motions is correlated with the
allosteric assembly of multi-protein complexes by NHERF1
and Ezrin. Here, we summarize the theoretical framework that
we have developed, which uses simple concepts from nonequi-
librium statistical mechanics to interpret the NSE data, and
employs amobility tensor to describe nanoscale protein domain
motion. Extracting nanoscale protein domain motion from the
NSE does not require elaborate molecular dynamics simula-
tions, nor complex fits to rotational motion, nor elastic network
models. The approach is thus more robust than multiparameter
techniques that require untestable assumptions. We also dem-
onstrate that an experimental scheme of selective deuteration of
a protein subunit in a complex can highlight and amplify spe-
cific domain dynamics from the abundant global translational
and rotational motions in a protein.We expect NSE to provide a
unique tool to determine nanoscale protein dynamics for the
understanding of protein functions, such as how signals are
propagated in a protein over a long distance to a distal domain.
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Prolegomena

The phenomenon of long-range allostery is au fond intramolec-
ular signaling: information arising from ligand-binding is com-
municated to a distal site in a protein. Allostery occurs in numer-
ous biological processes. Long ago, it was proposed that protein
dynamics can propagate allosteric signals between distinct bind-
ing sites (Cooper and Dryden 1984). It is now increasingly be-
lieved that protein motion is a common mechanism for driving
allosteric communication (Popovych et al. 2006), enzymatic ca-
talysis (Goodey and Benkovic 2008), and for molecular recog-
nition (Boehr et al. 2009; Bhattacharya et al. 2013). Cellular
proteins are typically composed of multiple domains that are
connected by apparently unstructured linkers. A powerful theme
in cell signaling is that these multi-domain proteins relay signals
allosterically via cellular signaling pathways and networks
(Nussinov et al. 2013; Ma et al. 2011). Learning how proteins
move on nano-length scales will provide important insights into
howmulti-domain proteins coordinate domain–domain coupling
and propagate allosteric signals in the cell signaling network.

Protein motions are hierarchical, occurring on time scales
ranging from femtoseconds to longer than seconds, and on
length scales from angstroms to micrometers (Frauenfelder
et al. 1991; Daniel et al. 2003; Zaccai 2000; Mukhopadhyay
et al. 2007; Palmer 2004; Ha et al. 1999). Protein motions on
picosecond to nanosecond timescales, and conformational
transitions on millisecond time scales can typically be charac-
terized by nuclear magnetic resonance (NMR) at atomic
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resolution (Palmer 2001). Single molecule biophysics has
allowed the dynamics of biological macromolecules to be ob-
served on timescales from milliseconds to seconds (Deniz
et al. 2008; English et al. 2006; Greenleaf et al. 2007). How-
ever, nanoscale protein motions on nanosecond-to-
microsecond timescales and on nanometer length scales are
at best difficult to access by existing experimental biophysical
techniques. Currently there is a spatial-temporal dynamic gap,
on nanosecond-to-microsecond timescales and on nanometer
length scales, where we cannot determine the dynamics of
proteins and protein complexes.

Advances in biophysical experiments are beginning to over-
come this important limitation. For example, a recent single
molecule imaging study, with improved 100 microsecond time
resolution, suggests that the tilting and wobbling thermal fluc-
tuations in the motor protein myosin, likely occurring on
nanosecond-to-microsecond timescale, facilitate myosin in
finding its next stepping site on an F-actin filament (Beausang
et al. 2013). As a commentary article on Beausang et al.
(2013) points out, “while millisecond timescale detection
reveals changes in position or orientation between stable
conformations of the protein, important dynamic informa-
tion during the transitions between these states, which occur
on the nanosecond-to-microsecond timescale, are lost”
(Berger 2013). Thus, it is increasingly recognized that nano-
scale motions in proteins or in large protein complexes can
dictate protein function. Hereafter, we refer to nanosecond-
to-microsecond timescales and nanometer length scales as
nanoscale protein motions.

Neutron spin echo spectroscopy (NSE) emerges as the can-
didate technique to study nanoscale protein motions (Bu et al.
2005; Farago et al. 2010; Hong et al. 2014a, b; Biehl and
Richter 2014; Stadler et al. 2014). We have applied NSE to
study the changes in nanoscale protein motions in multi-
domain proteins (Bu et al. 2005; Farago et al. 2010; Bu and
Callaway 2011; Callaway et al. 2013). We have shown that,
when the multi-PDZ scaffolding protein NHERF1 is bound to
another adapter protein, Ezrin, the PDZ domains, located
more than 120 Å from the Ezrin-binding site, become activat-
ed to bind to membrane proteins, which correlates with long-
range allostery regulation observed in this set of multi-domain
cell signaling proteins (Li et al. 2005; Li et al. 2009).

The utility of NSE in deciphering the internal telegraph of
long-range allostery is not obvious, and requires an excursion
into non-equilibrium statistical mechanics. Moreover, NSE is
unfamiliar to most practitioners of biophysics, for there are
only few instruments extant capable of performing these ex-
periments, and their use requires specialized abilities.We have
developed a combined theoretical and experimental formalism
aimed at reducing the hurdles to the application of NSE to
protein nanoscale motions. Here, we first review some back-
ground information, making an excursion onto a small skerry,
before addressing the main continent.

Brownian dynamics and low Reynolds number: mass
without mass

Protein dynamics manifests itself in a world guided by a set of
laws that are counterintuitive at best. First, we must remember
that Reynolds number is very small. Reynolds number, com-
monly abbreviated as Re, is estimated by Re~Lv/νwhere L is a
characteristic length scale of the system, v a characteristic ve-
locity, and ν the kinematic viscosity of the solvent (where for
water ν~105 Å2/ns). Note that Re is an imprecise concept, used
to argue that certain terms in the Navier–Stokes equations of
fluid dynamics can safely be neglected. Re is a dimensionless
ratio of the relative importance of inertial forces (involving
mass) to massless, diffusive, viscous (Brownian) forces. When
Re is less than a few thousand, we are said to be at low Re, and
diffusive forces are dominant. For typical proteins (Howard
2001) Re<< 0.1 so that we are well within the mass-
independent low Re domain when studying protein dynamics.
Protein dynamics thus has much more in common with playing
badminton at the bottom of a swimming pool filled with molas-
ses than with an aircraft carrier crossing the ocean.

How does low Re affect dynamics? Consider the coordi-
nate x(t) describing the a particle undergoing motion in a
fluctuating external Brownian force F(t) via the Langevin
equation:

mẍ tð Þ þ ζẋ tð Þ þ k x tð Þ ¼ F tð Þ

where the superscript dot denotes differentiation with respect
to time, m mass, ζ the friction constant and k is the spring
constant (Howard 2001; Doi and Edwards 1986). Solutions of
the homogeneous (F=0) equation are linear combinations of
expressions of the form

x tð Þ ¼ x 0ð Þexp ωtð Þ

where ω satisfies the quadratic equation mω2+ζω+k=0. At
low Re, inertial effects can typically be neglected, so m can be
safely taken to zero. The coordinate x(t) then undergoes
overdamped motion x(t)~exp(−kt/ζ). However, this simple
m→0 result is invalidated when the discriminant of the qua-
dratic equation is negative:

ζ2−4km < 0

which occurs when the spring constant k is sufficiently large.
In that case, the motion includes underdamped oscillatory dy-
namics, and phenomena such as sound waves can occur. Thus,
the assumption of mass-independent overdamped motion
(where sound waves are absent) is correct for rigid bodies or
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rigid bodies connected by soft spring linkers. Stiff bodies
(where k is large) exhibit underdamped motion and require
special consideration. It is thus the overdamped regime that
dictates nanoscale protein motions.

Thus, we see that the simplest description of protein dy-
namics does not manifestly obey Newton’s laws. For instance,
a body at rest will not remain at rest when acted upon by a
fluctuating Brownian force F(t), but will rather require work to
keep it in place. Forces are not proportional to mass times
acceleration, as mass is absent. Rather, they are proportional
to velocity, incorporating the concept of a mobility tensor
which we discuss in detail below. Essential formulae must
be independent of mass—for instance, we now have a center
of friction rather than a center of mass. The diffusion of deu-
terated proteins will be the same as their hydrogenated coun-
terparts, despite the mass difference.

Neutron spin echo spectroscopy

Because NSE is an emerging biophysical technique, we give a
brief introduction of how it works. NSE is a quasielastic neu-
tron scattering technique that measures the difference in ve-
locities between the incident and the scattered neutrons (Bee
1988; Higgins and Benoit 1994). NSE employs the Larmor
precession of neutron spins in a magnetic guide field as a
clock to measure extremely small changes in velocities of
scattering neutrons (Mezei 1980; Mezei et al. 2003), allowing
the detection of very small energy changes in the scattering
neutrons of δE~103–10−2 μeV, corresponding to picosecond-
to-microsecond dynamics. Note that, unlike NMR spin echo,
producing “neutron spin echo” is only for the purpose of mea-
suring the difference in velocities between the incident and
scattering neutrons (Mezei et al. 2003).

The dynamic information obtained by NSE can thus be
understood by extending the principles that we have learned
from the elementary technique of dynamic light scattering
(DLS) (Berne and Pecora 1976; Pecora 1985), While both
DLS and NSE measure the space-time correlation function
of fluctuations, DLS measures I(Q,t) on micron or longer
length scales because of the long wavelength of visible light.
DLSmeasure the intensity correlation g2(Q,t) while NSEmea-
sures the field correlation g1(q,t). In DLS, the Siegert relation
is used to obtain in g1(q,t). A protein or a protein complex has
a typical size of 10–500 Å. DLS thus only “sees” a protein as a
point object, and can only determine the diffusion constant,
which is independent of Q. Because of the shorter wavelength
of neutrons, NSE measures I(Q,t) on nanometer to submicron
length scales, and can reveal the nanoscale internal fluctua-
tions in a protein or a protein complex. NSE can determine
macromolecular motions on nanometer to micron length-
scales and on nanosecond to microsecond time scales. Never-
theless, until recently, NSE has been mainly applied to study

the dynamics of synthetic polymers in solution and melt, and
other types of soft matter (Mezei 1980; Farago 2003; Ewen
and Richter 1997).

Nonequilibrium statistical mechanics and the mobility
tensor

The framework that we developed emerges as an extension,
albeit more complex (Bu et al. 2005; Farago et al. 2010; Bu
and Callaway 2011; Callaway et al. 2013), of ideas developed
for polymer dynamics (Doi and Edwards 1986; Berne and
Pecora 1976).We summarize the basic approach here.We begin
by considering the dynamics information obtained via an NSE
experiment. NSE measures the intermediate scattering function
I(Q,t), which is the spatial Fourier transformation of the space–
time van Hove correlation function G(r,t) (Mezei 1980),

I Q; tð Þ ¼
Z

V
G r; tð Þexp −iQ⋅rð Þdr

with Q the magnitude of the scattering vector, t the time, and r
the position of a scattering center. The designation “interme-
diate” arises precisely because only one of the variables of
G(r,t) is Fourier transformed. Like the static small angle neu-
tron scattering, in the low Q region, I(Q,t) is dominated by
coherent scattering that corresponds to the cross-correlation
G(r,t), i.e., the probability of finding a nucleus at position ri
at time t=0 and finding another nucleus at position rj at time t.
For a protein in solution, I(Q,t) can typically be fit to a single
exponential in time (and is difficult to fit to more exponentials)
at a given Q. A natural way to interpret the NSE data is to
examine the effective diffusion constant Deff(Q) as a function
of Q, which is determined by the normalized intermediate
scattering function I(Q,t)/I(Q,0):

Γ Qð Þ ¼ − lim
t→0

∂
∂t

ln I Q; tð Þ=I Q; 0ð Þ½ �

Deff Qð Þ ¼ Γ Qð Þ
Q2

ð1Þ

where I(Q,0) is the static form factor.
In order to describe the dynamics of a protein in solution,

we utilize the remarkable Akcasu–Gurol approach originally
developed to describe the dynamics of random coil polymers
(Akcasu and Gurol 1976), generalized to include rotational
motion (Bu et al. 2005):

Deff Qð Þ ¼ kBT

Q2

X
jl

b jbl Q⋅H jl
T ⋅QþLj⋅H jl

R⋅Ll
� �

eiQ⋅ r j−rlð ÞD E
X
jl

b jble
iQ⋅ r j−rlð ÞD E

ð2Þ
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where bj is the coherent scattering length of a subunit j, H
T is

the translational mobility tensor, HR is the rotational mobility
tensor, and kBT is the usual temperature factor. The structural
coordinates of the macromolecule, taken relative to the center
of friction of the protein, are given by rj (note that Σ rj=0). In
practice, the structural coordinates can be atoms, protein do-
mains in a multi-domain protein, or subunits in a multimeric
protein complex, and may be obtained from high-resolution
crystallography or NMR, or from low-resolution electron mi-
croscopy and small angle X-ray and neutron scattering. In
Eq. 2, Lj=rj×Q is the torque vector for each coordinate. The
brackets < > denote an orientational average over the vector Q,
so that

< QaQbexp i Qrð Þ > Q−2 ¼ 1=3ð Þδab j0 Qrð Þ þ 1=3ð Þδab− rarb=r
2

� �� �
j2 Qrð Þ

can be expressed in terms of the spherical Bessel functions j. The
translationalmobility tensorHT in Eq. 2 is defined by the velocity
response v=HT F to an applied force F. The rotational mobility
tensor HR is defined by the angular velocity responseω=HRτ to
an applied torque τ. The relationship between force, velocity and
the translational mobility tensor is illustrated in Fig. 1.

The mobility tensor provides a direct indication of the exis-
tence of internal degrees of freedom As discussed above,
Eq. 2 is valid for either rigid bodies or rigid-body subunits
connected by soft spring linkers (Bu et al. 2005). For a
completely flexible body, the rotational diffusion term (in-
volving HR) is absent. The rotational mobility tensor arises
from the consideration of rigid body constraints, introduced
via Lagrange multipliers or by generalized coordinates (Doi
and Edwards 1986). For a rigid body composed of N identical
beads, the translational mobility tensor HT is a matrix with N2

identical 3×3 elements since HT yields the same velocity re-
sponse of e.g., subunits B and C to a force applied to subunit
A. For an object with internal flexibility, the elements of the
mobility tensor will not be equal, so forces applied to a given
bead would result in different velocities for other beads and
the body would not remain rigid. Comparing models of the
mobility tensor from Eq. 2 to experimental Deff(Q) from NSE
experiments allows one to extract the internal dynamics of a

protein or protein complex. Thus, the key point of Eq. 2 is that
the effective diffusion constant Deff(Q) can be calculated if we
know the structural coordinates of the protein, and have pro-
posed a model for the mobility tensor.NSE therefore allows us
to test models of the mobility tensor, and thereby determine
and characterize internal dynamic modes in the protein. We
stress that the mobility tensor does not explicitly depend upon
mechanical forces like spring constants, and is rather an eido-
lon generated by protein motion (much as the motion of the
surrounding fluid could be described by Navier–Stokes hy-
drodynamics for a larger body).

We now evaluate the rotational mobility tensor H R for a
rigid body. In this case, both the rotational and translational
mobility tensors are 3×3 matrices, equal for each subunit. The
angular velocity vector of the rigid object isω=HR τ, with the
torque τ=Σn rn x Fn. The velocity is separated into center of
friction and rotational contributions vn=V + (ω x rn)=N HT

Fn. Thus, for an arbitrary 3-component vector ω

ω ¼ HRΣnrn � N HT
� �−1

V þω� rnð Þ ð3Þ

We note that Σ rj=0 (so the term involving V drops out).
Then, Eq. 3 is of the form ω=Mω for an arbitrary vector ω,
and thus M is the identity matrix. This can be simplified further
by the substitution ω=HT Q, leading to useful general results
like Deff(Q→∞)=2 Deff (Q=0) for a uniform rigid body (Bu
et al. 2005; Farago et al. 2010; Bu and Callaway 2011). Equa-
tion 3 shows that the 3×3 matrix HR can be evaluated from the
3×3 matrix HT and bead subunit coordinates rn.The rotational
mobility tensor is thus entirely determined by the translational
mobility tensor and the coordinates of the protein.We adopt the
simplifying assumption that all three principal spatial compo-
nents of the translational mobility tensor for each subunit are
equal to D0/(kBT)=1/ζwith ζ the friction constant of a subunit,
and D0 the measured diffusion constant of the protein. Then, a
compact formula of HR is given (Bu et al. 2005; Farago et al.
2010; Bu and Callaway 2011):

HR
αβ ¼ N D0=kBTð Þ Σn δαβr

2
n– rrαrnβ

� �� �−1 ð4Þ

where D0 is the diffusion constant of the protein or protein
complex at Q=0, which can be measured experimentally by
pulsed field gradient NMR (PFG NMR) or dynamic light
scattering, and N is the number of structural coordinates of
the protein, relative to its center of friction (note thatΣn rn=0).
We use Greek indices (α, β) for spatial coordinates (x,y,z) and
Roman symbols (m,n) to number bead subunits. With Eqs. 2–
4, an estimate of Deff (Q) for a rigid-body can be made by
simply using only the coordinates and diffusion constant D0.
Our simple approach does not require complicated molecular
dynamics simulations, elastic network models, fits to rotation-
al expansions in spherical harmonics, or Navier–Stokes hy-
drodynamics. We do not have to fit NSE data, but can directly

Fig. 1 The relationship between force and the mobility tensor. The
translational mobility tensor gives the velocity response (speed and
direction) of a given protein domain to a force applied to itself or to
another domain
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predict the outcome of an NSE experiment from other exper-
iments to test models of the mobility tensor. We now adum-
brate this point.

Note that PFGNMR measures the self-diffusion coeffi-
cient, while DLS measures the mutual diffusion coefficient.
For DLS, it is necessary to measure the diffusion at several
protein concentrations and extrapolate to zero concentration.
Nevertheless, the extrapolated diffusion constant may not re-
flect the D0 at the high protein concentration measured by
NSE. Thus, PFGNMR is more reliable than DLS to estimate
D0 at the same protein concentration as measured by NSE.

For an object with internal domain motion, comparing the
calculated Deff(Q) with experimental NSE data allows one to
extract the relative degree of dynamic coupling between the
various components of the system. This dynamic coupling is
defined by the mobility tensor. For example, a rigid two-
domain system is described by a translational mobility tensor
(spatial indices are ignored)

H ¼ H0
1 1
1 1

� �
ð5aÞ

with all elements of the tensor equal, and yields (via Eq. 2) the
simple result that the translational contribution to the effective
diffusion constant is given by DT

eff(Q)=kBT H0, independent
of Q. By contrast, a two-domain system with internal motion
will possess a translational mobility tensor

H ¼ H1 0
0 H2

� �
ð5bÞ

in principal coordinates. Thus, the application of equal forces
to the two domains will result in their having different veloc-
ities, revealing internal motion. For the case where there is one
internal translational mode between subunits 1 and 2 with
D1=kBTH1 and D2=kBTH2 (Bu et al. 2005), the translational
contribution to the effective diffusion constant is:

DT
eff Qð Þ ¼ D1S1 Qð Þ þ D2S2 Qð Þ

S Qð Þ ð5cÞ

Here, S1(Q) and S2(Q) are the form factors of the separate
individual protein domains, while S(Q) is the form factor of
the entire protein. Orientational averages are performed, so
that, e.g., S(Q)=Σ j0 (Qr), and S(Q) is normalized so that
S(0)=N2. D1 and D2 are the diffusion constants of individual
domains. Thus, the Q dependence of the effective diffusion
constant Deff (Q) reveals the existence of internal motion.
We stress that Eq. 5c is only the translational contribution to
the effective diffusion constant, and that real comparisons
with experiment require that the rotational contributions also
be included. The point of presenting Eq. 5c is to show that the
form of the mobility tensor is directly reflected in the Q de-
pendence of the effective diffusion constant.

To summarize, the calculations that we have presented con-
sist of rigid-body motion (including both translational and
rotational motion), and an internal mode. We stress that, in
principle, it is possible to include the effects of arbitrary trans-
lational and rotational internal motion in the calculation (Bu
et al. 2005). The combination of NSE and first cumulant anal-
ysis allows one to test complex models of the mobility tensors

60 Å

A B

Fig. 2 NHERF1 alone behaves as a rigid-body in solution as shown from
NSE experiments. a The 3-D shape of NHERF1 reconstructed from
SAXS (Li et al. 2009) using the ab initio program DAMMIN (Svergun
1999). The known high-resolution structures of the PDZ1 (PDB code:
1I92) and PDZ2 (PDB code: 2KJD) domains are docked into the 3-D
shape, using UCSF chimera (Pettersen et al. 2004). EBD, which overlaps

with the last 13 amino acid residues that interact with PDZ2 is not marked
in the graph. b Comparing the experimental Deff (Q) of NHERF1 (black
open square) with the rigid-body calculation (black solid line). The over-
all translational diffusion constant Do (filled black square) at Q=0 Å−1 is
Do=2.4 Å2/ns from PFG NMR measurements
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of the system, and extract dynamical information about the
internal motions of the protein.

Activation of long-range allostery in a multidomain
scaffolding protein revealed by NSE

The virtue of the above simple approach can be seen by compar-
ing our calculations with the experimental NSE results from a
cell signaling scaffolding protein called NHERF1 (Farago et al.
2010). NHERF1 plays essential roles in modulating the intracel-
lular trafficking and assembly of a number of receptors and ion

transport proteins. NHERF1 is a multi-domain protein that has
two modular domains, PDZ1 and PDZ2, and a disordered but
compact C-terminal domain, with three domains connected by
unstructured linkers (Li et al. 2005; Li et al. 2007; Bhattacharya
et al. 2010). The C-terminal domain binds to the FERM domain
of Ezrin with high affinity, Kd=19 nM (Reczek et al. 1997). We
have shown that binding to FERM to the C-terminal domain of
NHERF1 allosterically increases the binding affinity of both
PDZ1 and PDZ2 domains of NHERF1 for the cytoplasmic tail
of CFTR (Li et al. 2005; Li et al. 2009). The PDZ1 and PDZ2
domains are 110 and 80Å, respectively, from the FERMbinding
site in the CT domain. The NHERF1 FERM complex thus
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Fig. 3 Activation of inter-domain motion in NHERF1 upon binding to
the FERM domain of Ezrin. a Comparing experimental Deff(Q) of
NHERF1 dFERM and NHERF1 hFERM with rigid-body calculations.
Open red squares are the NSE data from NHERF1 dFERM. Open blue
squares are the NSE data from NHERF1 hFERM. Solid red and blue
squares are the self-diffusion constants Do of NHERF1 dFERM and
NHERF1 hFERM obtained from PFG NMR, respectively. The solid red
line is from rigid-body model calculations of the NHERF1 dFERM com-
plex. The solid blue line is from rigid-body model calculations of the
NHERF1 hFERM complex. b Comparing experimental Deff(Q) of deu-
terated complex NHERF1 dFERM and hydrogenated complex
NHERF1 hFERM with calculations incorporating interdomain motion
between PDZ1 and PDZ2. The symbols for the experimental data are

the same as in (a). The dashed red curve is calculated from model incor-
porating domain motion between PDZ1 and PDZ2 for the
NHERF1 dFERM complex. The dashed blue curve is calculated from
model incorporating domain motion between PDZ1 and PDZ2 for the
NHERF1 hFERM complex. The comparisons in (a) and (b) show that
deuteration of the FERM domain amplifies the effects of protein internal
motions detected by NSE. c A model representing domain motion be-
tween PDZ1 and PDZ2 in the complex. The 3-D shape of the complex is
reconstructed from SANS (Bajpai et al. 2009). The known high-
resolution structure fragments of PDZ1, PDZ2, and the FERM domain
(PDB code: 1NI2) are docked into the envelope using UCSF chimera
(Pettersen et al. 2004). The arrows represent translational motion between
PDZ1 and PDZ2. A length-scale bar of 60 Å is shown
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suggests long-range allosteric transmission of binding signals on
nanometer length scales (Li et al. 2009). Our NSE experiments
revealed the activation of inter-domain motions of the PDZ do-
mains in NHERF1 on submicrosecond time scales upon binding
to FERM. A dynamic protein can recognize more binding part-
ner proteins and bind to one partner more tightly than a rigid
homolog (Bhattacharya et al. 2013). We thus correlate the acti-
vated domain motions with the increased binding capabilities of
the PDZ domains in the complex, and thus the propagation of
allosteric signals from the Ezrin-binding site to the remote PDZ
domains that are located as far as 110 Å distant.

For NHERF1 alone in solution, the calculated rigid body
Deff(Q) agrees with the NSE experimental data quite well (see
Fig. 2). The rigid-body calculation uses as input only the trans-
lational diffusion coefficient D0 of NHERF1 obtained from PFG
NMR and the “dummy atom” structural coordinates (Svergun

1999) reconstructed from solution small angle X-ray and neutron
scattering (SAXS and SANS) (Li et al. 2009, 2007).

We have compared our calculations with the NSE experi-
mental results on two types of complexes of NHERF1 bound
to FERM (see Fig. 3). One complex is the hydrogenated
NHERF1 in complex with the hydrogenated FERM
(NHERF1 hFERM), and the other complex is hydrogenated
NHERF1 bound t o d e u t e r i um - l a b e l e d FERM
(NHERF1 dFERM). As we have pointed out, at low Reynolds
number the dynamics of a protein as seen by NSE should not
depend upon its mass, but rather upon its size. In our calcula-
tions, we thus always impose the constraint that the dynamics,
and therefore the mobility tensors of the hydrogenated and
deuterated components are the same. When calculating
Deff(Q) for the NHERF1·

dFERM complex, the scattering from
the deuterated component is treated as “invisible” in Eq. 2
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Fig. 4 A simple four-point model can well describe domain motion in
the complex. a The four-point model represents the NHERF1 FERM
complex, with the centers of PDZ1, PDZ2, CT, and FERM domain
taken from Fig. 3a. b Comparing the experimental NSE data with the
four-point rigid-body calculations for NHERF1 hFERM (blue open
squares are the experimental data and blue solid line is the calculated
data) and for NHERF1 dFERM (red open squares are experimental
data and red solid line is the calculated data). Do of NHERF1

dFERM
(solid red squares) and NHERF1 dFERM (solid blue squares) from

PFG NMR are shown. c Comparing the experimental data with calcu-
lations assuming inter-domain motion between PDZ1 and PDZ2 in
NHERF1 dFERM (red dash line) and NHERF1 hFERM (blue dash
line). The experimental symbols are the same as in (b). d Comparing
the experimental data with calculations incorporating inter-domain
motion between PDZ1 and PDZ2, as well as assuming finite size form
factor of spheres of 20 Å radius for the FERM domain and for both
PDZ domains in NHERF1 dFERM (red dash dot line) and in
NHERF1·hFERM (blue dash dot line)

Biophys Rev (2015) 7:165–174 171



because of contrast matching, i.e., the neutron scattering
length density of the deuterated component contrast matches
that of the D2O buffer background. We used D0 of the deuter-
ated complex or the hydrogenated complex obtained from
PGF NMR or from dynamic light scattering and the structural
coordinates obtained from SANS.

As shown in Fig. 3a, the agreement between the experi-
mental NSE data and rigid-body calculations is poor for both
the NHERF1 dFERM and the NHERF1 hFERM complexes.
We have then incorporated domain motions in our calcula-
tions, with the mobility tensor with an internal mode between
the PDZ1 and PDZ2 domains (Fig. 3b). The calculated
Deff(Q) with internal motion agrees quite well with the NSE
results for the NHERF1 dFERM complex. Nevertheless, for
the NHERF1 hFERM complex, the computed D0 at Q=0 is
not close to the experimental values from PFGNMRmeasure-
ments. We attribute this discrepancy to large conformational
variations in NHERF1 by the unfolding of the CT domain
upon binding to FERM. Such complications are minimal in
the NHERF1 dFERM complex because the deuterated
dFERM is “invisible” to neutrons.

A simple four-point model describes domain motion

The simple calculations we presented above require only the
structural coordinates and a single constraint, the diffusion
constant at Q=0 Å−1 for the deuterated complex, which can
be measured by PFGNMR, to generate the computed Deff(Q).

We further introduce an even more simplified model that
yields the same effect, and serves to explain the Deff(Q) ob-
served by NSE experiments. The simplified model is taken by
extracting four points that represent the coordinates of
the center-of-friction of domains obtained from the
SANS data of the NHERF1 FERM complex. These
points form a triangle, as shown in Fig. 4a, with the
distances FERM–PDZ2=80 Å, PDZ2–PDZ1=59 Å, and
FERM–PDZ1=110 Å. The CT domain is taken as being
halfway between the FERM and PDZ2 domains. We
include the point representing the FERM domain with
a weight factor of 3 to account for its larger size rela-
tive to the other domains. Because it is possible to
obtain the center-of-friction distances between the do-
mains with confidence even with low resolution SAXS
or SANS data, this model possesses fewer uncertainties
than a model based upon the molecular shape. More
details of the four-point calculations have been de-
scribed previously (Farago et al. 2010).

Figure 4b is the Deff(Q) of the four-point rigid-body
model, without incorporating internal domain motion
between PDZ1 and the rest of the complex. Figure 4c
is the Deff(Q) of the four-point model incorporating in-
ternal domain motion between PDZ1 and the rest of the
complex. After incorporating internal motion, the overall
Deff(Q) from the four-point model agrees well with the
experimental data for both the partially deuterated and
the hydrogenated complexes. The comparison between
calculation and experimental data improves after
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Fig. 5 For the hydrogenated NHERF1 hFERM complex, the difference
in Deff(Q) between the rigid-body model and domain-motion models is
very small, but is significantly increased in the deuterated complex. a
Comparing the rigid-body calculation with the domain-motion calcula-
tion in the four-point model in the hydrogenated NHERF1 hFERM com-
plex. NSE data from the NHERF1 hFERM (blue open squares), the four-
point rigid-body model (black line), four-point model incorporating do-
main motion between PDZ1 and PDZ2 (red line), four-point model in-
corporating domainmotion between PDZ1 and PDZ2 and finite size form
factor of 20 Å radius for the FERM domain, PDZ1 and PDZ2 (blue line).

D0 at Q=0 Å−1 as measured from PFG NMR is shown in blue solid
square. b Comparing the rigid-body calculation with the domain-
motion calculation in the four-point model in the deuterated
NHERF1 dFERM complex. NSE data from the NHERF1 dFERM (red
open squares), the four-point rigid-body model (black line), four-point
model incorporating domain motion between PDZ1 and PDZ2 (red line),
four point model incorporating domain motion between PDZ1 and PDZ2
and finite size form factor of 20 Å radius for the FERM domain, PDZ1
and PDZ2 (blue line). D0 at Q=0 Å−1 as measured from PFG NMR is
shown in red solid square
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including the form factor of a 20 Å radius sphere for
the FERM domain and both PDZ domains in the calcu-
lation (Fig. 4d). Thus, the NSE data are better repre-
sented by the four-point model that includes PDZ1–
PDZ2 interdomain motion than by a model that assumes
the complex is a rigid body. Further improvement likely
requires the use of methods of evaluating the mobility
tensors for proteins with high accuracy.

Moreover, from the four-point model calculations, we
note that Deff(Q) for the hydrogenated rigid complex
and the hydrogenated complex with internal motion are
nearly indistinguishable (Fig. 5a). For the deuterated
complex, Deff(Q) obtained from the inter-domain motion
model is significantly different from that of the rigid-
body model (Fig. 5b). This can be explained as due to
the relatively large contribution to Eq. 2 of the effects
of rotational diffusion of the overall object, which dom-
inates and obscures the effects of internal motion when
no deuteration is performed. For the partially deuterated
complex, both the docked domain calculation (Fig. 3b)
and the four-point model (Fig. 5b) show that Deff(Q) of
the rigid-body complex is significantly different from
that of the complex with internal domain motion. Thus,
deuteration of a domain or subunit in a protein complex
can amplify the effects of internal protein dynamics as
detected by NSE.

Perspectives and challenges for the future

Clearly, we are only beginning to understand nanoscale pro-
tein motions. Much is to be learned about the nature of nano-
scale protein motions and their roles in protein function. The
structure of a multidomain protein is heterogeneous, and is
comprised of structured modular domains and disordered
linkers and tails. How do nanoscale motions differ in different
segments in a multidomain protein? Are the nanoscale protein
domain motions coupled, and how do the coupled domain
motions change in response to protein complex formation?
How does post-translational modification such as phosphory-
lation affect nanoscale protein motions and protein complex
formation? For multi-domain protein interactions, it is of par-
ticular interest to know how target-binding triggers the prop-
agation of nanoscale protein fluctuations in different segments
in the same protein, or in different protein binding partners.
Determining the changes in nanoscale motions in protein
binding partners will provide a means to further our under-
standing of the mechanisms of how signals are propagated in
multi-protein complexes, which affect hierarchical cellular
signaling pathways and networks (Nussinov et al. 2013;
Nussinov 2012). Combining NSE experiments with our new
theoretical and experimental strategies will allow us to address
these questions.
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