Table 2.
Molar extinction coefficients (ε) of isoflavones as a function of wavelength and solvent
Solvent | λ (nm) | ε (L/mol/cm) | Reference | |
---|---|---|---|---|
Daidzein | 96% EtOH | 250 | 20 893 | [107] |
100%EtOH | 262 | 24 739 | [128] | |
n.a. | 249 | 31 563 | [129] | |
MeOH | 248–249 | 27 100–27 200 | a* | |
80%MeOH | 250 | 27 542 | [130] | |
Genistein | 96% EtOH | 263 | 37 154 | [107] |
100%EtOH | 262 | 35 842 | [128] | |
n.a. | 263 | 35 323 | [129] | |
EtOH | 263 | 35 000–38 400 | a* | |
96% EtOH | 262.5 | 37 291 | 0 | |
n.a. | 261 | 33 113 | [131] | |
85% MeOH | 261 | 24 435 | [132] | |
Glycitein | alcohol | 256 | 22 387 | [108] |
n.a. | 256 | 25 388 | [129] | |
Daidzin | n.a. | 249 | 26 830 | [129] |
n.a. | n.a. | 23 749 | b* | |
MeOH/Water | 250 | 28 561 | c | |
Genistin | MeOH/Water | 262.5 | 39 129 | c |
n.a. | 262.5 | 35 323 | [133] | |
85%aq EtOH | 262 | 39 000–40 000 | a* | |
Glycitin | n.a. | 259 | 26 713 | [129] |
Acetyldaidzin | n.a. | 256 | 29 007 | [129] |
Acetylgenistin | n.a. | 261 | 38 946 | [129] |
Acetylglycitin | n.a. | 260 | 29 595 | [129] |
Malonyldaidzin | n.a. | 258 | 26 830 | [129] |
Malonylgenistin | n.a. | 260 | 29 895 | [129] |
Malonylglycitin | n.a. | 260 | 26 313 | [129] |
Malonylglycitin | n.a. | 260 | 26 313 | [129] |
Dihydrodaidzein | n.a. | 277 | 13 600 | d* |
Dihydrogenistein | n.a. | 290 | 18 300 | d* |
DMA | n.a. | 280 | 12 023 | d* |
Equol | n.a. | 281 | 6761 | d* |
Formononetin | n.a. | 256 | 29 512 | [107] |
Biochanin-A | n.a. | 263 | 27 542 | [107] |
λ (nm) = wavelength of absorbance maximum in nanometer; EtOH = ethanol, MeOH = methanol; ε = molar extinction coefficient in L/mol/cm; DMA = O-desmethylangolensin; formononetin = 4′-O-methyl daidzein, Biochanin-A = 4′-O-methyl genistein;
Merck Index 10th edn; n.a. = not available;
private communications:
Sigma-Aldrich;
Nigel Botting 2004 (University of St Andrews, UK),
Purina/Nestle 2006,
Kristiina Wähälä 1998 (University of Helsinki, Finland).