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To the editor

Most next-generation sequencing (NGS) quality scores are space intensive, redundant and 

often misleading. In this Correspondence, we recover quality information directly from 

sequence data using a compression tool named Quartz, rendering such scores redundant and 

yielding substantially better space and time efficiencies for storage and analysis. Quartz is 

designed to operate on NGS reads in FASTQ format, but can be trivially modified to discard 

quality scores in other formats for which scores are paired with sequence information. 

Discarding 95% of quality scores counterintuitively resulted in improved SNP calling, 

implying that compression need not come at the expense of accuracy.

Advances in next-generation sequencing (NGS) technologies have produced a deluge of 

genomic information, outpacing increases in our computational resources1, 2. This avalanche 

of data enables large-scale population studies (e.g., maps of human genetic variation3, 

reconstruction of human population history4, and uncovering cell lineage relationships5), but 

to fully capitalize on these advances, we must develop better technologies to store, transmit, 

and process genomic data.

The bulk of NGS data typically consists of read sequences, in which each base call is 

associated with a corresponding quality score, which consumes at least as much storage 

space as the base calls themselves6. Quality scores are often essential for assessing sequence 
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quality (their main use), filtering low quality reads, assembling genomic sequences, 

mapping reads to a reference sequence and performing accurate genotyping. Because quality 

scores require much space to store and transmit, they are a major bottleneck in any sequence 

analysis pipeline, impacting genomic medicine, environmental genomics, and the ability to 

find signatures of selection within large sets of closely related sequenced individuals.

At the expense of downstream analysis (e.g. variant calling, genotype phasing, disease gene 

identification, read mapping, and genome assembly), biomedical researchers have typically 

discarded quality scores altogether or turned to compression, which has been moderately 

successful when applied to genomic sequence data7, 8, 9, 10, 11, 12. Quality score compression 

is usually lossy, meaning that maximum compression is achieved at the expense of the 

ability to reconstruct the original quality values13, 14. Due to decline in downstream 

accuracy, such methods are suboptimal for both transmission and indefinite storage of 

quality scores. To address these limitations, several newly-developed methods exploit 

sequence data to boost quality score compression using alignments to a reference 

genome8, 10, 15 or use raw read datasets without reference alignment16; however, reference-

based compression requires runtime-costly whole-genome alignments of the NGS dataset, 

while alignment-free compression applies costly indexing methods directly to the read 

dataset. On the other hand, quality score recalibration methods, such as found in GATK17, 

increase variant calling accuracy at the cost of significantly decreasing compressibility of 

the quality scores (Supplementary Table S1). To our knowledge, no existing approach 

simultaneously provides a scalable method for terabyte-sized NGS datasets and addresses 

the degradation of downstream genotyping accuracy that results from lossy compression10.

To achieve scalable analyses, we take advantage of redundancy inherent in NGS read data. 

Intuitively, the more often we see a read sequence in a dataset, the more confidence we have 

in its correctness; thus, its quality scores are less informative and useful. However, for 

longer read sequences (e.g., >100bp), the probability of a read appearing multiple times is 

extremely low. For such long reads, shorter substrings (k-mers) can instead be used as a 

proxy to estimate sequence redundancy. By viewing individual read datasets through the 

lens of k-mer frequencies in a corpus of reads, we are able to ensure that ‘lossiness’ of 

compression does not deleteriously affect accuracy.

Here we present a highly efficient and scalable compression tool, Quartz (QUAlity score 

Reduction at Terabyte scale), which compresses quality scores by capitalizing on sequence 

redundancy. Compression is achieved by smoothing a large fraction of quality score values 

based on the k-mer neighborhood of their corresponding positions in the read sequences 

(Fig. 1, left panel). We used the hypothesis that any divergent base in a k-mer likely 

corresponds to either a SNP or sequencing error; thus, we only preserve quality scores for 

probable variant locations and compress quality scores of concordant bases by resetting 

them to a default value. More precisely, frequent k-mers in a large corpus of NGS reads 

correspond to a theoretical consensus genome with overwhelming probability18; without 

having to do any explicit mapping, Quartz preserves quality scores at locations that 

potentially differ from this consensus genome. k-mer frequencies have been used to infer 

knowledge about the error content of a read sequence—in fact, many sequence-correction 
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and assembly methods directly or indirectly make use of this phenomenon19, 20—but never 

for quality score compression.

Unlike other quality score compression methods, Quartz simultaneously maintains 

genotyping accuracy while achieving high compression ratios, and is able to do so in orders 

of magnitude less time. Compression is made possible by Quartz's “coarse” representation 

of quality scores, which allows it to store quality scores at roughly 0.4 bits per value (from 

the original size of 8 bits in FASTQ format or 1.4 bits even after standard lossless text 

compression) (Supplementary Table S2). It is important to note that the compression ratio 

achieved by Quartz is primarily dependent on the conditional entropy of observing the read 

sequence, given the local consensus k-mer landscape. This advance is in contrast to lossless 

compressors, which can reproduce the original quality scores with perfect fidelity but are 

dependent on the entropy of the quality scores themselves, or to lossy methods that directly 

reduce the quality score entropy by quality score smoothing procedures13, 6, 21.

Surprisingly, by taking advantage of the local consensus k-mer landscape, Quartz, while 

eliminating more than 95% of the quality score information, achieves improved genotyping 

accuracy compared with using the original, uncompressed quality scores as measured 

against a trio-validated (i.e. validated against parents' genomes), gold-standard variant 

dataset for the NA12878 genome from the GATK “best-practices” bundle17 (Fig. 2, 

Supplementary Information: Methods). We applied both the GATK17 and SAMtools22 

pipelines (Fig. 1, right panel) to the compressed quality scores generated by Quartz on a 

commonly-used NA12878 benchmarking dataset from the 1000 Genomes Project3 

(Supplementary Figs. S1-S4). The genotyping accuracy based on Quartz's compressed data 

consistently outperforms that based on the uncompressed raw quality scores as measured by 

the area under the receiver operating characteristic (ROC) curve (Supplementary Tables S5-

S6); for the experiments in Fig. 2, Quartz compression decreases the number of false 

positives in the million highest quality variant calls by over 4.5% in several of the pipelines 

(Supplementary Figs. S1-S2). While this improvement is most pronounced for SNP calls, 

indel-calling accuracy is also maintained, if not improved, by Quartz compression 

(Supplementary Figs. S10-S11). This result emerges from the discovery through the 

application of Quartz that quality score values within an NGS dataset are implicitly encoded 

in the genomic sequence information with 95% redundancy, so often do not have to be 

stored separately. This improvement further indicates that compression achieved using 

Quartz reduces the noise in the raw quality scores, thus leading to better genotyping results. 

Notably, removing all quality scores (by setting them all to a default value of 50) caused an 

enormous drop in genotyping accuracy (∼5% decrease in relative ROC AUC) 

(Supplementary Fig. S5), indicating that retaining quality scores is necessary.

Quartz is also scalable for use on large-scale, whole-genome datasets. After a one-time 

construction of the k-mer dictionary for any given species, quality score compression is 

orders of magnitude faster than read mapping, genotyping, and other quality score 

compression methods (Supplementary Table S1 and Supplementary Figs. S6-S7). 

Additionally, Quartz is especially applicable for large-scale cohort-based sequencing 

projects, because its improvements in genotyping accuracy are particularly useful when 

samples have lower depths of sequencing coverage (e.g., 2×-4×) (Supplementary Fig. S8).
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Quartz alters quality scores and improves downstream genotyping accuracy, in common 

with some existing base quality score recalibration tools17 that make use of human genome 

variation from population-scale sequencing3, for example the GATK BaseRecalibrator. 

While currently available recalibration tools and Quartz both use distilled information from 

genome sequences, they differ in several important ways. Most importantly, quality score 

recalibration tools do not apply compression; in fact, GATK recalibration tends to greatly 

increase the amount of storage needed, while also requiring much more computing power 

(Supplementary Table S1); Quartz avoids losing compressibility by using a single default 

replacement quality value. Furthermore, because recalibration tools such as the GATK 

BaseRecalibrator employ a list of known SNP locations, reads must first be mapped to the 

reference. As Quartz uses only k-mer frequencies and Hamming distances, it is possible to 

apply Quartz compression upstream of mapping, which is crucial for either genome 

assembly or mapping.

Quartz is the first scalable, sequence-based quality score compression method that can 

efficiently compress quality scores of terabyte-sized (or larger) sequencing datasets, thereby 

solving both the problems of indefinite storage and transmission of quality scores. Had our 

results merely replicated the genotyping accuracy of existing tools such as GATK and 

SAMTools, we would have still demonstrated order of magnitude improved storage 

efficiency due to compression, at almost no additional computational cost (Supplementary 

Materials). However, our results further suggest that a significant proportion of quality score 

data, despite having been thought entirely essential to downstream analysis, is less 

informative than the k-mer sequence profiles, and can be discarded without weakening (and 

sometimes improving), downstream analysis. Even with aggressive lossy data compression, 

we have shown that it is possible to preserve biologically important data.

A Quartz compression step can be added to almost any pre-existing NGS data processing 

pipeline. Quartz takes as input a FASTQ file (the standard format for read data) and outputs 

a smoothed FASTQ file, which can in turn be input into any compression program (e.g., 

BZIP2 or GZIP) for efficient storage and transmission, or any read mapper (e.g., BWA23, 

Bowtie 224). Further analysis steps such as variant calling (e.g., using SAMTools, GATK) 

can be carried out in the usual way. Our optimized and parallelized implementation of 

Quartz is available, along with a high-quality human genome k-mer dictionary 

(Supplementary Software). We also provide here preliminary results on how Quartz changes 

compression levels and variant-calling accuracy on an E. coli genome, indicating Quartz's 

utility beyond human genomics (Supplementary Fig. S12).

With improvements in sequencing technologies increasing the pace at which genomic data is 

generated, quality scores will require ever greater amounts of storage space; compressive 

quality scores will become crucial to fully realizing the potential of large-scale genomics. 

We show here that unlike previous results21, the twin goals of compression and accuracy do 

not have to be at odds with each other. Although total compression comes at the cost of 

accuracy (Supplementary Fig. S6) and quality score recalibration generally decreases 

compressibility (Supplementary Table S1), there is a happy medium at which we can get 

good compression and improved accuracy. The Quartz software will greatly benefit any 
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researchers who are generating, storing, mapping, or analyzing large amounts of DNA, 

RNA, Chip-seq, or exome sequencing data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Compressive quality scores
Quartz algorithm. (a) A dictionary of common k-mers (green lines) in a corpus of NGS 

reads is generated. The dictionary is generated once for any species. (b) Each read sequence 

R is broken up into overlapping supporting k-mers (purple). (c) Dictionary k-mers that are 

within one mismatch from the supporting k-mers are identified (mismatch positions in red). 

Top: Every position different from a dictionary k-mer is annotated as a possible variant (in 

red) unless covered by a dictionary k-mer corresponding to a different supporting k-mer, in 

which case it will nevertheless be marked for correction (in green; e.g. the second 

mismatch). Other covered positions are also marked for correction as high quality (green). 

Bottom: When two dictionary k-mers correspond to the same supporting k-mer, all 

mismatches are preserved, unless the mismatch position is covered by a dictionary k-mer 

corresponding to a different supporting k-mer as shown top. Uncovered bases are also 

annotated (blue). (d) Quality scores are smoothed and the scores of all high-quality positions 

(i.e. bases) are set to a default value. Scores of uncovered and possible variant loci are kept. 

(e) Quartz can fit into existing genotyping analysis pipelines as an additional processing step 

between acquisition of raw reads and mapping and genotyping.
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Figure 2. Scaled ROC Curves
Genotyping accuracy. Scaled ROC curves of genotyping accuracy for NA12878, before 

(blue) and after Quartz compression (red), using (a) Bowtie 2 and GATK UnifiedGenotyper, 

and (b) BWA and SAMtools mpileup. Accuracy is improved under both variant-calling 

pipelines.
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