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Abstract

Active contour techniques have been widely employed for medical image segmentation. 

Significant effort has been focused on the use of training data to build prior statistical models 

applicable specifically to problems where the objects of interest are embedded in cluttered 

background. Usually the training data consists of whole shapes of certain organs or structures 

obtained manually by clinical experts. The resulting prior models enforce segmentation accuracy 

uniformly over the entire structure or structures to be identified. In this paper, we consider a new 

coupled prior shape model which is demonstrated to provide high accuracy, specifically in the 

region of the interest where precision is most needed for the application of the segmentation of the 

femur and tibia in magnetic resonance (MR) images. Experimental results for the segmentation of 

MR images of human knees demonstrate that the combination of the new coupled prior shape and 

a directional edge force provides the improved segmentation performance. Moreover, the new 

approach allows for equivalent accurate identification of bone marrow lesions (BMLs), a 

promising biomarker related to osteoarthritis (OA), to the current state of the art but requires 

significantly less manual interaction.
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I. Introduction

Osteoarthritis (OA) is a common debilitating disease afflicting over 71 million people 

globally. Due to its large social and economical burden, significant resources have been 

directed to understanding the pathophysiology of OA. Cartilage degeneration is an important 

index of OA progression, thus a large number of image processing-based quantitative 

measurement methods for cartilage measurement [1]–[6] have been developed to aid clinical 

researchers. In addition to cartilage, bone marrow lesions (BMLs) also represent a common 

OA-related MRI finding associated with structural degeneration and pain [7]–[11]. From an 

image processing perspective, characterization of cartilage and BMLs tend to follow a two-

step approach: locate the bones, then locate the cartilage or BMLs. This strategy is 

necessitated by the challenges associated with identifying cartilage or BMLs directly. As 

shown in Fig. 1, knee cartilage is quite thin relative to the femur and tibia, may be affected 

with poor contrast in the image and cartilage defects may well indeed comprise multiple 

cartilage components depending on the state of OA in the knee and the image slice being 

segmented. In the case of BMLs, it is difficult to extract and quantify these structures 

directly due to the uncertain shapes, numbers and locations of BMLs [12]. Thus most 

researchers [10], [13]–[15] also prefer to segment bone first to either define a region of 

interest (ROI) in which BMLs may be located or to serve as reference for healthy bone.

Although characterizations of cartilage and BMLs follow the same two-step approach, the 

MR sequences for imaging cartilage and BMLs are very different [16]. The MR sequences 

for cartilage evaluation suppress the inhomogeneity (mainly BMLs) [1]–[6] while in the MR 

sequences for BMLs segmentation, the heterogeneity in the bone regions is more prominent 

[7]–[11]. State of the art bone segmentation methods [1]–[6] have been designed and 

validated for the former type of data. Unfortunately, as we demonstrate in Section III-A, the 

application of these methods to the data of interest here results in degraded performance 

specifically for those cases where there is significant structure within the bones such as 

BMLs.

Motivated by these results, in this article, we present an active contour algorithm based on 

the level set framework [17], [18]. It is designed to segment femur and tibia on data 

collected using a BML protocol. Active contours have been widely used in medical image 

segmentation problems [19], [20] and can be divided into two classes: region-based and 

edge-based. In the case of the region-based approach, a number of statistically-driven curve 

evolution techniques have been developed. For example, the well-known Chan-Vese model 

[21] implicitly assumes that the intensity distribution of object and background are Gaussian 

with the same variance, and as a consequence seeks a segmentation which minimizes, in 

part, a mean square error-type of objective function. For cases where such a parametric 

model is not appropriate, a variety of nonparametric techniques have been developed most 

often based on the estimation of pixel-intensity probability distribution functions (PDFs) 

constructed using the kernel density estimation (KDE) method [22]. These approaches 
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employ training data to construct prior distributions for the object and background pixels. 

From these estimated PDFs, objects are identified using curve evolution algorithms designed 

to maximize the match between the PDFs constructed for an estimated object and 

background relative to these priors. Here we point to a range of metrics that have been 

developed to measure quality of the match including the Kullback-Leibler (KL) distance 

[23], the Bhattacharyya distance [24] etc. However the size, location and the intensity 

histogram of the inhomogeneous area and the BMLs within the bone area (see Fig. 1 and 

other figures in Section III) are uncertain in our knee bone segmentation problem making 

the intensity distributions of bones very difficult to model. Thus as we demonstrate in 

Section III-A, region-based active contours have a difficult time performing well for our 

problem.

In contrast to region-based active contour, edge-based active contour [25] tends to suffer 

from limited capture range and sensitivity to initialization. Thus many active contour 

methods based on the use of image gradient information have been developed to address this 

challenge. Xu and Prince [26] developed the Gradient Vector Flow (GVF) method which 

not only increases the capture range for edge-based contours but also is bidirectional which 

means initial curves are not necessary to be either inside or outside true boundaries as 

required in [25] etc. Later, Li and Acton [27] proposed Vector Field Convolution (VFC). 

The VFC field is generated simply by convolving the image edge map with a suitably 

designed vector field kernel. Although certain anatomical structures of the knee bone exists 

in our problem, noise, clutter, BMLs and degeneration in the boundaries yield rather poor 

performance for purely edge-based active contour methods.

Due to noise, artifacts, and other inconsistencies encountered when dealing with real data, 

active contour techniques typically require some form of regularization to achieve suitable 

results in practice. While generic curvature based methods were initially considered [17], in 

recent years, there has been considerable effort directed toward the use of prior instances of 

segmented shapes for purposes of regularization [28]–[35]. Generally, there are two ways to 

encode prior shape information into a level set-base active contour segmentation scheme. 

The first one is to represent the level set function ϕ as a linear combination of basis 

functions obtained via principal component analysis (PCA) applied to the signed distance 

functions in the training set [33], [35]. Modifications to the methods in [33], [35] include the 

use of binary prior shapes in [31], [36], Kernel PCA of binary prior shapes in [36] and the 

addition of constraints on the evolution of the PCA coefficients in [31]. The second way to 

incorporate prior shape is to use a penalty term to ensue that the evolving curve does not 

move “far” from the reference shapes. In [28], [29], the authors consider the use of a single 

such reference shape. Extensions to libraries of prior observed shapes include the work in 

[30], [32], [37] based on kernel density estimation (KDE) techniques to estimate the 

similarities between a shape and a set of training shapes as well as [30], [32] where the 

metrics to evaluate the similarities between two shapes are also mentioned and briefly 

discussed. The introduction of KDE into the prior shape model as in [30] and [32] employed 

the shape information for each image in the training set and thus improved the capability to 

capture large shape variances when segmenting test data.
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All the prior shape methods mentioned above are for single object problems. For the case of 

segmenting multiple components, not only the shape of each object or component but also 

the relative positions among objects could be used as prior information for segmentation. 

Tsai et al. [38] directly extended their PCA prior shape model of single object [33], [35] for 

multiple objects. In addition to the shape information, Han et al. [39] proposed an algorithm 

to maintain the number of initial disconnected components during the evolution of multiple 

curves while Sundaramoorthi and Yezzi [40] designed a coupling repulsive force to realize 

the same functionality. In addition, Zimmer et al. [41] used a penalty term to prevent two 

curves from overlapping each other. Moreover [42], [43] designed specific coupling forces 

to take into account more information about the relative position or topology of the object 

structure. In addition, Ma et al. proposed a shape influence term [44] to incorporate relative 

distance information and used the region competition scheme [45] for the segmentation of 

female pelvic organs [46]–[48]. Moreover, the Coupled Nonparametric Shape (CNS) [49] 

model used the KDE [22] to incorporate the prior shape information and extended the single 

prior shape model in [32] to multiple components situation for the segmentation of basal and 

ganglia structures.

In the case of BMLs within the knee, clinicians are especially concerned with accuracy in 

the vicinity of the joint. The key contribution of the work in this paper is the adaptation of 

shape prior methods to account for this type of region-specific accuracy requirement in the 

context of a multi-part segmentation problem in [7] to the curve evolution process. More 

specifically, of primary concern in this paper is the segmentation in the vicinity of the joint 

where we seek a method that can identify the individual bones reliably even when provided 

with imagery containing BMLs corrupting the bones themselves. In our coupled shape 

model, this prior places strong constraints on the segmentation in the region near the joint 

(i.e. areas within the two horizontal lines as show in Fig. 2(a)) where the separate 

components (femur and tibia segments) must be kept from either merging or moving too far 

from one another even in the presence of significant clutter from BMLs, cartilage etc. 

Moreover, the model provides less of a constraint in those areas further from the joint in our 

case where either accuracy is not required (e.g. inhomogeneous area in Fig. 1). Here we 

want to point that the idea of [49] is similar to ours but still like other prior shape methods, 

[49] also evaluates the match uniformly over the whole image domain which is not what we 

seek for the knee segmentation problem and, as we show empirically in Section III-A, does 

not perform quite as well as the approach we suggest for the problem of interest here.

In addition to the coupled prior shape model, active contours can be driven by image based 

forces (region-based or edge-based). As mentioned before, it is very challenging to build 

region-based forces due to the uncertain size, location and intensity histogram of BMLs 

within the bone region. Moreover, the femur and tibia are separated by the cartilage which is 

very thin as shown in Fig. 1. Thus edge force fields generated by the femur/cartilage 

interface and tibia/cartilage interface using e.g., GVF and VFC methods can overwhelm 

with each other as illustrated in Figure 4. To overcome this difficulty, we adapt the 

directional edge information idea [50], [51], adjust and apply it to our knee segmentation 

problem. By combining the coupled prior shape model and the directional force field, we 

demonstrate that our active contour model is robust to initializations and can segment the 

femur and tibia accurately even in highly cluttered situations. Another major contribution of 
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this paper is the development and validation of our active contour model for knee bone 

segmentation and sequently BML segmentation and quantification which yields comparable 

results but requires far less human interaction with the data than competing methods.

Before moving on, we note that the work in this paper is concerned primarily with the 

processing of two dimensional (2D) images with relatively large slice thickness and inter-

slice gap. The fact that state of the art in cartilage segmentation does consider the full three 

dimensional (3D) problems such as [3], [4] is due at least in part to the availability of MRI 

data sets characterized by small slice thickness and usually no interslice gaps. As illustrated 

in Section III-A, the 3D methods have similar results as our 2D method when bone regions 

are homogeneous and with few BMLs but their performance does degrade when large BMLs 

and other inhomogeneities are present. This fact indicates the advantages of our method in 

cases of great relevance to BML analysis. Based on our validated 2D method in this paper, 

we feel that extension to 3D is best left to the future.

The remainder of this paper is organized as follows. In Section II, we present the level set 

framework of knee segmentation and our coupled prior shape model as well as the 

directional edge based force. Then experimental results are presented and discussed in 

Section III. Finally, we draw our conclusion and discuss our future work in Section IV.

II. Segmentation based on Coupled Prior Shape and Directional Edge Force

In this section, we first set up the framework of curve evolution for our knee segmentation 

problem in Section II-A. In Section II-B and Section II-C, our coupled prior shape model 

and the directional Vector Field Convolution (DVFC) are illustrated respectively. The 

implementation details are presented in II-D.

A. Framework of curve evolution

The essential idea of level set methods for segmentation is to represent a curve C⃗(t) as the 

zero slice of an auxiliary level set function ϕ(x, t) where t is an artificial time parameter; i.e., 

C⃗(t) = {x|ϕ(x, t) = 0)}. Active contour techniques using level set functions “evolve” ϕ as a 

function of time such that, as t → ∞, C⃗(t) approaches the the contour of interest in the 

image. Since we are going to handle two curves simultaneously, we use two level set 

functions to model the shapes of both femur and tibia1. Thus, we seek to identify two closed 

curves C⃗
1 and C⃗

2 which we define as the zero level sets of functions ϕ1 and ϕ2 respectively

where Ω1 and Ω2 represent the femur and tibia respectively. By using the chain rule, an 

evolution equation of ϕk is

1While one could use a single level set function constrained to have two connected components to represent both the femur and the 
tibia, in this paper we choose to use two level sets; one for each bone. We are motivated to make this choice primarily by the nature of 
the edge based forces we develop in Section II-C. Specifically one set of forces is defined for the tibia and a second for the femur. 
Thus, it proves convenient to employ separate level set functions for each rather than a single such function which would need to be 
processed at each stage of the algorithm to keep track of the individual components.
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(1)

where F(x) = xt is known as the speed function. If F(x) is in the normal direction of C⃗(t), 

then (1) becomes

(2)

where F(x) = |F(x)| is the magnitude of F(x).

The essential work of various active contour methods [21], [24], [26], [27], [30], [32], [37] 

is to design the speed function F(x) or F(x). From the variational perspective, some of these 

forces are conservative vector fields which means they equal the gradient of a scalar 

functional. Those conservative vector fields are always oriented towards the normal 

direction of C⃗
k(t) [52] and result in evolution processes of the form in (2). Usually energy 

functionals based on image fitting [21], [24], [53], [54] and prior shape modeling [28]–[30], 

[32] are constructed and the corresponding forces are derived. From a force balance 

perspective [26], [27], [52], F(x) could also be designed directly without constructing the 

associate energy functional [26], [27], [43], [55].

In this paper, we present two novel force fields denoted by  and  which act upon the 

curve C⃗
k(k = 1, 2). Since  is derived from a Coupled Shape prior based energy functional 

and its direction is toward the normal direction of C⃗
k, we only focus on its magnitude . In 

addition,  is constructed directly by incorporating Directional information to the 

existing Vector Field Convolution method [27]. By combining those two forces, we have the 

following evolution equation

(3)

where λ is a positive coefficient to balance these two force fields,  is derived from a 

shape prior while  from the edge information. In the following two sections, we 

illustrate how to build  and  respectively.

B. Coupled Prior Shape Force

Similar to [30], [32], [37], we employ the KDE method [22] to capture our prior shape 

information. Instead of modeling p(ϕ1) and p(ϕ2) separately, we model the joint probability 

density function p(ϕ1, ϕ2) as follows

(4)
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resulting in the corresponding Coupled Shape energy

where Di(ϕ1, ϕ2) is a shape dissimilarity metric between ϕ1, ϕ2 and the corresponding 

shapes in the ith training sample and N is the number of training samples. In addition, σϕ is 

the kernel width. One contribution in this paper is that our design of a novel Di(ϕ1, ϕ2) 

discussed below. We set  the mean squared nearest-neighbor distance following [30].

By using the calculus of variation, we have

(5)

where k = 1, 2 and thus the force derived from the prior shape driving curve evolution can be 

defined by

(6)

Next, we introduce a new coupled prior shape model to describe the knee shape for both 

femur and tibia as well as their relative positions simultaneously by defining a new Di(ϕ1, 

ϕ2). For the ith training image i = 1, 2, ···, N, we obtain the shape of the femur and tibia and 

denote their corresponding level set functions as  and  respectively. For all i, we pre-

process the data to ensure that,  and  are aligned via only translation (i.e., no rotation or 

scaling) with respect to the “center” of the two objects structure as illustrated in Fig. 2(a) 

and defined rigorously below. The aligned shapes of knees are displayed in Fig. 2(b).

For arbitrary level set functions ϕ1 and ϕ2 (for femur and tibia respectively in our knee 

problem), the dissimilarity between the pair of ϕ1 and ϕ2 and the pair  and  is defined 

by

(7)

The approximate Heaviside function H2,ε(·) is defined in [21] as

(8)

For simplicity, we use H(·) to represent H2,ε(·) through the paper. In addition, the knee 

center uϕ is defined as follows (see Fig. 2(a)). First, the centroids of the femur and tibia are 
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computed. We define uϕ as a point that lies on the line crossing the femur and tibia centroids 

with the same distance to both bones. Formally uϕ is given by

(9)

where

and s ∈ (0, 1) such that

Here d(uϕ, Ωk), k = 1, 2 denotes the distance from uϕ to the region Ωk.

Eqn. (7) is inspired by the intrinsic alignment shape model proposed by [30]. The major 

difference between our coupled prior shape model and [30] is the definition of uϕ. In [30], 

uϕ is defined as the center of gravity of a single shape. In our situation, since the clinical 

researchers are mostly interested in the femur and the tibia near the joint, people usually do 

not segment the parts of the femur and the tibia far from the joint in a consistent way (see 

Fig. 2), meaning that the center of gravity for both the femur and tibia are not consistently 

defined. However the newly defined uϕ in (9) takes into account this factor by linking itself 

to the geometry of the gap between the bones where we do have significant information and 

where accuracy is most required. Moreover, our method is also different from [49] in two 

aspects. Firstly, for each component, the aligned center is still defined as the center of 

gravity of that component which means the prior shape constraint is still imposed uniformly 

around the shape rather than in a specific region. In addition, [49] use the summation of 

KDE of the shape of each component to build the energy functional and establish the 

coupling relationships among components.

As an example, we show in Fig. 2, the results of aligning 30 femur and tibia support 

functions from the data set used to validate our approach in Section III. The reference image 

within the training set for alignment is displayed in Fig. 2(a). In Fig. 2(c) the centroids of the 

individual bones are used to aligned the tibia and femurs as in [49]. In Fig. 2(b), we display 

the result of jointly aligning both bones with respect to uϕ defined in (9). As can be seen 

both from the overlay of the individual images in the training sets (Figures 2(b) and (c)) as 

well as from the maps of the variance in each pixel of the aligned training sets (Figures 2(e) 

and (f)), the coupled shape approach provides greater stability and thus a stronger geometric 

constraint precisely in the region of most interest for this problem; i.e., in the vicinity of the 

joint. As mentioned, due to the inconsistency of shape far from the joint in the training set, 

the alignment with respect to the centroids of femur and tibia individually causes large 

variance near the joint region as shown in Fig. 2(f) indicating week constraint there [34].
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(10)

By using calculus of variation, we obtain the gradient flow of (7) as (10) where the delta 

function δ(·) in (10) is defined as the derivative of H2,ε. Details concerning the derivation of 

(10) are provided in the Appendix.

C. Directional vector field convolution force

The force  stems from prior shape information discussed above is the gradient of an 

associated energy functional. However, forces can be also designed directly without 

constructing the corresponding energy functionals from a force balance perspective. One 

drawback of the VFC and GVF method is that weak edges might be overwhelmed by the 

strong edges especially for our knee segmentation problem in the cartilage region [27], [55]. 

Inspired by the works of [43], [50], [51], we constructed a directional VFC force field which 

incorporates direction information into the VFC method.

A VFC field F(x) = F(x, y) is usually obtained by convolving a feature map f(x, y) with a 

kernel ker(x, y) = [kerx(x, y), kery(x, y)],

where f(x, y) is usually taken as the edge map which usually is a single plane image of edge 

magnitudes. The kernel ker(x, y) is

where m(x, y) is the magnitude of the ker(x, y) at location (x, y). We adapt the power form 

definition of m(x, y) as defined in [27]

(11)

and

(12)

except n′(0, 0) = [0, 0] and , ε′ is a small number to prevent division by zero and 

γ is a positive number to control the decrease. The continuous ker(x, y) is discretized over a 
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region {(x, y)|x, y = −R, · · ·, −1, 0, 1, · · · R} for implementation and R denotes the kernel 

radius. More information about the edge map f(x, y) and the kernel ker(x, y) can be found in 

[27].

From the MRI knee imagery in e.g., Figure 1, we see that the healthy femur and tibia are the 

dark regions separated by the cartilage and surrounded by tissue. Because both cartilage and 

tissue are brighter than the femur and tibia, there exists some directional information about 

femur and tibia edges that can be incorporated into the VFC model. Here we draw on the 

ideas in [51] using the synthetic image Fig. 3 to help illustrate the concepts.

Assume the reference point O in Fig. 3 has the coordinate (x0, y0), then the directional edge 

map is

(13)

where  and θ is the angle between n and ∇I which 

is the gradient of the image. From Fig. 3, we can see that the outer edge is omitted in the 

directional edge map. For example, A2, A5 are typical points in the outer edges and we can 

see that θ2, θ5 > π/2. In addition, the inner edge in the center part such as A3 is also omitted 

which will prove quite useful for the knee problem.

In our knee problem, we let (xk, yk) be a point within the femur (k=1) and the tibia (k=2) and 

denote the angle between the vector (x − xk, y − yk) and the image gradient, ∇I, as θk(x, y). 

We now note that only the edges with 0 ≤ θk(x, y) < π/2 are the valid edges for the femur Ω1 

and the tibia Ω2 and thus we have the directional edge map for this structure as follow

(14)

where  and θk is the angle between ∇I and nk.

Thus the directional VFC force can be defined by

(15)

To illustrate the utility of this new force, consider the knee data shown in Fig. 4(a) with the 

smaller region of interest provided along with a number of VFC-based force fields. From 

Fig. 4(b), we observe that the traditional VFC force field “leaks” into the inter-bone region 

which will degrade the resulting segmentation. For example the tibia edges in the middle 
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and the femur edges in left up are overwhelmed in Fig. 4(b). Alternatively, Fig. 4(c) and (d) 

show that the edges of femur and tibia are well preserved by incorporating direction 

information respectively.

D. Implementation

By combining the shape prior force  and the directional VFC based force  and 

according to (3), we get the curve evolution equation for our knee segmentation problem as

(16)

where the λ is a positive coefficient to balance these two forces,  and  are defined in 

(6) and (15) respectively. In addition, ϕ1 and ϕ2 are regularized as Signed Distance 

Functions [17], [18] and for each iteration, ϕ1 and ϕ2 are updated, then the centroid uϕ is 

updated according to (9). For the Heaviside function H(·) and the delta function defined in 

(8) and its derivative d(·), we use ε = 1.5.

For the directional VFC force, we set the location reference points (x1, y1) and (x2, y2) as the 

centroids for the initial curves for the femur and tibia respectively. The kernel radius R is set 

to 15 in all of our experiments which is at the same scale of the shape variance bandwidth as 

displayed in Fig. 2(e). In addition, we set γ = 1.5 and ε′ = 0.002. We also scale  to have 

maximum value equal to one at each iteration leaving λ to determine the relative impact of 

the two forces. In all experiments presented in this paper λ = 0.5 so that the force due to the 

prior is generally a bit smaller than that of the edges. With this weighting, in the early stages 

of the evolution we see two effects. First,  allows the curves to quickly converge to 

those portions of the bones characterized by well defined edges. At the same time, for those 

areas where the edges are less well defined or where there is clutter, the prior shape term 

keeps the curve from straying too far from ground truth. At the later stages of the algorithm 

after the clear edges are identified, in some of the more ambiguous regions,  will then 

move the curve to better find the true edges than would have been the case were only the 

shape prior used.

The convergence criterion for the curve evolution process is that if the region size change of 

ϕ1 ≥ 0 and ϕ2 ≥ 0 is less than 2 pixels between two adjacent iterations and we assume that 

the force balance is achieved.

III. Experiment and discussion

To evaluate the validity of our new knee bone segmentation method, we conducted two 

experiments based on the Osteoarthritis Initiative (OAI) databases, which are available for 

public access at http://oai.epi-ucsf.org. All images were obtained using the Siemens Trio 3T 

MR systems and a USA instruments quadrature transmit-receive knee coil at one of four 

OAI clinical sites. The MR sequences were acquired using sagittal intermediate weighted, 

turbo spin echo, fat-suppressed MR sequences (field of view = 160 mm, slice thickness = 3 
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mm, skip = 0 mm, flip angle = 180 degrees, echo time = 30 ms, recovery time = 3200 ms, 

313 × 448 matrix [interpolated to 512 × 512, phase encode superior/inferior. x resolution = 

0.357 mm, and y resolution = 0.511 mm). The first experiment aims to illustrate the type of 

scenario where our prior model provides improved performance relative to a number of 

state-of-the-art, comparable segmentation techniques such as [3], [4], [30].

In the second experiment, we explore the performance of the bone segmentation approach 

developed in this paper in the context of BML identification. As shown in Fig. 5, in [10] we 

developed and validated a BML segmentation scheme that was based on a two-step process 

involving first the segmentation of the bones and then the identification of BMLs using a 

modified Chan-Vese [21] curve evolution technique which accounted for the bones 

structures. Unlike the approach in this paper, the bone segmentation strategy in [10] uses a 

combination of edge and local region information [55] to overcome the challenges 

associated with the bone inhomogeneities. Since both edge and local region information 

based forces are sensitive to initial curves, for the method in [55] the user needs to initialize 

two polygons close to the femur and tibia boundaries for each MR slice, a process requiring 

significant manual interaction with the data. In Section III-B, we compare BML localization 

performance when using the method in [10] to that obtained when bone segmentation is 

accomplished via the approach in this paper with the second step being identical to that of 

[10]. We demonstrate that despite a factor of 30 drop in the time required for human 

interaction with the data, ultimate accuracy in identification of BMLs is impacted relatively 

little.

A. Segmentation results on MRI slice with typical BMLs

We begin by comparing the method of interest in this paper to a number of comparable 

techniques for the segmentation of the femur and tibia from the data sets described at the 

beginning of Section III. Of specific interest are robustness to two issues: intensity 

inhomogeneities (mainly BMLs, see Fig. 1) within the bone regions and curve initialization. 

Because many BMLs are located close to the edges of bones, robustness to intensity 

inhomogeneities is needed to ensure that BML regions are not excluded from the bone areas. 

Moreover, robustness to curve initialization means that our method requires less effort to 

initialize which is essential to reduce user interaction thereby facilitating the analysis of 

large data sets.

We build two coupled prior shape models for the lateral and medial knee respectively. For 

each model, thirty training slices are used. The initial curves are two blue circles inside the 

femur and the tibia respectively as displayed in Figure 6. In Figures 6 and 7, we provide a 

collection of segmentation results comparing the method proposed in this paper to a number 

of alternative techniques. To be clear, in all cases the results are obtained using images that 

are not in the associated training sets. In both Figures 6 and 7, the ground truth knee bone 

segmentations are as displayed as red lines. The ground truth knee bone segmentation were 

obtained by well trained researchers at Tufts Medical Center using Matlab Graphic User 

Interface (GUI) tools as described in [10]. In addition, an expert looked over all of the 

segmentation results and adjusted them as necessary.
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Method I (DVFC+Cremer) uses two separate prior shapes (Cremer’s model) for femur and 

tibia plus the directional VFC force. Method II (CV+CS) uses our coupled prior shape plus 

the Chan-Vese’s image term. Method III (DVFC+CNS) uses the directional VFC force and 

the coupled nonparametric shape model [49]. Our proposed method (DVFC+CS) is the 

combination of the directional VFC force and our coupled prior shape model. In addition to 

these four curve evolution based methods, we also present results from two 3D atlas based 

methods [3], [4] which are considered as state of the art 3D knee bone segmentation 

techniques for cartilage imaging based MR sequences. These 3D methods [3], [4] are 

applied to the entire MR slice stack for each knee but here only results for slices are 

displayed for direct comparison with the 2D methods. Figure 6 provides representative 

results for the methods described previously. From Figure 6, we can see that Method I 

(DVFC+Cremer) provided strong results in some cases (the second and the third rows), but 

we observe in the results in the first, the fourth and the fifth rows that the tibia contours are 

trapped in local minima. Method II (CV+CS), preserves the relative position between the 

segmented femur and tibia as well as the bone shapes but the inhomogeneous pixels 

distributions in both bones due to the BMLs prevent the curve evolve to the desired position 

especially in the third and the fifth rows. Method III (DVFC+CNS) does have some 

improvements over Method I (DVFC+Cremer) in the first, fourth and the fifth rows, but it 

seems that the inter components constraint of the CNS model [49] is not strong enough to 

draw curves into the right position. In general, Method IV (Atlas 1) [3] and V (Atlas 2) [4] 

do a good job in most cases except in cases that very large BML exists such as in the fourth 

and fifth rows where some degradation can be seen. In particular, the BMLs volumes for the 

knees in the fourth and fifth rows of Figure 6 are 1.53cm3 and 14.1cm3 for the femur and 

8.4cm3 and 0.8cm3 for the tibia while the BMLs volumes for the knees in the first to the 

third rows are 3.2cm3, 1.2cm3 and 2.7cm3 for the femur, 1.9cm3, 1.3cm3 and 2.2cm3 for the 

tibia. Our method (DVFC+CPS) outperforms the other methods in those knee images, 

because the directional edge-based force could push the contours into the right position and 

the coupled prior shape force preserves both the femur and tibia shape and as well as the 

relative positioning information.

Figure 7 displays the magnified areas near the joints of the images in Figure 6. Here we see 

that an added complication associated with the processing of the BMLs data set is that the 

articular cartilage may have a lower signal intensity than normal (e.g., closer to the signal 

intensity of bone) due to anatomical features and/or the composition of articular cartilage. 

Some examples can be found in parts of the tibial cartilage in the first and the third rows of 

Fig. 7. Essentially two things could cause cartilage to look darker - the structural 

composition of cartilage could be different (e.g., a different amount of water in the tissue) or 

certain areas of the knee or certain knee shapes may be predisposed to having abnormal 

signal intensity in the cartilage. In such kind of challenging cases, our method does degrade 

a bit, but still is no worse than other methods as shown in Fig. 7.

For more quantitative analysis, we compare the accuracy of our approach to Methods I 

(DVFC+Cremer), III (DVFC+CNS), IV (Atlas 1) [3] and V (Atlas 2) [4] as the poor 

performance of Method II (CV+CS) in Figs. 6 and 7 was generally the case for a wider 

range of knees thereby precluding this approach from further consideration. As the basis for 
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the quantitative analysis, we consider the average symmetric surface distance (AvgD) as 

defined in [56] but here adapted to the 2D problem. In a bit more detail, we start by 

extracting the boundary pixels in our segmentation results as well as in the ground truth. For 

each pixel on the boundary of the segmentation, the nearest pixel in the reference is 

determined and the Euclidean distance between them is calculated and saved. Then for each 

boundary pixel in the ground truth, the closest pixel in the segmentation boundary is found 

and the Euclidean distance between them is computed and stored. Finally the average 

distance of all the stored values is the AvgD. In addition, to better quantify the segmentation 

error near the knee joint region, we also calculated the AvgD for boundaries in region 

between the two horizonal lines as shown in Fig. 2(a) as well as Figs 8. The distance 

between these lines is 120 pixels and the distances from the centroids of knee bones for each 

image to the upper and bottom lines are 70 and 50 pixels respectively.

We pick 20 MRI slices with BMLs. These 20 MRI slices are from 10 patients with age 61 ± 

8. Most of these patients have BLOKS [57] BML score 2 or 3 (0 means healthy and 3 means 

the worst). In addition, about 2 MR slices were chosen manually by identifying the slices of 

the largest BMLs per patient. Then we use randomly generated circles as initial curves and 

apply our method (DVFC+CS) and Methods I (DVFC+Cremer) and III (DVFC+CNS) to 

these 20 MRI slices. The centroids of these circles are uniformly distributed within the red 

squares (20 × 20 pixels) in the first column of Fig. 8, the radii of these circles are uniformly 

distributed between 15 and 30 pixels. Some of the segmentation results are displayed in Fig. 

8. For each initialization, we compute the AvgD values near the joint between knee bone 

segmentation and the ground truth and then we calculate the mean and standard deviation of 

the AvgD values regard to different initializations for each slice. Since Methods IV (Atlas 1) 

[3] and V (Atlas 2) [4] do not use initial curves, the AvgD near the joint is computed only 

once. Detailed information including the mean and standard deviation for AvgD values near 

the joint of various methods is displayed in Fig. 9. The curve evolution methods (Method I, 

Method III, our method) work well for the femur but Methods I (DVFC+Cremer) and III 

(DVFC+CNS) are very sensitive to the initial curves in slices 1, 2, 4, 6, 12, 14, 19 and 20 (8 

out of 20) for the tibia. In Table I, both the mean and the standard deviation of the AvgD 

statistic for our method are substantially smaller than those of Methods I (DVFC+Cremer) 

and Method III (DVFC+CNS) which means that our method not only better captures the true 

boundary of the tibia but also is more robust to different initializations.

The 3D atlas methods (Methods IV and V) work well except Method IV [3] for slices 3, 16, 

17 and 18 (4 out of 20) and Method V [4] for slices 17 and 18 (2 out of 20) mainly due to 

very large BMLs in the femur. Here we assume slices with AvgD values for the femur larger 

than 1mm are failures. For the tibia, Methods IV [3] and V [4] perform well except slices 18 

to 20 (3 out of 20) for Method IV and slices 8, 18 to 20 (4 out of 20) for Method V again 

mainly caused by large BMLs. We assume slices with AvgD values for the tibia larger than 

2mm are failures, since the mean AvgD value for tibia is much larger than that of femur.

The AvgD values (excluding failure slices) near the joint of various methods are displayed 

in Table II. We can see that after excluding the failure slices, the AvgD values near the joint 

for our method and the 3D atlas methods are almost the same for the femur while for the 

tibia, the 3D atlas methods are slightly larger (about 0.14mm). Therefore our method 
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performs slightly better than state of the art 3D Methods IV [3] and V [4] for cases where 

there are no or few BMLs. However we do significantly better when inhomogeneity areas 

such as BMLs within the knee bones are apparent. This is exactly the case for which our 

method is designed.

B. Application on the BML segmentation

In this section, we show that our method could provide comparable accuracy to the BML 

related clinical research while requires only about one thirtieth manual operation than our 

previous method [10]. The method in [10] is considered state of the art for bone marrow 

lesion segmentation because it could segment BMLs without the reader needing to manually 

segment each BML. In addition, to the best of our knowledge, [10] is the first semi-

automated method to evaluate BMLs volume size quantitatively rather than some semi-

quantitative rating scores such as [57]. Since the method in [10] is well validated and 

already used for clinical research focusing on BMLs volume changes [58], [59], we use the 

BML volumes and the knee bone segmentations obtained by two raters using method in [10] 

as the ground truth for evaluation in this experiment. The method we are going to validate in 

this experiment and that of [10] have the same framework displayed in Figure 5. Given the 

knee bones are identified, the Chan-Vese method [21] are used to obtain the BMLs within 

the segmented bone region. The difference is how Step 1 - knee bone segmentation as 

shown in Figure 5(a) is performed.

For each knee, both the baseline and 24-month follow-up were tested and two raters 

segmented those 15 knees using the approach in [10] in which clinical researchers have to 

initialize two polygons near the knee bones for every MRI slice which costs about 30 

seconds for each slice. For our new approach, we only initialize two slices for each knee 

data set, one for the lateral part and one for the medial part of each knee data set, for these 

two slices, we only need to draw two circles as displayed in Figs. 6, 7 and 8 which costs 

about 3–5 seconds. Due to the robustness to initial curves as shown in Section III-A, the 

segmentation result of a MRI slice could be used as initial curves for the next slice. Instead 

of directly using the segmentation result of the current slice as the initial curves for the next 

slice, we applied the erosion morphological operation [60] to keep the initial curves inside 

the femur and the tibia. Thus in general the manual interaction time for each data set could 

be reduced from 6 minutes (for 12 slices as discussed below) to about 10 seconds.

Following [10], there were about 37 slices and we omitted the central slices from the 

analysis (i.e., the middle 9 slices) to focus on BMLs adjacent to the chondral surface and to 

improve reliability for each knee. For analyses with pain, it is likely to underestimate the 

association between BMLs and pain due to the exclusion of the central lesion. For analyses 

with structure, omitting these slices would unlikely influence our results. It is reported that 

central BMLs were not associated with cartilage loss unless they extended into the 

subchondral region of the index compartment [61], which we measured. We acknowledge 

that it would be ideal if we could include this region down the road but this is particularly 

challenging based on the noise on these slices as well as the challenges in identifying the 

border of the bone.
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We applied our algorithms to 15 knee data sets. The goal of that study was to validate the 

accuracy and consistency of our semi-automated processing approach across multiple users. 

Quantitatively, there we used intraclass correlation (ICC) analysis [62] to measure this 

consistency. Within the context of that analysis, fifteen participants was deemed sufficient to 

detect a significant ICC if the coefficient was greater than 0.65 (with an alpha level < 0.05 

and power > 0.90). Hence we choose to use these same 15 data sets for our analysis here. As 

the primary objective of this work is to demonstrate the utility of the modeling ideas in 

Section II especially in Section II-B, we consider a slice-by-slice approach to the processing 

of these MRI images. In addition, we also omitted the beginning and ending slices for each 

knee which have no or little bone structure. Over the entirety of the data set, there were 363 

MRI slices processed in total with 12.1 ± 1.92 MRI slices per data set.

Slices in a single knee data set were divided into six groups from a lateral to medial order. 

As a group, these images have similar bone geometries near the joint region. Hence, six 

prior shape models were generated respectively. Given a new knee, each slice was assigned 

to one of these six groups based on the order within the knee and processed using the 

corresponding prior shape model. For each of these six groups, we used 30 training images 

to construct the coupled prior shape and none of the training slices was part of the test slices. 

These training slices were generated by Rater 1.

The parameters stated in Section II-D work well for 347 out of the 363 slices. For the other 

16 slices, good segmentation results could be obtained by tuning the kernel radius R from 10 

to 20. As in section III-A, we also used the AvgD and the partial AvgD values near the joint 

area to evaluate our femur and tibia segmentation results as displayed in Tables. III, and IV 

respectively. Comparing Tables. III, and IV, we can see that significant variability arises 

from regions that are far from the joint area. This is to be expected, because the boundaries 

of the knee bones near the joint are real anatomical structures and they could be consistently 

segmented for the training set while on the contrast the boundaries for the knee bones far 

from the joint are “virtual” boundaries to define region of interest and they could hardly be 

defined in a consistent way (see Fig. 2). Thus the region near the joint could be more 

accurately segmented due to both more edge information and stronger geometric prior shape 

constraint.

From Table. IV, we can see that the AvgD values near the joint area for two raters are 0.310 

mm and 0.489 mm for the femur and tibia respectively. The AvgD values for our method 

between the two raters for the femur part are 0.532 mm and 0.524 mm which are slightly 

bigger (less than one pixel) than that of the two raters. The AvgD values for our method 

between the two raters for the tibia part are 0.795 mm and 0.852 mm which are also less 

than or about one pixel larger than that of the two raters. In summary, the approach 

considered here provides accuracy in terms of segmenting the femur and tibia that is within 

about a pixel of that obtained by two human raters but requires about one thirtieth (10s vs 6 

minutes) the time in terms of human interaction with the image data for each knee as in [10].

To determine if our method generated similar BML volumes as the manual bone 

segmentation, we performed the BMLs segmentation within the segmented knee bones 

obtained by our method (n = 15 knees). Given the segmented bone structures, the BMLs 
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segmentation method is based on the Chan-Vese’s method [21] with details provided in 

[10]. We tested the inter-method reliability based on intra-class correlation coefficients 

(ICC) [2,1 model] [62] which is commonly used in the OA research [7], [10], [63]. For each 

knee data set, we obtained four BMLs volumes (Vi, i = 1, 2, 3, 4), which corresponded to 

BMLs in lateral femur (V1), lateral tibia (V2), medial femur (V3), and medial tibia (V4) for 

both the baseline and 24-month follow-up. Then we calculated the ICCs of Vi, for baseline, 

follow-up, as well as the Vi change from baseline to follow-up among two raters and our 

method. Usually the criterion for validating a BML segmentation method is that the ICC of 

the volume Vi for baseline and follow-up between two raters are larger than 0.8 and the 

volume changes correlation are larger than 0.7 [64]. The results are presented in Table V2. 

From Table V, we can see that our automated method achieved this criterion except that the 

ICC of the follow-up V4 between Rater 2 is slightly less than 0.8. Thus our approach is 

consistent with manual segmentation for the application on BML segmentation.

As some have suggested bone marrow lesion volume could be an outcome measure in 

clinical trials [63], [65], [66]. Methods like ours which could measure BMLs efficiently and 

reproducibly would help to obtain BML volume in a big data set and thus facilitate the 

investigation of the outcome measure for OA patient.

IV. Conclusions and future work

In this paper, we presented a new coupled prior shape model which implicitly incorporates 

prior shape and also the relative position information for multiple objects. In addition, our 

new shape model also implicitly puts on more constraint in areas with less shape difference 

compared to the conventional shape models which constrain informally on the whole shape. 

Moreover, an edge based force incorporating directional information was also introduced in 

this paper. Segmentation results on the real MRI knee images demonstrate the feasibility of 

our new coupled prior shape modal and also the directional edge-based force. Based on the 

combination of our coupled prior shape model and the directional edge-based force, we 

could reduce the processing time for BML segmentation without sacrifice of accuracy.

The current methods exclude the patella to focus on the tibiofemoral joint. It would be ideal 

to eventually include the patella and this is a future goal for our projects but at this time we 

focused on the tibia and femur. This is also advantageous for us since our group often 

focuses on measures of tibiofemoral OA progression using measures of tibiofemoral joint 

space width or joint space narrowing and peri-articular bone measures in the tibia. The 

patella indeed has BMLs but can represent unique segmentation challenges because of the 

size, shape, and occasionally the lack of adequate fat suppression. An accurate analysis of 

patella BML might also require an axial scan. After confirming that the method is functional 

in the two main bones, our goal will be to explore segmenting the patella as well as extend 

our method from the current 2D form to its 3D version.

2There were no significant differences in BML volumes among the three approaches.
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Appendix: Proof of Equation (10)

Due to similar formulation of  and  as in (10), we only deduce  here.

From (9), we have

Here ϕ̃
1 is a small perturbation of ϕ1 and ε1 is a scalar.

By using Taylor expansion, we have

(17)

Thus
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Thus we have

(18)

Let define the coupling prior shape energy as

then we want to obtain

For simplicity, we use Di(ϕ1 + εϕ̃
1) to denote Di(ϕ1 +εϕ̃

1, ϕ2). Then

(19)

Substituting (17)(18) into (19), we obtain
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Therefore  in (10) holds. Similarly, we can also obtain .
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Fig. 1. 
An MRI knee image with femur, tibia, cartilage, BML denoted.
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Fig. 2. 
(a) The reference image for alignment and our primary concern is the area near the joint 

which is between the two horizontal lines. (b) Aligned shape stack with respect to the newly 

defined knee centers uϕ. (c) Aligned femur with respect to the femur center uϕ1 and tibia 

center uϕ2 individually (CNS model in [49]). (d) Unaligned shape stack. (e)(f) Standard 

deviation of aligned shape stacks with respect to (b)(c) respectively.
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Fig. 3. 
(a) Original image. O represents a reference point. Red dash arrow represents direction unit. 

Blue solid arrow denotes image gradient. Five typical points are represented by A1–A5. (b) 

Conventional image edges. (c) Directional image edges.
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Fig. 4. 
(a) A MRI knee image with region of interest (red box), the femur-cartilage and tibia-

cartilage interfaces within region of interest are denoted by the blue and green lines 

respectively. (b) Original VFC field. (c) Directional VFC field based on . (d) 

Directional VFC based on . In (b) neither of the interfaces are preserved. In (c)(d), 

the femur-cartilage and tibia-cartilage are well preserved respectively.
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Fig. 5. 
(a) Scheme for knee bone and BML segmentation. (b) Original MR image. (c) Knee bone 

and BML segmentation results. Red and yellow lines denote the knee bone and BML 

segmentation respectively.
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Fig. 6. 
Example segmentation results for a number of images from data set discussed in Section III-

A. The red line denotes the ground truth for the femur and tibia, the blue line represents 

initial curves and the yellow line represents the segmentation results. Rows: individual 

cases. Columns 1 to 6: results using Methods I (DVFC+Cremer), II (CV+CS), III (DVFC

+CNS), IV [3], V [4] and our method (DVFC+CS) respectively. Methods IV and V are 3D 

atlas based method and no initial curve is used.
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Fig. 7. 
Corresponding zoomed - in images for the areas near the joint in Fig. 6.
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Fig. 8. 
Example segmentation results for a number of images from data set discussed in Section III-

A. Rows: individual cases. Column 1: Randomly generated initialing curves (circles). The 

centers of these circles uniformly distribute within the red squares and their radii uniformly 

distribute within 15 to 30. Columns 2, 3 and 6: the results based on Methods I (DVFC

+Cremer), III (DVFC+CNS) and our method (DVFC+CS). Columns 4 and 5: red line 

denotes the ground truth, yellow line denotes the segmentation results based on Method IV 

and V. Different colors (yellow, blue, cyan, green and magenta) represent the results based 

on the corresponding initial curves in column 1 and the red line denotes the ground truth. 

The area near the joint where the AvgD is evaluated is denoted by red horizontal lines.
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Fig. 9. 
The error bar figures of the AvgD values regarding different initializations. Left and right 

figures represent the AvgD values for the femur and the tibia respectively. The MR slices 

are tagged from 1 to 20 in ascending order to their knee BMLs volumes in the femur for the 

left figure and in the tibia for the right figure.
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TABLE III

AvgD values between our method and manual results (unit: mm)

Structure our method and Rater 1 our method and Rater 2 Rater 1 and Rater 2

Femur 0.950 ± 0.452 1.128 ± 0.346 0.742 ± 0.166

Tibia 1.241 ± 0.363 1.423 ± 0.379 0.923 ± 0.155
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TABLE IV

AvgD values between our method and manual results near the joint(unit: mm)

Structure our method and Rater 1 our method and Rater 2 Rater 1 and Rater 2

Femur 0.532 ± 0.293 0.524 ± 0.264 0.310 ± 0.095

Tibia 0.795 ± 0.191 0.852 ± 0.200 0.489 ± 0.093
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TABLE V

Inter-tester reliability for BML volume change given the knee bone segmented by our method

Rater 1 and our method Rater 2 and our method Rater 1 and 2

V1

Baseline 0.99 0.92 0.93

Followup 0.92 0.90 0.89

Change 0.99 0.93 0.93

V2

Baseline 0.99 0.91 0.95

Followup 0.99 0.96 0.99

Change 0.91 0.95 0.98

V3

Baseline 0.99 0.97 0.97

Followup 0.99 0.95 0.95

Change 0.98 0.93 0.90

V4

Baseline 0.96 0.85 0.86

Followup 0.88 0.79 0.87

Change 0.95 0.87 0.86
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