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Abstract

Rationale and Objectives—Perturbations in cerebral blood volume (CBV), blood flow (CBF), 

and metabolic rate of oxygen (CMRO2) lead to associated changes in tissue concentrations of 

oxy- and deoxy-hemoglobin (ΔO and ΔD), which can be measured by near-infrared spectroscopy 

(NIRS). A novel hemodynamic model has been introduced to relate physiological perturbations 

and measured quantities. We seek to use this model to determine functional traces of cbv(t) and 

cbf(t) − cmro2(t) from time-varying NIRS data, and cerebrovascular physiological parameters 

from oscillatory NIRS data (lowercase letters denote the relative changes in CBV, CBF, and 

CMRO2 with respect to baseline). Such a practical implementation of a quantitative hemodynamic 

model is an important step toward the clinical translation of NIRS.

Materials and Methods—In the time domain, we have simulated O(t) and D(t) traces induced 

by cerebral activation. In the frequency domain, we have performed a new analysis of frequency-

resolved measurements of cerebral hemodynamic oscillations during a paced breathing paradigm.

Results—We have demonstrated that cbv(t) and cbf(t) − cmro2(t) can be reliably obtained from 

O(t) and D(t) using the model, and that the functional NIRS signals are delayed with respect to 

cbf(t) − cmro2(t) as a result of the blood transit time in the microvasculature. In the frequency 

domain, we have identified physiological parameters (e.g., blood transit time, cutoff frequency 

of autoregulation) that can be measured by frequency-resolved measurements of hemodynamic 

oscillations.

Conclusions—The ability to perform noninvasive measurements of cerebrovascular parameters 

has far-reaching clinical implications. Functional brain studies rely on measurements of CBV, 

CBF, and CMRO2, whereas the diagnosis and assessment of neurovascular disorders, traumatic 

brain injury, and stroke would benefit from measurements of local cerebral hemodynamics and 

autoregulation.
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Near-infrared spectroscopy (NIRS) can assess noninvasively cerebral hemodynamics and 

brain function by being sensitive to cerebral concentrations of deoxyhemoglobin (D) and 

oxy-hemoglobin (O). Noninvasive measurements of task-related functional activity with 

NIRS, or fNIRS, have been reported (1–3). These hemodynamic changes result from 

changes in the cerebral blood volume (CBV), cerebral blood flow (CBF), and metabolic 

rate of oxygen (CMRO2) as a result of brain activation and neurovascular coupling. 

Understanding the interplay between these physiological/functional/metabolic processes and 

the measured signals with functional neuroimaging techniques such as fNIRS and functional 

magnetic resonance imaging is the major objective of hemodynamic models (for a review, 

see Buxton, 2012 (4)).

A novel hemodynamic model has been recently introduced to provide an analytical tool for 

the study of oscillatory (frequency domain) and time varying (time domain) hemodynamics 

that are measurable with NIRS (5). The model relates normalized perturbations in CBV, 

CBF, and CMRO2 to the dynamics of O and D concentrations in tissue. In particular, 

this model treats the cerebral microvasculature in terms of three compartments (arterial, 

capillary, venous) and describes the effects of changes in blood volume in all three 

compartments (even though the capillary contribution to blood volume changes may be 

negligible), and the effects of changes in blood flow and metabolic rate of oxygen in 

the capillary compartment (direct effects) and the venous compartment (indirect effects). 

This novel model can be applied to measurements in the time domain (O(t), D(t)), where 

hemodynamic changes are induced over time, and in the frequency domain (via the phasors 

O(ω), D(ω)), where induced hemodynamic oscillations are measured as a function of the 

frequency of oscillation. Hemodynamic oscillations at a specific frequency can be induced 

by a number of protocols including paced breathing (6), head-up-tilting (7), squat-stand 

maneuvers (8), and pneumatic thigh-cuff inflation (9), leading to a technique that we have 

recently proposed, coherent hemodynamics spectroscopy (CHS) (5,10).

In this article, we use a new formulation of this hemodynamic model by Fantini (11) 

to develop its practical implementation for NIRS and fNIRS measurements. In the time 

domain, we show how the model can be used to translate time traces of O(t) and D(t) into 

time-varying measures

O(t) = ctHb S(a)CBV0
(a)(1 + cbv(a)(t)) + < S(c) > Ƒ(c)CBV0

(c) + S(v)CBV0
(v)(1

+ cbv(v)(t)) + + ctHb < S(c) >
S(v) ( < S(c) > − S(v))Ƒ(c)CBV0

(c)ℎRC − LP
c (t) + (S(a)

− S(v))CBV0
(v)ℎG − LP

(v) (t) * [cbf(t) − cmro2(t)],

(1)
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D(t) = ctHb (1 − S(a))CBV0
(a)(1 + cbv(a)(t)) + (1 − < S(c) > )Ƒ(c)CBV0

(c) + (1

− S(v))CBV0
(v)(1 + cbv(v)(t)) + − ctHb < S(c) >

S(v) ( < S(c) > − S(v)

)Ƒ(c)CBV0
(c)ℎRC − LP

c (t) + (S(a) − S(v))CBV0
(v)ℎG − LP

(v) (t) * [cbf(t) − cmro2(t)],

(2)

of cbv(t) and the difference cbf(t) − cmro2(t)⋆. In the frequency domain, we demonstrate 

how the model can be used to measure a number of physiologically relevant parameters 

such as the blood transit time in the microvasculature and the cutoff frequency for cerebral 

autoregulation. The work presented here demonstrates, in practical terms, that the new 

hemodynamic model is a workable model for translation of NIRS measurements into 

functional and physiological parameters. The feasibility of a practical implementation of 

this mathematical model, in combination with noninvasive NIRS and fNIRS measurements, 

is a critical element for its translation toward functional and clinical studies.

HEMODYNAMIC MODEL

In the time domain, all of the time-dependent quantities are represented by time varying 

real functions. In the frequency domain, all of the oscillatory quantities are represented 

by phasors (5). In the following sections, we discuss how the model equations can be 

implemented in practice to measure (1) the time dependence of the CBV, and a combination 

of CBF and CMRO2 associated with brain activation (functional neuroimaging) or (2) a 

set of physiological parameters on the basis of frequency-resolved measurements of the 

amplitude and phase of hemodynamic oscillations (CHS).

Time domain equations

We denote with lowercase letters the relative changes in CBV, CBF, and CMRO2 

with respect to baseline (cbv(t) = ΔCBV(t)/CBV0, cbf (t) = ΔCBF(t)/CBF0, cmro2(t) = 

ΔCMRO2(t)/CMRO2|0), where ΔCBV(t) = CBV(t) − CBV0, ΔCBF = CBF(t) − CBF0, and 

ΔCMRO2 = CMRO2(t) − CMRO2|0. The time-dependent expressions for the absolute tissue 

concentrations of O(t), D(t), and total hemoglobin (T(t)) are given by (11):

T(t) = ctHbCBV0[1 + cbv(t)] . (3)

Note that the right sides of Equations (1)–(3) are given by the sum of time-independent 

terms (which correspond to the baseline values O0 in Eq. (1), D0 in Eq. (2), and T0 in 

Eq. (3)) and time-dependent terms associated with cbv(a)(t), cbv(v)(t), cbv(t), cbf (t), and 

cmro2(t). Explicitly, the time-independent, baseline concentrations of O, D, and T are given 

by:

⋆Lowercase letters denote the relative changes in CBV, CBF, and CMRO2 with respect to baseline.
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O0 = ctHb S(a)CBV0
(a) + < S(c) > Ƒ(c)CBV0

(c) + S(v)CBV0
(v) , (4)

D0 = ctHb (1 − S(a))CBV0
(a) + (1 − < S(c) > )Ƒ(c)CBV0

(c) + (1 − S(v))CBV0
(v) , (5)

T0 = ctHbCBV0 . (6)

In these equations, ctHb is the hemoglobin concentration in blood; Ƒ(c) is the Fåhraeus 

factor (ratio of capillary-to-large vessel hematocrit); and the superscripts (a), (c), and (v) 

for CBV and cbv indicate partial contributions from the arterial, capillary, and venous 

compartments, respectively, with CBV0 = CBV0
(a) + Ƒ(c)CBV0

(c) + CBV0
(v) . The dynamic 

model takes into account that the arterial, capillary, and venous compartments provide 

individual contributions to the overall concentrations of O and D. The weights of such 

contributions are expressed in terms of S(a), <S(c)>, S(v), CBV0
(a), Ƒ(c)CBV0

(c) , and CBV0
(v) as 

specified by Equations (1) and (2). Also, in Equations (1) and (2), we have set the capillary 

volume perturbation cbv(c)(t) = 0 because capillary recruitment and capillary dilation in the 

brain has been found to be negligible (12–17). Subscript “0” indicates baseline values, and 

S(a), <S(c)>, and S(v) are the arterial, mean capillary, and venous saturation, respectively. 

The mean capillary and venous saturations are given by <S(c)> = S(a)(1 − e−αt(c)
)/(αt(c)) 

and S(v) = S(a)e−αt(c)
 (18), in which α is the rate constant of oxygen diffusion and t(c) is 

the mean transit time of blood in the capillaries. The impulse response functions associated 

with the blood transit time in the capillary bed— bed — ℎRC − LP
(c) (t) —and in the venous 

compartment— ℎG − LP
(v) (t) —are given by the following resistance-capacitance (RC) and 

Gaussian low-pass filters (5):

ℎRC − LP
(c) (t) = H(t) e

t(c)e−et/t(c), (7)

ℎG − LP
(v) (t) = 1

0.6(t(c) + t(v))
e−π[t − 0.5(t(c) + t(v))]2/[0.6(t(c) + t(v))]2, (8)

in which H(t) is the Heaviside unit step function—H(t) = 0 for t < 0; H(t) = 1 for t ≥ 0.We 

note that both impulse responses are convolved with cbf (t) − cmro2(t) in Equations (1) and 

(2), as indicated by the convolution operator*.

Measuring the Time Course of cbv and the Difference cbf-cmro2

In a practical implementation of this hemodynamic model in the time domain, one would 

like to derive the temporal dynamics of CBV, CBF, and CMRO2 from the measured time 

traces of the concentrations of O and D. Equation (3) provides a direct measurement of 

cbv(t) in terms of the relative change in T with respect to the baseline value T0 = ctHbCBV0:
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cbv(t) = ΔT
T0

. (9)

The convolution operator in Equations (1) and (2) introduces a computational complication 

that can be addressed by Fourier transformation, which converts convolution products 

into regular products. By denoting the Fourier transforms with tildes and introducing the 

angular frequency ω, the difference of the Fourier transformed Equations (1) and (2), 

after normalization by dividing both equations by T0 = ctHbCBV0, leads to the following 

expression for cbf(ω) − cmro2(ω) :

cbf(ω) − cmro2(ω)

=
ΔO(ω) − ΔD(ω)

T0
− (2S(a) − 1)

CBV0
(a)

CBV0
cbv(a)(ω) − (2S(v) − 1)

CBV0
(v)

CBV0
cbv(v)(ω)

2 < S(c) >
S(v) ( < S(c) > − S(v))Ƒ(c) CBV0

(c)

CBV0
HRC − LP

(c) (ω) + (S(a) − S(v))
CBV0

(v)

CBV0
HG − LP

(v) (ω)
, (10)

in which the complex transfer functions HRC − LP
(c) (ω) and HG − LP

(v) (ω) (which are the Fourier 

transforms of the corresponding impulse response functions in Eqs. (1) and (2)) are given by 

(5):

HRC − LP
(c) (ω) = 1

1 + ωt(c)
e

2e−itan−1 ωt(c)
e

(11)

HG − LP
(v) (ω) = e− ln2

2 [ω0.281(t(c) + t(v))]2e−iω0.5(t(c) + t(v)) . (12)

To apply Equation (10) to translate NIRS measurements of ΔO(t) and ΔD(t) (ie, the 

changes with respect to the corresponding baseline values O0 and D0 [once they are Fourier-

transformed as ΔO(ω) and ΔD(ω) ] into the difference cbf (t) − cmro2(t) [by inverse Fourier 

transforming cbf cbf(ω) − cmro2(ω) )]), one needs to:

1. Normalize the measured changes ΔO(t) and ΔD(t) by the baseline total 

hemoglobin concentration T0, which is also required to obtain a measure of 

cbv(t) via Equation (9)

2. Assume the values of the following baseline parameters: S(a), α, t(c) (these three 

parameters also determine <S(c)> and S(v)), t(v), and the blood volume ratios 

CBV0
(a)/CBV0, Ƒ(c)CBV0

(c)/CBV0 , and CBV0
(v)/CBV0

3. Estimate the dynamic relative changes in the arterial and venous blood volumes 

(cbv(a), cbv(v)) in relation to the overall blood volume changes obtained from 

Equation (9). Because we have set cbv(c)(t) = 0, the overall blood volume change 

can be written as follows:
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cbv(t) =
CBV0

(a)

CBV0
cbv(a)(t) +

CBV0
(v)

CBV0
cbv(v)(t) (13)

because it can be directly derived by the definition given at the beginning of the Time 

Domain Equations section: cbv(t) = ΔCBV(t)/CBV0. If we proceed on the assumption that 

the time dependence of cbv(a)(t) and cbv(v)(t) is the same, then the time dependence of cbv(t) 
is also the same, they are all proportional to each other and one can write:

cbv(a)(t) = σ CBV0
CBV0

(a)cbv(t), (14)

cbv(v)(t) = (1 − σ) CBV0
CBV0

(v)cbv(t), (15)

where σ is a constant such that 0≤σ≤1. If one assumes that cbv(a)(t) = cbv(v)(t), then 

σ = CBV0
(v)/(CBV0

(a) + CBV0
(v)) .

This analysis shows that it is not possible to disentangle the contributions of the arterial and 

venous compartments to the dynamics of the overall cbv(t) because, according to Equations 

(9) and (13), the change in total hemoglobin concentration (which is measured) is related 

to a weighted average of the blood volume perturbations in the individual compartments. 

Furthermore, the model shows that only the difference, cbf(t) − cmro2(t), can be measured 

by NIRS. We observe that these restrictions are not specific to the model used, but are 

intrinsic to any technique that measures the cerebral concentrations of O and D.

Frequency Domain Equations

In the frequency domain, the model describes sinusoidal oscillations at a given angular 

frequency ω. Following the convention of Fantini’swork (5), oscillatory quantities are 

represented by phasors that are indicated in bold type. The model expressions for O(ω), 

D(ω), T(ω) (i.e., the phasors that describe the oscillations of O, D, and T concentrations) as 

a function of cbv(ω), cbf(ω), and cmro2(ω) (i.e., the phasors that describe the oscillations of 

CBV, CBF, and CMRO2) are as follows (11):

O(ω) = ctHb S(a)CBV0
(a)cbv(a)(ω) + S(v)CBV0

(v)cbv(v)(ω) +

+ ctHb < S(c) >
S(v) ( < S(c) > − S(v))Ƒ(c)CBV0

(c)HRC − LP
(c) (ω) + (S(a) − S(v)

)CBV0
(v)HG − LP

(v) (ω) [cbf(ω) − cmro2(ω)],

(16)
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D(ω) = ctHb (1 − S(a))CBV0
(a)cbv(a)(ω) + (1 − S(v))CBV0

(v)cbv(v)(ω) +

− ctHb < S(c) >
S(v) ( < S(c) > − S(v))Ƒ(c)CBV0

(c)HRC − LP
(c) (ω) + (S(a) − S(v)

)CBV0
(v)HG − LP

(v) (ω) [cbf(ω) − cmro2(ω)],

(17)

T(ω) = ctHb CBV0
(a)cbv(a)(ω) + CBV0

(v)cbv(v)(ω) , (18)

in which HRC − LP
(c) (ω) and HG − LP

(v) (ω) are the complex transfer function given in Equations 

(11) and (12), and we have set cbv(c)(ω) = 0 because of the negligible dynamic dilation 

and recruitment of capillaries in brain tissue (12–17). The notation in Equations (16)–(18) 

matches that in Equations (1)–(3), and we stress that the cbv, cbf, and cmro2 phasors are 

all dimensionless, with their magnitude indicating the amplitude of oscillations normalized 

to the average, or baseline, values. Because of the high-pass nature of the cerebral 

autoregulation process that regulates CBF in response to blood pressure changes (19–21), 

we consider the following relationship between cbf and cbv (5):

cbf(ω) = kHRC − HP
(AutoReg)(ω)cbv(ω) = kHRC − HP

(AutoReg)(ω)
CBV0

(a)

CBV0
cbv(a)(ω)

+
CBV0

(v)

CBV0
cbv(v)(ω) ,

(19)

in which k is the inverse of the modified Grubb exponent, HRC − HP
(AutoReg)

 is the RC high-pass 

transfer function with cutoff frequency ωc
(AutoReg) that describes the effect of autoregulation, 

and the second equalities follows from Equation (13). More precisely, the expression of the 

RC high-pass transfer function is:

HRC − HP
(AutoReg)(ω) = 1

1 +
ωc

(AutoReg)

ω

2eitan−1 ωc
(AutoReg)

ω
(20)

We observe that, while O(t), D(t), and T(t) in the time domain (Eqs. (1)–(3)) represent the 

absolute concentrations of O, D, and T, the frequency-domain phasors O(ω), D(ω), and 

T(ω) of Equations (16)–(18) represent oscillations about baseline values.

Measuring Physiological Parameters with CHS

Fourteen physiological parameters appear in the expressions for O(ω), D(ω), and T(ω) 

(Eqs. (16)–(18)), namely: ctHb, S(a), α, t(c), t(v), CBV0
(a), Ƒ(c)CBV0

(c), CBV0
(v) , cbv(a)(ω), 

cbv(c)(ω), cbv(v)(ω), cmro2(ω), ωc
(AutoReg) , and k. A new method for the assessment 
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of cerebral hemodynamics, CHS, is based on the frequency-resolved measurement of 

induced hemodynamic oscillations (5) and potentially allows for the measurements of these 

parameters. Because it is impractical, and in some cases impossible, to control the amplitude 

and the phase of induced hemodynamic oscillations at different frequencies, we consider the 

following phasor ratios, thereby canceling unknown common amplitude or phase factors:

D(ω)
O(ω) = |D(ω)|

|O(ω)|e
i{Arg[D(ω)] − Arg[O(ω)]}, (21)

O(ω)
T(ω) = |O(ω)|

|T(ω)| e
i{Arg[O(ω)] − Arg[T(ω)]}, (22)

Furthermore, if the induced hemodynamic oscillations do not involve modulation of the 

cerebral metabolic rate of oxygen, one can assume cmro2(ω) = 0, so that the model 

Equations (16)–(18), in conjunction with Equation (19), yield the following expressions 

for the phasor ratios of Equations (21) and (22):

D(ω)
O(ω) =

(1 − S(a))
CBV0

(a)cbv(a)(ω)

CBV0
(v)cbv(v)(ω)

+ (1 − S(v))

− < S(c) >
S(v) ( < S(c) > − S(v))

Ƒ(c)CBV0
(c)

CBV0
(v) HRC − LP

(c) (ω)

+(S(a) − S(v))HG − LP
(v) (ω) k

CBV0
(v)

CBV0
HRC − HP

(AutoReg)(ω)
CBV0

(a)cbv(a)(ω)

CBV0
(v)cbv(v)(ω)

+ 1

S(a) CBV0
(a)cbv(a)(ω)

CBV0
(v)cbv(v)(ω)

+ S(v)

+ < S(c) >
S(v) ( < S(c) > − S(v))

Ƒ(c)CBV0
(c)

CBV0
(v) HRC − LP

(c) (ω)

+(S(a) − S(v))HG − LP
(v) (ω) k

CBV0
(v)

CBV0
HRC − HP

(AutoReg)(ω)
CBV0

(a)cbv(a)(ω)

CBV0
(v)cbv(v)(ω)

+ 1

(23)
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O(ω)
T(ω) =

S(a) CBV0
(a)cbv(α)(ω)

CBV0
(v)cbv(v)(ω)

+ S(v)

+ < S(c) >
S(v) ( < S(c) > − S(v))

F(c)CBV0
(c)

CBV0
(v) HRC − LP

(c) (ω)

+(S(α) − S(v))HG − LP
(v) (ω) k

CBV0
(v)

CBV0
HRC − HP

(AutoReg)(ω)
CBV0

(α)cbv(α)(ω)

CBV0
(v)cbvv(ω)

+ 1

CBV0
(α)cbv(α)(ω)

CBV0
(v)cbv(v)(ω)

+ 1

(24)

A first observation is that, contrary to the time domain case, by taking the phasor ratios 

D/O and O/T, we do not have access to cbv(ω). In fact, the blood volume phasor cbv(ω) 

contains an unknown frequency-dependent term related to the variability of the amplitude 

of the induced hemodynamic oscillations as a function of frequency, which cancels out in 

the ratios cbv(a)(ω)=cbv(v)(ω) that appear in Equations (23) and (24). Similar to the time 

domain case, we assume that the blood volume of the arterial and venous compartments 

have the same frequency dependence, and we take the phase of blood volume oscillations 

as the phase reference. In other words, we set cbv(a)(ω) = cbv(a)(ω) ∠ 0° and cbv(v)(ω) 

= cbv(v)(ω)∠0°, with cbv(a)(ω) ∝ cbv(v)(ω), so that the phasor ratio cbv(a)(ω)/cbv(v)(ω) is 

replaced by the real constant cbv(a)/cbv(v) in Equations (23) and (24).

A second observation is that of the 14 model parameters, one (ctHb) has canceled out in 

Equations (23) and (24), and the remaining 13 are combined in Equations (23) and (24) 

in a way that reduces the number of independent parameters to eight: S(a), α, t(c), t(v), 

Ƒ(c)CBV0
(c)/CBV0

(v), (CBV0
(a)cbv(a))/(CBV0

(v)cbv(v)), ωc
(AutoReg) , and kCBV0

(v)/CBV0 . S(a), the 

arterial saturation, typically assumes values greater than 0.95 in healthy adults, and we 

will set it to 0.98. The two parameters α and t(c) are always coupled in the product αt(c) 

in the expressions for <S(c)> and S(v), but t(c) also appears independently in HRC − LP
(c) (ω)

and HG − LP
(v) (ω) . We will assume a value of α = 0.8 seconds−1 on the basis of literature 

results (22), and we will show how this assumption influences the results presented 

here. The venous blood transit time t(v) only appears in HG − LP
(v) (ω) . Ƒ(c)CBV0

(c)/CBV0
(v)

provides a measure of the baseline capillary to venous blood volume ratio, whereas 

(CBV0
(a)cbv(a))/(CBV0

(v)cbv(v)) = ΔCBV(a)/ΔCBV(v) is the ratio of the arterial to venous blood 

volume oscillations. The autoregulation cutoff frequency (ωc
(AutoReg)/(2π)) , which appears in 

HRC − HP
(AutoReg)(ω) , provides a measure of the efficiency of cerebral autoregulation (with higher 

values of the autoregulation cutoff frequency indicating a broader frequency range over 

which autoregulation is effective). Finally, the high-frequency flow-to-volume amplitude 

ratio (k) does not appear independently, but rather is coupled with the base-line venous-to-

total blood volume through the product kCBV0
(v)/CBV0 .
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METHODS

Time Domain

The goal of this work for the time domain is to demonstrate in practical terms how the 

novel hemodynamic model introduced by Fantini (5,11) can be applied to time-varying 

hemodynamic signals measured with fNIRS to obtain measures of cbv(t), cbf(t), cmro2(t). 
We point out that Equations (9) and (10) show that fNIRS can lead to measures of blood 

volume, cbv(t), and the difference, cbf (t) − cmro2(t), not cbf (t) and cmro2(t) separately. 

To this aim, we have used simulated data for O(t) and D(t). There are several mathematical 

functions that have been proposed to describe hemodynamic changes during functional brain 

activation (23–27). Often used for describing the functional magnetic resonance imaging 

blood oxygen level–dependent signal as a hemodynamic response function consisting of one 

or two gamma functions (26). Here we have chosen the following expression for simulating 

the temporal traces of ΔO(t) and ΔD(t):

γ(t) = A (t − t0)δ − 1βδe−β(t − t0)

Γ(δ) , (25)

in which γ(t) stands for either ΔO(t) or ΔD(t), t is time, and t0 is the time at which brain 

activation starts. Γ represents the gamma function, which acts as a normalizing parameter, 

and δ and β are constants for which we set values of δ = 8 and β = 0.6 seconds−1. 

The amplitude A was set to 3 µMs for ΔO(t) and − 1 µMs for ΔD(t). These parameters 

were chosen to best represent typical hemodynamic signals during activation (2,28–30), 

as seen in Figure 1a, where the ΔO(t) and ΔD(t) traces peak simultaneously at t − t0 = 

11.7s.We set the baseline total hemoglobin concentration T0 = 55 µM and the baseline 

tissue saturation S0 = 65%. These values fall within typical values reported in the literature 

for the human brain, which range between 42 and 79 µM for T0, and between 55 and 

75% for S0 (31–36). Because the hemodynamic model depends on several parameters (as 

described previously), we have studied the sensitivity of cbf (t) − cmro2(t) on the values 

assigned to these parameters. We further compared the model output with a steady-state 

approach that has been used extensively in the literature (37–41). In comparison to the 

dynamic model (5,11), a steady-state model does not consider any temporal shifts between 

cbf(t)—or cmro2(t)—and ΔO(t) or ΔD(t). Mayhew et al. expressed the venous contributions 

to the tissue concentrations of D and T (D(v), T(v)) in terms of the measurable overall tissue 

concentrations of D and T as follows (41,42):

ΔD(v)

D(v)|0
− ΔT (v)

T (v)|0
= γr

ΔD
D0

− γt
ΔT
T0

= − (cbf(t) − cmro2(t)) . (26)

in which γr and γt have been assumed to be constants within the range 0.2 to 5 (41) and 

D(v)|0 and T(v)|0 are the baseline deoxy hemoglobin concentration and total hemoglobin 

concentration in the venous compartment, respectively. Equation (26) fits in the definition 

of steady-state models because it introduces no temporal shift between the changes in the D 
and T hemoglobin concentrations (D(v), T(v)), and the blood flow and oxygen consumption 
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perturbations (cbf(t), cmro2(t)) that cause them. Recently, Fantini (11) derived the following 

explicit expressions for the coefficients γr and γt, under the approximation (1 − S(a)) ≅ 0:

γr =
(1 − < S(c) > )

Ƒ(c)CBV0
(c)

CBV0
(v) + (1 − S(v))

< S(c) >
S(v) ( < S(c) > − S(v))

Ƒ(c)CBV0
(c)

CBV0
(v) + (S(a) − S(v))

, (27)

γt = 1 − S(v)

< S(c) >
S(v) ( < S(c) > − S(v))

Ƒ(c)CBV0
(c)

CBV0
+ (S(a) − S(v))

CBV0
(v)

CBV0

ΔCBV(v)

ΔCBV .
(28)

Using Equations (26)–(28), one can determine the cbf (t) − cmro2(t) traces derived using the 

steady-state approach and compare them to those derived using the hemodynamic model of 

Fantini.

Frequency Domain

The goal of this work for the frequency domain is to demonstrate in practical 

terms how the novel hemodynamic model introduced by Fantini (5) can be 

applied to frequency-resolved measurements of induced hemodynamic oscillations to 

determine the following independent combinations of model parameters: t(c), t(v), 

Ƒ(c)CBV0
(c)/CBV0

(v), (CBV0
(a)cbv(a)/CBV0

(v)cbv(v)), ωc
(AutoReg) and kCBV0

(v)/CBV0 , after having 

assumed specific values for S(a) = 0.98 (the arterial saturation) and α = 0.8 seconds−1 

(the rate constant for oxygen diffusion from the capillary bed to tissue). The methods of 

obtaining such frequency resolved spectra (CHS) has been described previously (5,10). Here 

we perform a new analysis of previously collected paced breathing data, which we are 

analyzing with the novel description of the model in terms of cbf(ω) and cbv(ω) (Eqs. (23) 

and (24)). Details about the data acquisition methods have been reported previously (10) 

and are described only briefly here. NIRS measurements were performed with a commercial 

tissue oximeter (OxiplexTS, ISS, Inc., Champaign, IL) on 11 healthy subjects. The optical 

probe was placed on the right side of the subject’s forehead. Subjects were asked to perform 

paced breathing, guided by a metronome. Five subjects performed paced breathing at 11 

frequencies (0.071, 0.077, 0.083, 0.091, 0.100, 0.111, 0.125, 0.143, 0.167, 0.200, and 0.250 

Hz). Six subjects performed paced breathing at four frequencies (0.071, 0.100, 0.167, and 

0.250 Hz). After slow temporal drifts were removed from the data, band-pass filtering was 

performed around each paced breathing frequency. Based on phasor analysis and using this 

band-pass filtered data, we could obtain |D|/|O|, |O|/|T|, arg(D) − arg(O), and arg(O) − 

arg(T) for each paced breathing frequency (with arg describing the angle). For the purpose 

of this work, we have calculated the average and standard error of the data collected on all 

11 subjects. The experimental protocol was approved by the institutional review board, and 

written informed consent was obtained from all participants before the study.
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After setting S(a) = 0.98 and α = 0.8 seconds−1, we are left with six unknown parameters 

t(c), t(v), 
Ƒ(c)CBV0

(c)

CBV0
(v) ,

(CBV0
(a)cbv(a))

(CBV0
(v)cbv(v))

, ωc
(AutoReg)/(2π) , and 

kCBV0
(v)

CBV0
 . Those parameters can be 

determined by fitting experimental data with the model (Eqs. (23) and (24)). We have 

used a built-in fitting procedure in MATLAB (function “lsqcurvefit”) with the default 

reconstruction algorithm, which is a trust region reflective algorithm. This algorithm allows 

one to carry out a reconstruction of the six unknowns by searching within a bounded region 

of the six parameters’ space. The fitting procedure considers as known or input values the 

four parameters |D|/|O|, |O|/|T|, arg(D) − arg(O), and arg(O) − arg(T) (measured at multiple 

frequencies) and finds the optimal set of the six unknown parameters by minimizing a 

cost function (χ2) that is the sum of the residuals squared. The phase differences were 

expressed in radians, so that the four different input quantities were of the same order of 

magnitude. For the fitting procedure, we have set upper and lower limits on the parameters 

as summarized in Table 1. The lower and upper limits were based on physiological ranges 

for these parameters. The limits for t(c) (0.4–1.4 seconds) were set by requiring that the 

venous saturation be bound between 32 and 71%. The limits for t(v) correspond to a range of 

venule lengths of 1 to 3 mm assuming a typical speed of blood flow in venules of 1 mm/s 

(43). The limits of (0.8–2.4) for the capillary to venous blood volume times the Fåhraeus 

factor (set to 0.8) correspond to the reported range of ~(0.3–0.65) for the capillary to total 

blood volume over cortical depths of 0–2.5 mm (44) after assuming that overall arteriole 

and venule blood volumes are the same. This latter assumption also results in the limits for 

(CBV0
(a)cbv(a))

(CBV0
(v)cbv(v))

 (0.2–5) by allowing for a range of scenarios between the extreme cases of 

arterial-dominated (value of 5) and venous-dominated (value of 0.2) blood volume changes. 

The limits for the autoregulation cutoff frequency (ωc
(AutoReg)/(2π)) reflect the full range 

between a lack of autoregulation (0 Hz) and normal autoregulation (0.15 Hz) (19). Finally, 

the limits for kCBV0
(v)/CBV0 result from a reported range for k (the inverse of the Grubb’s 

exponent) of 2 to 5 (45–48) and from the range of venous-to-total blood volume ratio (0.2–

0.35) obtained from the capillary to total blood volume ratio (0.3–0.65) in the human brain 

cortex (44) under the assumption that CBV0
(a) = CBV0

(v) . We have used 54 different sets of 

initial guesses for the six unknown parameters, which were evenly spread out throughout 

the range of upper and lower bounds of the parameters. For each initial guess, the solution 

of the six parameters and the corresponding χ2 value was stored for further analysis of the 

obtained solutions.

RESULTS

Time Domain Results for cbv(t) and cbf(t) − cmro2 (t)

To obtain the cbv(t) traces, Equation (9) was applied and ΔT(t) was obtained from the sum 

of ΔO(t) and ΔD(t) (Figure 1a). The corresponding time traces can be seen in Figure 1b 

(dashed line). To obtain the cbf (t) − cmro2(t) traces, ΔO(t) and ΔD(t) were first normalized 

to the baseline total hemoglobin T0 = 55 µM (Figure 1a). Then, we set the model parameters 

to typical values obtained from the literature (5). Those values are S(a) = 0.98, α = 0.8 
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seconds−1, t(v) = 2s, Ƒ(c) = 0.8, 
CBV0

(a)

CBV0
(v) = 1 , and 

CBV0
(c)

CBV0
= 0.65 . Because the baseline 

tissue saturation was set to S0 = 65%and the relative arterial, capillary, and venous blood 

volumes were set to the values reported previously, the transit time in the capillaries could be 

calculated as t(c) = 1.23s from the following equation that expresses the tissue saturation as a 

weighted average of the arterial, capillary, and venous saturation:

S0 =
S(a)CBV0

(a) + S(a) 1 − exp( − αt(c))
αt(c) Ƒ(c)CBV0

(c) + S(a)exp( − αt(c))CBV0
(v)

CBV0
. (29)

Furthermore, we assumed the arterial and venous volume perturbations to have the same 

magnitude and time dependence (ie, cbv(a)(t) = cbv(v)(t) or σ = CBV0
(v)/(CBV0

(a) + CBV0
(v))

using the notation of Equations (14) and (15)). Taking the fast Fourier transform (FFT) of 

ΔO(t) and ΔD(t), we found cbf(ω) − cmro2(ω) from Equation (10), and by applying an inverse 

FFT (FFT−1), we found cbf (t) − cmro2(t) as shown in Figure 1b.

The determination of cbv(t) is model-independent and only depends on ΔT(t) and T0 as 

shown by Equation (9). To determine the sensitivity of the derived trace of cbf (t) − cmro2(t) 
on the assumed values for the model parameters, we have considered multiple values of the 

input parameters. First, the sensitivity to the capillary transit time, t(c), was evaluated (Figure 

2a). Keeping all other parameters fixed to the values used to generate Figure 1, we assumed 

a range of the tissue saturation S0 from 75 to 55%, which correspond, according to Equation 

(29), to a range for t(c) of 0.8 to 1.8 seconds. The associated variability in the derived traces 

of cbf (t) − cmro2(t) can be seen in Figure 2a (solid light gray lines). The magnitude of 

cbf (t) − cmro2(t) ranges from 0.07 for t(c) = 1.8s to 0.11 for t(c) = 0.8s. The steady-state 

solution of cbf (t) − cmro2(t) was also determined by using Equations (26)–(28) with the 

traces of ΔO(t) and ΔD(t). In comparison to the dynamic model, the steady-state solutions 

(dashed black lines) show the same magnitude change, with γr varying between 0.86 and 

0.99 and γt varying between 0.86 and 1.04. In addition, the peak time for cbf (t) − cmro2(t) 
differs between the dynamic model prediction and the steady-state solutions as seen in the 

inset of Figure 2a. By definition, the steady-state prediction shows a peak time coincident 

with the peak times of ΔO(t) and ΔD(t). The dynamic model, however, predicts an earlier 

rising of cbf (t) − cmro2(t) in comparison to ΔO(t) and ΔD(t), with peak times preceding 

the hemoglobin signals by 0.9 seconds for t(c) = 0.8s and 1.2 seconds for t(c) = 1.8s. This 

temporal lead of the physiological changes (cbf (t) − cmro2(t)) with respect to the measured 

signals ΔO(t) and ΔD(t) is the result of the blood transit time in the microvasculature.

We have set α = 0.8 seconds−1. The rate constant of oxygen diffusion can be estimated by 

α = D/d2, where D is the diffusion coefficient of oxygen in tissue and d is the intercapillary 

distance. For the oxygen diffusion coefficient D, literature values of 1.7 × 10−5 to 2 × 

10−5 cm2/s have been reported for brain tissue (22,49,50). Values of ~40–60 µm have been 

reported for the intercapillary distance d in the rat brain and human gray matter (51–53). 

These reported measured ranges for D and d lead to a range of possible oxygen diffusion 
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rate constants α of 0.4 to 1.2 seconds−1. We have evaluated the influence of α by keeping 

the baseline tissue saturation S0 constant at 65%. Based on Equation (29), the capillary 

transit time for a given α was calculated and the corresponding cbf (t) − cmro2(t) traces 

were obtained (data not shown). We found that the magnitude of cbf (t) − cmro2(t) was 

independent of the value of α, provided that the product αt(c) is kept constant. However, the 

peak time of cbf (t) − cmro2(t) varied by 400 ms because of the variability in t(c).

The effect of changing the venous transit time t(v) between 1 and 3 seconds can be seen 

in Figure 2b, where again we kept constant all other model parameters and the baseline 

tissue saturation, which was set to S0 = 65%. A change in magnitude as well as in peak 

time of cbf (t) − cmro2(t) can be seen. However, the effect of changing t(v) is negligible in 

comparison to the effect of t(c). For the steady-state solutions, we found γr = 0.93 and γt = 

0.96. According to the dynamic model, changing the capillary-to-total blood volume ratio, 

CBV0
(c)

CBV0
 , between 0.3 and 0.65, we observe a magnitude change between 0.08 and 0.09 and a 

change in peak time that precedes by 0.9 to 1.3 s the peak time of ΔO(t) and ΔD(t) as seen 

in Figure 2c. Again, the steady-state solutions show comparable magnitudes, with γr within 

the range 0.93–0.97 and γt within the range 0.96–0.99. Last, changing the arterial-to-venous 

blood volume ratio, 
CBV0

(a)

CBV0
(v)  , between 0.8 and 1.2 did not result in a magnitude change in 

the dynamic model determination of cbf (t) − cmro2(t), as seen in Figure 2d. The peak 

times were only slightly affected, ranging from 0.97 to 1.05 seconds. Also in this case, the 

steady-state solutions show a comparable magnitude, with γr within the range 0.93–0.94 and 

γt within the range 0.91–1.02.

Frequency Domain Results

Figure 3 shows the experimental results of the average data set from 11 paced breathing 

subjects, with the data points being the mean values of the data collected on the 11 

subjects and the error bars showing the standard error. Launching 54 initial guesses for 

the six parameters of the fitting procedure, we found 54 times the same final values 

with the same minimum χ2 value. Those parameter values were: t(c) = 1.19 seconds, 

t(v) = 1 s, 
Ƒ(c)CBV0

(c)

CBV0
(v) = 1,

(CBV0
(a)cbv(a))

(CBV0
(v)cbv(v))

= 4.14, ωc
(AutoReg)/2π = 0.04Hz , and 

kCBV0
(v)

CBV0
= 0.47 . 

However, although the solution with the smallest χ2 value is a robust solution in terms of 

independence of the initial guess, there are other solutions with marginally larger χ2 values 

that also result in good fits to the data. Because the fitting procedure used did not provide 

errors of the solutions and did not take the standard error of the experimental data into 

account, we included a number of solutions for each parameter corresponding to a range of 

χ2 values, with the criteria being that the fit for |D|/|O|, |O|/|T|, arg(D) − arg(O), and arg(O) 

− arg(T) goes through all the experimental data points and their error bars.

The shaded area in Figure 3 contains all the spectra for |D|/|O|, |O|/|T|, arg(D) − arg(O), and 

arg(O) − arg(T) for a set of solutions for the six parameters that results in χ2 values that are 

within a range of 0.02 (the minimum χ2) to 0.15. The solutions for the data set shown in 

Kainerstorfer et al. Page 14

Acad Radiol. Author manuscript; available in PMC 2015 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3 are summarized in Table 2, where we report the mean value and standard deviation 

of the set of acceptable values for each parameter. The cutoff frequency, ωc
(AutoReg)/(2π) , 

which provides a measure of the efficiency of cerebral autoregulation, shows the smallest 

relative standard deviation (5.7%) of all six parameters.

As in the time domain, we kept α = 0.8 s−1. However, as discussed previously, a may vary 

between ~0.4 and 1.2 s−1. We evaluated the dependence of the frequency domain results on 

α by making it an independent parameter in the fit (data not shown). It was found that the 

mean values of the six parameters stay within one standard deviation of the mean values 

reported in Table 2, further validating the assumption of keeping α constant.

DISCUSSION

In the time domain, we have used simulated data for ΔO(t) and ΔD(t) and shown how 

the novel hemodynamic model by Fantini (5,11) can be used to obtain traces of cbf (t) − 

cmro2(t), in addition to the cbv(t) trace directly derived from ΔT(t). The temporal traces 

of cbv(t) and cbf (t) − cmro2(t) are descriptive of the underlying physiology of cerebral 

activation, so that they can be used to investigate the processes associated with brain activity 

or to detect and assess neurovascular deficits. We have shown that the obtained traces are 

robust in terms of magnitude and temporal shift for varying t(v), 
CBV0

(a)

CBV0
(v)  , and 

CBV0
(c)

CBV0
 , with 

the magnitude change being between 0.08 and 0.09, which is a variability of 10%. For those 

three parameters of the model, we have found that the time of the peak was also shifted with 

a variability of ~500 ms. The one parameter of the model that resulted in a large variability 

of cbf (t) − cmro2(t) magnitude was the capillary transit time t(c), in which the magnitude 

showed a variability of 50%. However, the t(c) range considered here corresponds to a wide 

range in the tissue saturation S0 of 55 to 75%. A measurement of S0, as opposed to an 

assumption based on literature values, can provide a more precise estimate and a smaller 

uncertainty in the magnitude of cbf (t) − cmro2(t). For example, a range of 62 to 68% 

for S0 corresponds to a magnitude variability for cbf (t) − cmro2(t) of 15%. As a result, 

by assuming typical values for the model parameters and by refining these assumptions 

by appropriate baseline measurements, the model yields reliable traces for the temporal 

evolutions of cbv(t) and cbf (t) − cmro2(t).

We have assumed the baseline total hemoglobin concentration, T0, to be known. From this, 

we were able to derive time-dependent traces for volume changes, cbv(t), as seen in Figure 

1b. If however, T0 is not known while assuming the other model parameters to be known, 

and we allow a range of values of T0 from 42 to 79 µM, the magnitude of cbv(t) will vary 

between 0.05 and 0.09. The corresponding magnitude change in cbf (t) − cmro2(t) would 

show a variability from 0.06 to 0.11. As pointed out for S0, this variability can be drastically 

reduced if absolute values of T0 are known.

We have further evaluated the dependence on α, where we found that the magnitude of 

cbf (t) − cmro2(t) is only dependent on the product αt(c), which is fixed when keeping 

the baseline tissue saturation constant at S0 = 65%. However, as seen in Equation (29), S0 
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depends on the relative volumes of the three vascular compartments, which are typically not 

known. Alternatively, instead of setting the constrain on S0, one could set a constrain on the 

venous saturation, which does not depend on the blood volume fractions being given by S(v) 

= S(a)e−at(c)
 (18).

Because of the dynamic nature of the novel hemodynamic model, we were able to report cbf 

(t) − cmro2(t) time traces, which showed an earlier rising and peak time than the steady-state 

version reported in the literature (41,42). Also, Fantini (11) reported analytical expressions 

for the empirical constants γr and γt, which we have used here, allowing us to have access to 

those values. We found both γr and γt to be ~1, which falls within typical literature values, 

with 0.75 to 1.25 being reported to be a plausible physiological range (42).

For the frequency domain part of the model, we have used experimental data from a 

paced breathing paradigm designed to induce hemodynamic oscillations, described by 

phasors O and D, at multiple frequencies. Using a fitting procedure, the new hemodynamic 

model yielded the values of six physiological parameters that are related to the cerebral 

hemodynamics in the microvasculature. The first two parameters—t(c) and t(v)—provide 

a measure of the blood transit time in the capillary bed and in the venous compartment 

that lies within the optically probed volume. These are the two parameters that determine, 

according to this new model, the delay (in the time domain) or the phase lag (in the 

frequency domain) between the hemoglobin concentration changes measured with NIRS 

and the underlying CBF and CMRO2 changes. The model does not allow for a complete 

determination of the relative arterial, capillary, and venous blood volume, but it yields the 

ratio of the capillary to venous blood volume (where the capillary blood volume contains 

the Fåhraeus factor: Ƒ(c)CBV0
(c)/CBV0

(v) . The ratio between the magnitudes of the arterial 

and venous blood volume oscillations— 
(CBV0

(a)cbv(a))

(CBV0
(v)cbv(v))

 —contains the ratio of arterial to 

venous blood volume, which is expected to be close to 1 in the microvasculature (because 

of the symmetrical architecture of the arteriolar and venular branches) but may deviate 

from 1 in the presence of larger arterial or venous vessels within the tissue volume probed 

by NIRS. The autoregulation cutoff frequency (ωc
(AutoReg)/(2π)) was found to be robustly 

determined by fitting the measured CHS spectra with the new model. However, it is 

important to point out that it is not defined in terms of systemic arterial blood pressure 

and global cerebral blood flow as typically done in the literature (19,54). By contrast, 

cerebral autoregulation is defined here in terms of the local cerebral blood flow and the 

microvascular blood volume as described by Equation (19). This accounts for a specific 

physiological meaning of the autoregulation cutoff frequency as defined here, and more 

work is needed to fully characterize its information content and its meaning in relation to 

the conventional definition of cerebral autoregulation. The asymptotic blood flow to volume 

ratio (k) (i.e., the ratio between changes in blood flow and changes in blood volume in the 

absence of autoregulation) cannot be measured by the approach presented here, unless an 

assumption is made on the venous to total blood volume ratio because it appears in the 

parameter kCBV0
(v)/CBV0 . These six physiological parameters have a diagnostic potential 

for any neurovascular disorder or brain damage that impact the cerebral hemodynamics and 
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microvascular integrity. Recently, we have demonstrated the clinical applicability of CHS 

to patients in the hemodialysis unit, for whom we found a significantly slower cerebral 

microvascular blood flow with respect to a group of healthy controls (55).

Similar to the time domain case, we have set α = 0.8 s−1. We have found that by considering 

α as a variable parameter and fitting for α does not change the results for the other six 

parameters, confirming that the reported solutions are insensitive to α. This insensitivity 

results from the fact that only the ratios of the hemodynamic signals are considered. 

Because, as shown in the time domain, a together with t(c) determine a magnitude change 

in the data, the effect is canceled out by taking the ratios of |D|/|O|, |O|/|T|. This lack 

of sensitivity to absolute changes in D and O makes the fitting procedure robust for 

determining the other six parameters of the model.

CONCLUSIONS

We have demonstrated how the novel dynamic hemodynamic model by Fantini (11) can be 

applied to analyze NIRS measurements of time-varying hemodynamics (time domain) and 

frequency-dependent hemodynamic oscillations (frequency domain). In the time domain, 

the model can be used to convert measured O(t) and D(t) traces into cbf (t) − cmro2(t) 
traces. We have shown that the magnitude of cbf (t) − cmro2(t) is relatively insensitive to 

the model parameters if the absolute values of baseline total hemoglobin concentration (T0) 

and tissue saturation (S0) are known. It is inherent to fNIRS data that cbf (t) and cmro2(t) 
cannot be accessed independently. If, however, an independent measurement of cbf (t) is 

available, a decoupling of cbf (t) and cmro2(t) is, of course, possible. In the frequency 

domain, the model has led to the novel CHS method, which is based on measurements of 

induced hemodynamic oscillations at multiple frequencies as described by phasors O(ω) and 

D(ω). Here, the model can be used to derive the blood transit time in capillaries and venules, 

the cutoff frequency for cerebral autoregulation, and measures of capillary-to-venous blood 

volume ratio and arterial-to-venous blood volume changes.

This formulation of the new hemodynamic model results in a practical analytical tool 

that can find broad applicability in the study of functional brain activation and cerebral 

hemodynamic assessment with NIRS. In particular, measurements of cerebral blood volume, 

blood flow, and metabolic rate of oxygen are of paramount importance in studies of brain 

activation and neurovascular coupling. The quantitative assessment of brain microvascular 

hemodynamics, cerebral autoregulation, and cerebrovascular reactivity can have farreaching 

implications in the diagnosis and assessment of a variety of neurovascular disorders, 

traumatic brain injury, and stroke.
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Figure 1. 
Workflow of determining (cbv(t)) and cbf(t)−cmro2 (t) with the new hemodynamic model. 

(a) Normalized total oxy- and deoxy-hemoglobin (ΔO(t) and ΔD(t)) are the input quantities, 

measured with functional near-infrared spectroscopy, for the model. By assuming specific 

values for the physiological model parameters, the optical measurements can be converted 

into cbv (t) and cbf (t) − cmro 2(t) traces (b). The traces in (b) were obtained by using 

Eqs. (9) and (10). cbf, relative changes in cerebral blood flow with respect to baseline; 

CBV, cerebral blood volume; cbv, relative changes in CBV with respect to baseline; crmo2, 

relative changes in metabolic rate of oxygen with respect to baseline; FFT, fast Fourier 

transform; S(a), arterial saturation; t(c), capillary blood transit time; Ƒ(c), Fåhraeus factor in 

capillaries; blood transit time in capillaries; t, time; t(v), venous blood transit time.
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Figure 2. 
Sensitivity of cbf(t)−cmro2(t) on the model parameters and comparison to the steady-state 

predictions, with cmro2 indicating metabolic rate of oxygen. (a) The dependence on the 

capillary blood transit time (t(c)), (b) the venous blood transit time (t(v)), (c) the relative 

capillary blood volume, and (d) on the arterial to venous blood volume ratio. Dynamic 

model results (solid light gray lines); steady-state results (dashed dark black lines). Insets 

show the peak time of cbf(t)−cmro2(t) (on the x axis) calculated with the dynamic model 

with respect to the peak time of O(t) (broken line at 0) as a function of the parameters 

considered in each panel. See Figure 1 for additional definitions.
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Figure 3. 
Experimental results of frequency-resolved measurements of cerebral hemodynamic 

oscillations during a paced breathing protocol in human subjects. (a) Phase difference 

between phasors O and T, arg(O) − arg(T); (b) amplitude ratio |O|/|T|; (c) phase difference 

between D and O, arg(D) − arg(O); and (d) amplitude ratio |D|/|O|. The symbols and error 

bars were obtained by averaging the data over the 11 subjects and taking the standard errors. 

A set of spectra corresponding to a range of χ2 values corresponding to model results that 

fall within the data error bars is shown (shaded areas).
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