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Abstract

Events in an online social network can be categorized roughly into endogenous events, where 

users just respond to the actions of their neighbors within the network, or exogenous events, where 

users take actions due to drives external to the network. How much external drive should be 

provided to each user, such that the network activity can be steered towards a target state? In this 

paper, we model social events using multivariate Hawkes processes, which can capture both 

endogenous and exogenous event intensities, and derive a time dependent linear relation between 

the intensity of exogenous events and the overall network activity. Exploiting this connection, we 

develop a convex optimization framework for determining the required level of external drive in 

order for the network to reach a desired activity level. We experimented with event data gathered 

from Twitter, and show that our method can steer the activity of the network more accurately than 

alternatives.

1 Introduction

Online social platforms routinely track and record a large volume of event data, which may 

correspond to the usage of a service (e.g., url shortening service, bit.ly). These events can be 

categorized roughly into endogenous events, where users just respond to the actions of their 

neighbors within the network, or exogenous events, where users take actions due to drives 

external to the network. For instance, a user’s tweets may contain links provided by bit.ly, 

either due to his forwarding of a link from his friends, or due to his own initiative to use the 

service to create a new link.

Can we model and exploit these data to steer the online community to a desired activity 

level? Specifically, can we drive the overall usage of a service to a certain level (e.g., at least 

twice per day per user) by incentivizing a small number of users to take more initiatives? 

What if the goal is to make the usage level of a service more homogeneous across users? 

What about maximizing the overall service usage for a target group of users? Furthermore, 
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these activity shaping problems need to be addressed by taking into account budget 

constraints, since incentives are usually provided in the form of monetary or credit rewards.

Activity shaping problems are significantly more challenging than traditional influence 

maximization problems, which aim to identify a set of users, who, when convinced to adopt 

a product, shall influence others in the network and trigger a large cascade of adoptions [1, 

2]. First, in influence maximization, the state of each user is often assumed to be binary, 

either adopting a product or not [1, 3, 4, 5]. However, such assumption does not capture the 

recurrent nature of product usage, where the frequency of the usage matters. Second, while 

influence maximization methods identify a set of users to provide incentives, they do not 

typically provide a quantitative prescription on how much incentive should be provided to 

each user. Third, activity shaping concerns about a larger variety of target states, such as 

minimum activity requirement and homogeneity of activity, not just activity maximization.

In this paper, we will address the activity shaping problems using multivariate Hawkes 

processes [6], which can model both endogenous and exogenous recurrent social events, and 

were shown to be a good fit for such data in a number of recent works (e.g., [7, 8, 9, 10, 11, 

12]). More importantly, we will go beyond model fitting, and derive a novel predictive 

formula for the overall network activity given the intensity of exogenous events in 

individual users, using a connection between the processes and branching processes [13, 14, 

15, 16]. Based on this relation, we propose a convex optimization framework to address a 

diverse range of activity shaping problems given budget constraints. Compared to previous 

methods for influence maximization, our framework can provide more fine-grained control 

of network activity, not only steering the network to a desired steady-state activity level but 

also do so in a time-sensitive fashion. For example, our framework allows us to answer 

complex time-sensitive queries, such as, which users should be incentivized, and by how 

much, to steer a set of users to use a product twice per week after one month?

In addition to the novel framework, we also develop an efficient gradient based optimization 

algorithm, where the matrix exponential needed for gradient computation is approximated 

using the truncated Taylor series expansion [17]. This algorithm allows us to validate our 

framework in a variety of activity shaping tasks and scale up to networks with tens of 

thousands of nodes. We also conducted experiments on a network of 60,000 Twitter users 

and more than 7,500,000 uses of a popular url shortening service. Using held-out data, we 

show that our algorithm can shape the network behavior much more accurately.

2 Modeling Endogenous-Exogenous Recurrent Social Events

We model the events generated by m users in a social network as a m-dimensional counting 

process N (t) = (N1(t), N2(t), …, Nm(t))T, where Ni(t) records the total number of events 

generated by user i up to time t. Furthermore, we represent each event as a tuple (ui, ti), 

where ui is the user identity and ti is the event timing. Let the history of the process up to 

time t be Ht := {(ui, ti) | ti ≤ t}, and Ht− be the history until just before time t. Then the 

increment of the process, dN (t), in an infinitesimal window [t, t + dt] is parametrized by the 

intensity λ(t) = (λ1(t), …, λm(t))T ≥ 0, i.e.,
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(1)

Intuitively, the larger the intensity λ(t), the greater the likelihood of observing an event in 

the time window [t, t + dt]. For instance, a Poisson process in [0, ∞) can be viewed as a 

special counting process with a constant intensity function λ, independent of time and 

history. To model the presence of both endogenous and exogenous events, we will 

decompose the intensity into two terms

(2)

where the exogenous event intensity models drive outside the network, and the endogenous 

event intensity models interactions within the network. We assume that hosts of social 

platforms can potentially drive up or down the exogenous events intensity by providing 

incentives to users; while endogenous events are generated due to users’ own interests or 

under the influence of network peers, and the hosts do not interfere with them directly. The 

key questions in the activity shaping context are how to model the endogenous event 

intensity which are realistic to recurrent social interactions, and how to link the exogenous 

event intensity to the endogenous event intensity. We assume that the exogenous event 

intensity is independent of the history and time, i.e., λ(0)(t) = λ(0).

2.1 Multivariate Hawkes Process

Recurrent endogenous events often exhibit the characteristics of self-excitation, where a user 

tends to repeat what he has been doing recently, and mutual-excitation, where a user simply 

follows what his neighbors are doing due to peer pressure. These social phenomena have 

been made analogy to the occurrence of earthquake [18] and the spread of epidemics [19], 

and can be well-captured by multivariate Hawkes processes [6] as shown in a number of 

recent works (e.g., [7, 8, 9, 10, 11, 12]).

More specifically, a multivariate Hawkes process is a counting process who has a particular 

form of intensity. More specifically, we assume that the strength of influence between users 

is parameterized by a sparse nonnegative influence matrix A = (auu′)u,u′ ∈[m], where auu′ > 0 

means user u′ directly excites user u. We also allow A to have nonnegative diagonals to 

model self-excitation of a user. Then, the intensity of the u-th dimension is

(3)

where g(s) is a nonnegative kernel function such that g(s) = 0 for s ≤ 0 and ; 

the second equality is obtained by grouping events according to users and use the fact that 

. Intuitively,  models the propagation of peer 

influence over the network — each event (ui, ti) occurred in the neighbor of a user will boost 

her intensity by a certain amount which itself decays over time. Thus, the more frequent the 
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events occur in the user’s neighbor, the more likely she will be persuaded to generate a new 

event.

For simplicity, we will focus on an exponential kernel, g(t − ti) = exp(−ω(t − ti)) in the 

reminder of the paper. However, multivariate Hawkes processes and the branching 

processed explained in next section is independent of the kernel choice and can be extended 

to other kernels such as power-law, Rayleigh or any other long tailed distribution over 

nonnegative real domain. Furthermore, we can rewrite equation (3) in vectorial format

(4)

by defining a m × m time-varying matrix G(t) = (auu′ g(t))u,u′ ∈[m]. Note that, for multivariate 

Hawkes processes, the intensity, λ(t), itself is a random quantity, which depends on the 

history Ht. We denote the expectation of the intensity with respect to history as

(5)

2.2 Connection to Branching Processes

A branching process is a Markov process that models a population in which each individual 

in generation k produces some random number of individuals in generation k + 1, according 

some distribution [20]. In this section, we will conceptually assign both exogenous events 

and endogenous events in the multivariate Hawkes process to levels (or generations), and 

associate these events with a branching structure which records the information on which 

event triggers which other events (see Figure 1 for an example). Note that this genealogy of 

events should be interpreted in probabilistic terms and may not be observed in actual data. 

Such connection has been discussed in Hawkes’ original paper on one dimensional Hawkes 

processes [21], and it has recently been revisited in the context of multivariate Hawkes 

processes by [11]. The branching structure will play a crucial role in deriving a novel link 

between the intensity of the exogenous events and the overall network activity.

More specifically, we assign all exogenous events to the zero-th generation, and record the 

number of such events as N (0)(t). These exogenous events will trigger the first generation of 

endogenous events whose number will be recorded as N (1)(t). Next these first generation of 

endogenous events will further trigger a second generation of endogenous events N (2)(t), 

and so on and so forth. Then the total number of events in the network is the sum of the 

numbers of events from all generations

(6)

Furthermore, denote all events in generation k − 1 as . Then, independently for each 

event  in generation k − 1, it triggers a Poisson process in its neighbor u 

independently with intensity auui g(t − ti). Due to the additivity of independent Poisson 
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processes [22], the intensity, , of events at node u and generation k is simply the sum 

of conditional intensities of the Poisson processes triggered by all its neighbors, i.e., 

. Concatenate the 

intensity for all u ∈ [m], and use the time-varying matrix G(t) (4), we have

(7)

where  is the intensity for counting process N (k)(t) at k-th 

generation. Again, due to the additivity of independent Poisson processes, we can 

decompose the intensity of N (t) into a sum of conditional intensities from different 

generation

(8)

Next, based on the above decomposition, we will develop a closed form relation between the 

expected intensity µ(t) = EHt− [λ(t)] and the intensity, λ(0)(t), of the exogenous events. This 

relation will form the basis of our activity shaping framework.

3 Linking Exogenous Event Intensity to Overall Network Activity

Our strategy is to first link the expected intensity µ(k)(t) := EHt−[λ(k)(t)] of events at the k-th 

generation with λ(0)(t), and then derive a close form for the infinite series sum

(9)

Define a series of auto-convolution matrices, one for each generation, with G(*0)(t) = I and

(10)

Then the expected intensity of events at the k-th generation is related to exogenous intensity 

λ(0) by

Lemma 1

µ(k)(t) = G(*k)(t) λ(0).

Next, by summing together all auto-convolution matrices,

we obtain a linear relation between the expected intensity of the network and the intensity of 

the exogenous events, i.e., µ(t) = Ψ(t)λ(0). The entries in the matrix Ψ(t) roughly encode the 
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“influence” between pairs of users. More precisely, the entry Ψuv (t) is the expected intensity 

of events at node u due to a unit level of exogenous intensity at node v. We can also derive 

several other useful quantities from Ψ(t). For example,  can be thought 

of as the overall influence user v on has on all users. Surprisingly, for exponential kernel, the 

infinite sum of matrices results in a closed form using matrix exponentials. First, let  denote 

the Laplace transform of a function, and we have the following intermediate results on the 

Laplace transform of G(*k)(t).

Lemma 2

With Lemma 2, we are in a position to prove our main theorem below:

Theorem 3

.

Theorem 3 provides us a linear relation between exogenous event intensity and the expected 

overall intensity at any point in time but not just stationary intensity. The significance of this 

result is that it allows us later to design a diverse range of convex programs to determine the 

intensity of the exogenous event in order to achieve a target intensity.

In fact, we can recover the previous results in the stationary case as a special case of our 

general result. More specifically, a multivariate Hawkes process is stationary if the spectral 

radius

(11)

is strictly smaller than 1 [6]. In this case, the expected intensity is µ = (I − Γ)−1λ(0) 

independent of the time. We can obtain this relation from theorem 3 if we let t → ∞.

Corollary 4

.

Refer to Appendix A for all the proofs.

4 Convex Activity Shaping Framework

Given the linear relation between exogenous event intensity and expected overall event 

intensity, we now propose a convex optimization framework for a variety of activity shaping 

tasks. In all tasks discussed below, we will optimize the exogenous event intensity λ(0) such 

that the expected overall event intensity µ(t) is maximized with respect to some concave 

utility U (·) in µ(t), i.e.,
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(12)

where c = (c1, …, cm)T ≥ 0 is the cost per unit event for each user and C is the total budget. 

Additional regularization can also be added to λ(0) either to restrict the number of 

incentivized users (with £0 norm ||λ(0)||0), or to promote a sparse solution (with £1 norm ||

λ(0)||1, or to obtain a smooth solution (with £2 regularization ||λ(0)||2). We next discuss 

several instances of the general framework which achieve different goals (their constraints 

remain the same and hence omitted).

Capped Activity Maximization

In real networks, there is an upper bound (or a cap) on the activity each user can generate 

due to limited attention of a user. For example, a Twitter user typically posts a limited 

number of shortened urls or retweets a limited number of tweets [23]. Suppose we know the 

upper bound, αu, on a user’s activity, i.e., how much activity each user is willing to generate. 

Then we can perform the following capped activity maximization task

(13)

Minimax Activity Shaping

Suppose our goal is instead maintaining the activity of each user in the network above a 

certain minimum level, or, alternatively make the user with the minimum activity as active 

as possible. Then, we can perform the following minimax activity shaping task

(14)

Least-Squares Activity Shaping

Sometimes we want to achieve a pre-specified target activity levels, v, for users. For 

example, we may like to divide users into groups and desire a different level of activity in 

each group. Inspired by these examples, we can perform the following least-squares activity 

shaping task

(15)

where B encodes potentially additional constraints (e.g., group partitions). Besides 

Euclidean distance, the family of Bregman divergences can be used to measure the 

difference between Bµ(t) and v here. That is, given a function f (·) : Rm 1→ R convex in its 

argument, we can use  as our 

objective function.
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Activity Homogenization

Many other concave utility functions can be used. For example, we may want to steer users 

activities to a more homogeneous profile. If we measure homogeneity of activity with 

Shannon entropy, then we can perform the following activity homogenization task

(16)

5 Scalable Algorithm

All the activity shaping problems defined above require an efficient evaluation of the 

instantaneous average intensity µ(t) at time t, which entails computing matrix exponentials 

to obtain Ψ(t). In small or medium networks, we can rely on well-known numerical methods 

to compute matrix exponentials [24]. However, in large networks with sparse graph 

structure A, the explicit computation of Ψ(t) quickly becomes intractable.

Fortunately, we can exploit the following key property of our convex activity shaping 

framework: the instantaneous average intensity only depends on Ψ(t) through matrix-vector 

product operations. In particular, we start by using Theorem 3 to rewrite the multiplication 

of Ψ(t) and a vector v as Ψ(t)v = e(A−ωI)tv + ω(A − ωI)−1 (e(A−ωI)tv − v). We then get a 

tractable solution by first computing e(A−ωI)tv efficiently, subtracting v from it, and solving a 

sparse linear system of equations, (A − ωI)x = (e(A−ωI)tv − v), efficiently. The steps are 

illustrated in Algorithm 1. Next, we elaborate on two very efficient algorithms for 

computing the product of matrix exponential with a vector and for solving a sparse linear 

system of equations.

For the computation of the product of matrix exponential with a vector, we rely on the 

iterative algorithm by Al-Mohy et al. [17], which combines a scaling and squaring method 

with a truncated Taylor series approximation to the matrix exponential.

For solving the sparse linear system of equation, we use the well-known GMRES method 

[25], which is an Arnoldi process for constructing an l2-orthogonal basis of Krylov 

subspaces. The method solves the linear system by iteratively minimizing the norm of the 

residual vector over a Krylov subspace. In detail, consider the nth Krylov subspace for the 

problem Cx = b as Kn = span{b, Cb, A2b, …, Cn−1b}. GMRES approximates the exact 

solution of Cx = b by the vector xn ∈ Kn that minimizes the Euclidean norm of the residual 

rn = Cxn − b. Because the span consists of orthogonal vectors, the Arnoldi iteration is used 

to find an alternative basis composing rows of Qn. Hence, the vector xn ∈ Kn can be written 

as xn = Qnyn with yn ∈ Rn. Then, yn can be found by minimizing the Euclidean norm of the 

residual , where  is the Hessenberg matrix produced in the Arnoldi 
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process, e1 = (1, 0, 0, …, 0)T is the first vector in the standard basis of Rn+1, and β = b − Cx0. 

Finally, xn is computed as xn = Qnyn. The whole procedure is repeated until reaching a small 

enough residual.

Perhaps surprisingly, we will now show that it is possible to compute the gradient of the 

objective functions of all our activity shaping problems using the algorithm developed above 

for computing the average instantaneous intensity. We only need to define the vector v 
appropriately for each problem, as follows: (i) Activity maximization: g(λ(0)) = Ψ(t)Tv, 

where v is defined such that vj = 1 if αj > µj, and vj = 0, otherwise. (ii) Minimax activity 

shaping: g(λ(0)) = Ψ(t)Te, where e is defined such that ej = 1 if µj = µmin, and ej = 0, 

otherwise. (iii) Least-squares activity shaping: g(λ(0)) = 2Ψ(t)TBT (BΨ(t)λ(0) − v) . (iv) 

Activity homogenization: g(λ(0)) = Ψ(t)T ln (Ψ(t)λ(0)) + Ψ(t)T1, where ln(·) on a vector is the 

element-wise natural logarithm. Since the activity maximization and the minimax activity 

shaping tasks require only one evaluation of Ψ(t) times a vector, Algorithm 1 can be used 

directly. However, computing the gradient for least-squares activity shaping and activity 

homogenization is slightly more involved and it requires to be careful with the order in 

which we perform the operations. Algorithm 2 includes the efficient procedure to compute 

the gradient in the least-squares activity shaping task. Since B is usually sparse, it includes 

two multiplications of a sparse matrix and a vector, two matrix exponentials multiplied by a 

vector, and two sparse linear systems of equations. Algorithm 3 summarizes the steps for 

efficient computation of the gradient in the activity homogenization task. Assuming again a 

sparse B, it consists of two multiplication of a matrix exponential and a vector and two 

sparse linear systems of equations.

Equipped with an efficient way to compute of gradients, we solve the corresponding convex 

optimization problem for each activity shaping problem by applying the projected gradient 

descent [26] optimization framework with the appropriate gradient1. Algorithm 4 

summarizes the key steps of the algorithm.

1For nondifferential objectives, subgradient algorithms can be used instead.
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6 Experimental Evaluation

We evaluate our activity shaping framework using both simulated and real world held-out 

data, and show that our approach significantly outperforms several baselines.

6.1 Experimental Setup

Here, we briefly present our data, evaluation schemas, and settings.

Dataset description and network inference—We use data gathered from Twitter as 

reported in [27], which comprises of all public tweets posted by 60,000 users during a 8-

month period, from January 2009 to September 2009. For every user, we record the times 

she uses any of the following six url shortening services: Bitly, TinyURL, Isgd, TwURL, 

SnURL, Doiop (refer to Appendix B for details). We evaluate the performance of our 

framework on a subset of 2,241 active users, linked by 4,901 edges, which we call 2K 

dataset, and we evaluate its scalability on the overall 60,000 users, linked by ~ 200,000 

edges, which we call 60K dataset. The 2K dataset accounts for 691,020 url shortened service 

uses while the 60K dataset accounts for ~7.5 million uses. Finally, we treat each service as 

independent cascades of events.

In the experiments, we estimated the nonnegative influence matrix A and the exogenous 

intensity λ(0) using maximum log-likelihood, as in previous work [8, 9, 12]. We used a 

temporal resolution of one minute and selected the bandwidth ω = 0.1 by cross validation. 

Loosely speaking, ω = 0.1 corresponds to loosing 70% of the initial influence after 10 

minutes, which may be explained by the rapid rate at which each user’ news feed gets 

updated.

Evaluation schemes—We focus on three tasks: capped activity maximization, minimax 

activity shaping, and least square activity shaping. We set the total budget to C = 0.5, which 

corresponds to supporting a total extra activity equal to 0.5 actions per unit time, and assume 

all users entail the same cost. In the capped activity maximization, we set the upper limit of 

each user’s intensity, α, by adding a nonnegative random vector to their inferred initial 

intensity. In the least-squares activity shaping, we set B = I and aim to create three groups of 

users, namely less-active, moderate, and super-active users. We use three different 

evaluation schemes, with an increasing resemblance to a real world scenario:

Theoretical objective: We compute the expected overall (theoretical) intensity by applying 

Theorem 3 on the optimal exogenous event intensities, , to each of the three activity 

shaping tasks, as well as the learned A and ω. We then compute and report the value of the 

objective functions.
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Simulated objective: We simulate 50 cascades with Ogata’s thinning algorithm [28], using 

the optimal exogenous event intensities, , to each of the three activity shaping tasks, and 

the learned A and ω. We then estimate empirically the overall event intensity based on the 

simulated cascades, by computing a running average over non-overlapping time windows, 

and report the value of the objective functions based on this estimated overall intensity. 

Appendix C provides a comparison between the simulated and the theoretical objective.

Held-out data: The most interesting evaluation scheme would entail carrying out real 

interventions in a social platform. However, since this is very challenging to do, instead, in 

this evaluation scheme, we use held-out data to simulate such process, proceeding as 

follows. We first partition the 8-month data into 50 five-day long contiguous intervals. 

Then, we use one interval for training and the remaining 49 intervals for testing. Suppose 

interval 1 is used for training, the procedure is as follows:

1. We estimate A1, ω1 and  using the events from interval 1. Then, we fix A1 and 

ω1, and estimate  for all other intervals, i = 2, …, 49.

2.
Given A1 and ω1, we find the optimal exogenous event intensities, , for each of 

the three activity shaping task, by solving the associated convex program. We then 

sort the estimated  according to their similarity to , using the 

Euclidean distance .

3. We estimate the overall event intensity for each of the 49 intervals (i = 2, …, 49), as 

in the “simulated objective” evaluation scheme, and sort these intervals according 

to the value of their corresponding objective function.

4. Last, we compute and report the rank correlation score between the two orderings 

obtained in step 2 and 3.2 The larger the rank correlation, the better the method.

We repeat this procedure 50 times, choosing each different interval for training once, and 

compute and report the average rank correlations.

It is beneficial to emphasize that the held-out experiments are essentially evaluating 

prediction performance on test sets. For instance, suppose we are given a diffusion network 

and two different configuration of incentives. We will shortly show our method can predict 

more accurately which one will reach the activity shaping goal better. This means, in turn, 

that if we incentivize the users according to our method’s suggestion, we will achieve the 

target activity better than other heuristics.

Alternatively, one can understand our evaluation scheme like this: if one applies the 

incentive (or intervention) levels prescribed by a method, how well the predicted outcome 

coincides with the reality in the test set? A good method should behavior like this: the closer 

the prescribed incentive (or intervention) levels to the estimated base intensities in test data, 

the closer the prediction based on training data to the activity level in the test data. In our 

2rank correlation = number of pairs with consistent ordering / total number of pairs.
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experiment, the closeness in incentive level is measured by the Euclidean distance, the 

closeness between prediction and reality is measured by rank correlation.

6.2 Activity Shaping Results

In this section, the results for three activity shaping tasks evaluated on the three schemas are 

presented.

Capped activity maximization (CAM)—We compare to a number of alternatives. 

XMU: heuristic based on µ(t) without optimization; DEG and WEI: heuristics based on the 

degree of the user; PRANK: heuristic based on page rank (refer to Appendix B for further 

details). The first row of Figure 2 summarizes the results for the three different evaluation 

schemes. We find that our method (CAM) consistently outperforms the alternatives. For the 

theoretical objective, CAM is 11 % better than the second best, DEG. The difference in 

overall users’ intensity from DEG is about 0.8 which, roughly speaking, leads to at least an 

increase of about 0.8 × 60 × 24 × 30 = 34, 560 in the overall number of events in a month. In 

terms of simulated objective and held-out data, the results are similar and provide empirical 

evidence that, compared to other heuristics, degree is an appropriate surrogate for influence, 

while, based on the poor performance of XMU, it seems that high activity does not 

necessarily entail being influential. To elaborate on the interpretability of the real-world 

experiment on held-out data, consider for example the difference in rank correlation between 

CAM and DEG, which is almost 0.1. Then, roughly speaking, this means that incentivizing 

users based on our approach accommodates with the ordering of real activity patterns in 0.1 

× 50×49 = 122.5 more pairs of realizations.

Minimax activity shaping (MMASH)—We compare to a number of alternatives. UNI: 

heuristic based on equal allocation; MINMU: heuristic based on µ(t) without optimization; 

LP: linear programming based heuristic; GRD: a greedy approach to leverage the activity 

(see Appendix B for more details). The second row of Figure 2 summarizes the results for 

the three different evaluation schemes. We find that our method (MMASH) consistently 

outperforms the alternatives. For the theoretical objective, it is about 2× better than the 

second best, LP. Importantly, the difference between MMASH and LP is not trifling and the 

least active user carries out 2 × 10−4 × 60 × 24 × 30 = 4.3 more actions in average over a 

month. As one may have expected, GRD and LP are the best among the heuristics. The poor 

performance of MINMU, which is directly related to the objective of MMASH, may be 

because it assigns the budget to a low active user, regardless of their influence. However, 

our method, by cleverly distributing the budget to the users whom actions trigger many other 

users’ actions (like those ones with low activity), it benefits from the budget most. In terms 

of simulated objective and held-out data, the algorithms’ performance become more similar.

Least-squares activity shaping (LSASH)—We compare to two alternatives. PROP: 

Assigning the budget proportionally to the desired activity; LSGRD: greedily allocating 

budget according the difference between current and desired activity (refer to Appendix B 

for more details). The third row of Figure 2 summarizes the results for the three different 

evaluation schemes. We find that our method (LSASH) consistently outperforms the 

alternatives. Perhaps surprisingly, PROP, despite its simplicity, seems to perform slightly 
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better than LSGRD. This is may be due to the way it allocates the budget to users, e.g., it 

does not aim to strictly fulfill users’ target activity but benefit more users by assigning 

budget proportionally. Refer to Appendix D for additional experiments.

In all three tasks, longer times lead to larger differences between our method and the 

alternatives. This occurs because the longer the time, the more endogenous activity is 

triggered by network influence, and thus our framework, which models both endogenous 

and exogenous events, becomes more suitable.

6.3 Sparsity and Activity Shaping

In some applications there is a limitation on the number of users we can incentivize. In our 

proposed framework, we can handle this requirement by including a sparsity constraint on 

the optimization problem. In order to maintain the convexity of the optimization problem, 

we consider a l1 regularization term, where a regularization parameter γ provides the trade-

off between sparsity and the activity shaping goal:

(17)

Tables 1 and 2 demonstrate the effect of different values of regularization parameter on 

capped activity maximization and minimax activity shaping, respectively. When γ is small, 

the minimum intensity is very high. On the contrary, large values of γ imposes large 

penalties on the number of non-zero intensities which results in a sparse and applicable 

manipulation. Furthermore, this may avoid using all the budget. When dealing with 

unfamiliar application domains, cross validation may help to find an appropriate trade-off 

between sparsity and objective function.

6.4 Scalability

The most computationally demanding part of the proposed algorithm is the evaluation of 

matrix exponentials, which we scale up by utilizing techniques from matrix algebra, such as 

GMRES and Al-Mohy methods. As a result, we are able to run our methods in a reasonable 

amount of time on the 60K dataset, specifically, in comparison with a naive implementation 

of matrix exponential evaluations. The naive implementation of the algorithm requires 

computing the matrix exponential once, and using it in (non-sparse huge) matrix-vector 

multiplications, i.e.,

Here, TΨ is the time to compute Ψ(t), which itself comprised of three parts; matrix 

exponential computation, matrix inversion and matrix multiplications. Tprod is the time for 

multiplication between the large non-sparse matrix and a vector plus the time to compute the 

inversion via solving linear systems of equation. Finally, k is the number of gradient 

computations, or more generally, the number of iterations in any gradient-based iterative 
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optimization. The dominant factor in the naive approach is the matrix exponential. It is 

computationally demanding and practically inefficient for more than 7000 users.

In contrast, the proposed framework benefits from the fact that the gradient depends on Ψ(t) 

only through matrix-vector products. Thus, the running time of our activity shaping 

framework will be written as

where Tgrad is the time to compute the gradient which itself comprises the time required to 

solve a couple of linear systems of equations and the time to compute a couple of 

exponential matrix-vector multiplication.

Figure 3 demonstrates Tour and Tnaive with respect to the number of users. For better 

visualization we have provided two graphs for up to 10,000 and 50,000 users, respectively. 

We set k equal to the number of users. Since the dominant factor in the naive computation 

method is matrix exponential, the choice of k is not that determinant. The time for 

computing matrix exponential is interpolated for more than 7000 users; and the interpolated 

total time, Tnaive, is shown in red dashed line. These experiments are done in a machine 

equipped with one 2.5 GHz AMD Opteron Processor. This graph clearly shows the 

significance of designing an scalable algorithm.

Figure 4 shows the results of running our large-scale algorithm on the 60K dataset evaluated 

via theoretical objective function. We observe the same patterns as 2K dataset. Especially, 

the proposed method consistently outperforms the heuristic baselines. Heuristic baselines 

provide similar performance as for the 2K dataset. DEG shows up again as a reasonable 

surrogate for influence, and the poor performance of XMU on activity maximization shows 

that high activity does not necessarily mean being more influential. For minimax activity 

shaping we observe MMASH is superior to others in 2 × 10−5 actions per unit time, which 

means that the person with minimum activity uses the service 2 × 10−5 × 60 ∗ 24 ∗ 30 = 

0.864 times more compared to the best heuristic baseline. An increase in the activity per 

month of 0.864 is not a big deal itself, however, if we consider the scale at which the 

network’s activity is steered, we can deduce that now the service is guaranteeing, at least in 

theory, about 60000 × 0.864 = 51840 more adoptions monthly. As shown by the 

experiments on real-world held-out data, our approach for activity shaping outperforms all 

the considered heuristic baselines.

7 Summary and Discussion

In this paper, we introduced the activity shaping problem, which is a generalization of the 

influence maximization problem, and it allows for more elaborate goal functions. Our model 

of social activity is based on multivariate Hawkes processs, and via a connection to 

branching processes, we manage to derive a linear connection between the exogenous 

activity (i.e., the part that can be easily manipulated via incentives) and the overall network 

activity. This connection enables developing a convex optimization framework for activity 
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shaping, deriving the necessary incentives to reach a global activity pattern in the network. 

The method is evaluated on both synthetic and real-world held-out data and is shown to 

outperform several heuristics.

We acknowledge that our method has indeed limitations. For example, our current 

formulation assumes that exogenous events are constant over time. Thus, subsequent 

evolution in the point process is a mixture of endogenous and exogenous events. However, 

in practice, the shaping incentives need to be doled out throughout the evolution of the 

process, e.g., in a sequential decision making setting. Perhaps surprisingly, our framework 

can be generalized to time-varying exogenous events, at the cost of stating some of the 

theoretical results in a convolution form, as follows:

• Lemma 1 needs to be kept in convolution form, i.e., µ(k)(t) = G(*k)(t) * λ(0)(t). The 

sketch of the proof is very similar, and we only need to further exploit the 

associativity property of the convolution at the inductive step, to prove the 

hypothesis holds for k + 1:

(18)

•
Lemma 2 is responsible for finding a closed form for  and thus is not 

affected by a time-varying exogenous intensity. It remains unchanged.

• Theorem 3 derives the instantaneous average intensity µ(t) and, therefore, needs to 

be updated accordingly using the modified Lemma 1:

(19)

Many simple parametrized incentive functions, such as exponential incentives λ(0)(t) = λ(0) 

exp(−αt) with constant decay α or constant incentives within a window λ(0)(t) = λ(0)I[t1 < t 

< t2], for a fixed window [t1, t2], result in linear closed form expressions between the 

exogenous event intensity and the expected overall intensity. Nonparameteric functions 

result in a non-closed form expression, however, we still benefit the fact that the mapping 

from λ0(t) to µ(t) is linear, and hence the activity shaping problems can still be cast as 

convex optimization problems. In this case, the optimization can still be done via functional 

gradient descent (or variational calculus), though with some additional challenge to tackle.

There are many other interesting venues for future work. For example, considering 

competing incentives, discovering the branching structure and using it explicitly to shape the 

activities, exploring other possible kernel functions or even learning them using non-

parametric methods.
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A Proofs

Lemma 1

µ(k)(t) = G(*k)(t) λ(0).

Proof

We will prove the lemma by induction. For generation . Assume 

the relation holds for generation . Then for generation k + 1, we 

have . By definition 

, then 

substitute it in and we have

which completes the proof.

Lemma 2

Proof

We will prove the result by induction on k. First, given our choice of exponential kernel, 

G(t) = e−ωtA, we have that . Then for k = 0, G(*0)(t) = I and 

. Now assume the result hold for a general k−1, then 

. Next, for k, we have 

, and completes the proof.

Theorem 3

µ(t) = Ψ(t)λ(0) = (e(A−ωI)t + ω(A − ωI)−1(e(A−ωI)t − I)) λ(0).

Proof

We first compute the Laplace transform . Using lemma 2, we have
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Second, let  and its inverse Laplace transform be 

, where eAt is a matrix exponential. Then, it is easy 

to see that . Finally, we perform inverse 

Laplace transform for , and obtain 

, where we made 

use of the property of Laplace transform that dividing by z in the frequency domain is equal 

to an integration in time domain, and F (z + w) = e−ωteAt = e(A−ωI)t.

Corollary 4

.

Proof

If the process is stationary, the spectral radius of  is smaller than 1, which implies that 

all eigenvalues of A are smaller than ω in magnitude. Thus, all eigenvalues of A − ωI are 

negative. Let P DP −1 be the eigenvalue decomposition of A − ωI, and all the elements (in 

diagonal) of D are negative. Then based on the property of matrix exponential, we have 

e(A−ωI)t = P eDtP −1. As we let t → ∞, the matrix eDt → 0 and hence e(A−ωI)t → 0. Thus 

, which is equal to (I − Γ)−1, and completes the proof.

B More on Experimental Setup

Table 3 shows the number of adopters and usages for the six different URL shortening 

services. It includes a total of 7,566,098 events (adoptions) during the 8-month period.

In the following, we describe the considered baselines proposed to compare to our approach 

for i) the capped activity maximization; ii) the minimax activity shaping; and iii) the least-

squares activity shaping problems.

For capped activity maximization problem, we consider the following four heuristic 

baselines:

• XMU allocates the budget based on users’ current activity. In particular, it assigns 

the budget to each of the half top-most active users proportional to their average 

activity, µ(t), computed from the inferred parameters.

• WEI assigns positive budget to the users proportionally to their sum of out-going 

influence (),u auu′). This heuristic allows us (by comparing its results to CAM) to 

Farajtabar et al. Page 17

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2015 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



understand the effect of considering the whole network with respect to only 

consider the direct (out-going) influence.

• DEG assumes that more central users, i.e., more connected users, can leverage the 

total activity, therefore, assigns the budget to the more connected users proportional 

to their degree in the network.

• PRK sorts the users according to the their pagerank in the weighted influence 

network (A) with the damping factor set to 0.85%, and assigns the budget to the top 

users proportional their pagerank value.

In order to show how network structure leverages the minimax activity shaping we 

implement following four baselines:

• UNI allocates the total budget equally to all users.

• MINMU divides uniformly the total budget among half of the users with lower 

average activity µ(t), which is computed from the inferred parameters.

• LP finds the top half of least-active users in the current network and allocates the 

budget such that after the assignment the network has the highest minimum activity 

possible. This method uses linear programming to learn exogenous activity of the 

users, but, in contrast to the proposed method, does not consider the network and 

propagation of adoptions.

• GRD finds the user with minimum activity, assigns a portion of the budget, and 

computes the resulting µ(t). It then repeats the process to incentivize half of users.

We compare least-square activity shaping with the following baselines:

• PROP shapes the activity by allocating the budget proportional to the desired 

shape, i.e., the shape of the assignment is similar to the target shape.

• LSGRD greedily finds the user with the highest distance between her current and 

target activity, assigns her a budget to reach her target, and proceeds this way to 

consume the whole budget.

Each baseline relies on a specific property to allocate the budget (e.g. connectedness in 

DEG). However, most of them face two problems: The first one is how many users to 

incentivize and the second one is how much should be paid to the selected users. They 

usually rely on heuristics to reveal these two problems (e.g. allocating an amount 

proportional to that property and/or to the top half users sorted based on the specific 

property). In contrast, our framework is comprehensive enough to address those difficulties 

based on well-developed theoretical basis. This key factor accompanied with the appropriate 

properties of Hawkes process for modeling social influence (e.g. mutually exciting) make 

the proposed method the best.

C Temporal Properties

For the experiments on simulated objective function and held-out data we have estimated 

intensity from the events data. In this section, we will see how this empirical intensity 

resembles the theoretical intensity. We generate a synthetic network over 100 users. For 
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each user in the generated network, we uniformly sample from [0, 0.1] the exogenous 

intensity, and the endogenous parameters auu′ are uniformly sampled from [0, 0.1]. A 

bandwidth ω = 1 is used in the exponential kernel. Then, the intensity is estimated 

empirically by dividing the number of events by the length of the respective interval.

We compute the mean and variance of the empirical activity for 100 independent runs. As 

illustrated in Figure 5, the average empirical intensity (the blue curve) clearly follows the 

theoretical instantaneous intensity (the red curve) but, as expected, as we are further from 

the starting point (i.e., as time increases), the standard deviation of the estimates (shown in 

the whiskers) increases. Additionally, the green line shows the average stationary intensity. 

As it is expected, the instantaneous intensity tends to the stationary value when the network 

has been run for sufficient long time.

D Visualization of Least-squares Activity Shaping

To get a better insight on the the activity shaping problem we visualize the least-squares 

activity shaping results for the 2K and 60K datasets. Figure 6 shows the result of activity 

shaping at t = 1 targeting the same shape as in the experiments section. The red line is the 

target shape of the activity and the blue curve correspond to the activity profiles of users 

after incentivizing computed via theoretical objective. It is clear that the resulted activity 

behavior resembles the target shape.
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Figure 1. 
(a) an example social network where each directed edge indicates that the target node 

follows, and can be influenced by, the source node. The activity in this network is modeled 

using Hawkes processes, which result in branching structure of events in (b). Each 

exogenous event is the root node of a branch (e.g., top left most red circle at t1), and it 

occurs due to a user’s own initiative; and each event can trigger one or more endogenous 

events (blue square at t2). The new endogenous events can create the next generation of 

endogenous events (green triangles at t3), and so forth. The social network in (a) will 

constrain the branching structure of events in (b), since an event produced by a user (e.g., 

user 1) can only trigger endogenous events in the same user or one or more of her followers 

(e.g., user 2 or user 3).
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Figure 2. 
Row 1: Capped activity maximization. Row 2: Minimax activity shaping. Row 3: Least-

squares activity shaping. * means statistical significant at level of 0.01 with paired t-test 

between our method and the second best
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Figure 3. 
Scalability of least-squares activity shaping.
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Figure 4. 
Activity shaping on the 60K dataset.
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Figure 5. 
Evolution in time of empirical and theoretical intensity.
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Figure 6. 
Activity shaping results.
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Table 1

Sparsity properties of capped activity maximization.

γ # Non-zeros Budget consumed Sum of activities

0.5 2101 0.5 0.69

0.6 1896 0.46 0.65

0.7 1595 0.39 0.62

0.8 951 0.21 0.58

0.9 410 0.18 0.55

1.0 137 0.13 0.54
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Table 2

Sparsity properties of minimax activity shaping.

γ (×10−3) # Non-zeros Budget Consumed umin(× 10−3)

0.6 1941 0.49 0.38

0.7 881 0.17 0.22

0.8 783 0.15 0.21

0.9 349 0.09 0.16

1.0 139 0.06 0.12

1.1 102 0.04 0.11
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Table 3

# of adopters and usages for each URL shortening service.

Service # adopters # usages

Bitly 55,883 5,046,710

TinyURL 46,577 1,682,459

Isgd 28,050 596,895

TwURL 15,215 197,568

SnURL 4,462 41,823

Doiop 88 643
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