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Abstract

Psychosis involves dysregulation of response to stress, particularly to negative valence stimuli.
Functional magnetic resonance imaging studies of psychosis have shown hyperactivity in
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hypothalamus, hippocampus, amygdala, and anterior cingulate cortex, and orbitofrontal and
medial prefrontal cortices. Sex differences in these deficits may be associated with steroid
hormone pathway abnormalities, i.e., dysregulation of the hypothalamic pituitary-adrenal and -
gondal axes. We predicted abnormal steroid hormone levels in psychosis cases would be
associated with hyperactivity in hypothalamus, amygdala, and hippocampus, and hypoactivity in
prefrontal and anterior cingulate cortices in a sex-dependent way, with more severe deficits in men
than women with psychosis. We studied 32 psychosis cases (50.0% women) and 39 controls
(43.6% women) using a novel visual stress challenge while collecting blood throughout functional
magnetic resonance imaging procedures. Males with psychosis showed hyperactivity across all
hypothesized regions, including the hypothalamus and anterior cingulate cortex by family-wise
corrected significance. Females showed hyperactivity in the hippocampus and amygdala and
hypoactivity in orbital and medial prefrontal cortices, the latter by family-wise correction.
Interaction of case status by sex was significant in the medial prefrontal cortex and, marginally so,
in the left orbitofrontal cortex, with female cases (vs. healthy females and males) exhibiting the
lowest activity. Male and female cases compared with their healthy counterparts were
hypercortisolemic, which was associated with hyperactivity in prefrontal cortices in male cases
and hypoactivity in female cases. This was further associated, respectively, with low bioavailable
testosterone in male cases and low estradiol in female cases. Findings suggest disruptions in
neural-hormone associations in response to stress are sex-dependent in psychosis, particularly in
the prefrontal cortex.
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1. Introduction

Schizophrenia has been associated with deficits in emotion recognition, discrimination
(Heimberg et al., 1992; Schneider et al., 1995; Kohler et al., 2000; Streit et al., 2001), and
experience (Berenbaum and Oltmanns, 1992; Schneider et al., 1995; Quirk et al., 1998;
Epstein et al., 1999; Penn et al., 2000). These deficits, first recognized by Bleuler, were
found in non-psychotic first-degree relatives (Docherty et al., 1994; Toomey et al., 1999),
suggesting they represent vulnerability for schizophrenia (Phillips and Seidman, 2008;
Phillips et al., 2011). Functional magnetic resonance imaging (fMRI) and positron emission
tomography studies of emotional arousal in schizophrenia, particularly response to
negatively-valenced stimuli or the so-called stress response, have consistently shown
increased activation in hippocampus, amygdala and anterior cingulate cortex, coupled with
decreased activation in prefrontal cortex (Wik and Wiesel, 1991; Epstein et al., 1999;
Phillips et al., 1999; Crespo-Facorro et al., 2001; Taylor et al., 2002; Paradiso et al., 2003;
Williams et al., 2004; Fernandez-Egea et al., 2010; Habel et al., 2010; Li et al., 2010),
although this pattern was not consistent across all studies (Habel et al., 2010; Taylor et al.,
2002). In fMRI studies, blood-oxygen-level-dependent (BOLD) signal changes in anterior
cingulate cortex have been related to severity of delusions (Holt et al., 2011) and amygdala
with affective symptoms (Strakowski et al., 2011), suggesting the need for analyses of traits
as well as disorder per se to understand brain activity associated with the stress response.
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Brain activity (BOLD) response to tasks of negative valence stimuli regardless of type of
emotion have been associated with physiologic responses, such as autonomic arousal (Wik
et al., 1991) and hypercortisolemia (Collip and Nicolson, 2011), underscoring their validity
as defining the nature of a “stress response task”. These brain activity responses in
schizophrenia were not explained by visual deficits (Phillips et al., 1999; Reske et al., 2009;
Anticevic et al., 2010), medication (Schneider et al., 1998; Phillips et al., 1999; Streit et al.,
2001), or cognition (Ursu et al., 2011). However, sex differences in brain activity to negative
valence stimuli have been associated with steroid hormone fluctuations in healthy females
and in schizophrenia.

Functional MRI studies have shown hyperarousal to negatively valenced stimuli in healthy
women compared to men (Borod et al., 1993; George et al., 1996; Lang et al., 1998; Bradley
et al., 2001; Cahill et al., 2001; Canli et al., 2002; Wager et al., 2003; Wrase et al., 2003;
McClure et al., 2004; McRae et al., 2008; Domes et al., 2010). The magnitude of
hyperarousal varied across the menstrual cycle in women, with attenuation of hyperactivity
in response to stress during mid-cycle compared with early follicular (McManis et al., 2001;
Wrase et al., 2003; McClure et al., 2004; Goldstein et al., 2005; Derntl et al., 2008; McRae
et al., 2008; Andreano and Cahill, 2010; Goldstein et al., 2010b) and increased prefrontal
and anterior cingulate cortices during the luteal phase, when progesterone was heightened
(Ossewaarde et al., 2010; Wang et al., 2007). Menstrual cycle variation contributed to
understanding sex differences in response to stress in that men resembled women in early
follicular (Goldstein et al., 2010b), a pattern also seen in rodents (Figueiredo et al., 2013).
Hyperactivity of hypothalamus in healthy men versus women was consistent across studies,
controlled for menstrual cycle status and negatively correlated with estradiol levels
(Goldstein et al., 2010b; Andreano and Cahill, 2010). Further, sex differences in laterality in
this circuitry were demonstrated (Pardo et al., 1993; Cahill et al., 1996; George et al., 1996;
Canli et al., 1999; Hamann et al., 1999; Damasio et al., 2000; Schneider et al., 2000; Cahill
et al., 2001; Canli et al., 2002). Together, studies of sex differences in the healthy brain
underscore the need to investigate sex differences in this circuitry systematically in
psychoses, given the abundance of evidence demonstrating disrupted stress responses in
these disorders.

Brain regions that respond to negatively valenced stimuli also regulate the hypothalamic-
pituitary-adrenal (HPA) and HP-gonadal (HPG) systems, which are dysregulated in
schizophrenia (Goldstein, 2006). Gonadal hormones, such as estradiol, modulate risk of
psychotic illness across the lifespan (Walder et al., 2013). Likewise HPA dysregulation, at
the adrenal, pituitary and central nervous system levels, contribute to the pathophysiology
and etiology of schizophrenia (Holtzman et al., 2013; Koolschijn et al., 2008; Walker et al.,
2010). Hippocampus, amygdala, hypothalamus, and anterior cingulate cortex are linked to
endocrine function and neuroprotective and neurotoxic responses to reproductive steroid
exposures (Herzog, 1989). Glucocorticoid receptors are located in the hippocampus,
hypothalamus, prefrontal and anterior cingulate cortices, areas that are dense in sex steroid
hormone receptors (Pacak et al., 1995; Koob, 1999). The hypothalamus, hippocampus and
amygdala are involved in the regulation of HPA and HPG hormones, and anterior cingulate,
medial, and dorsolateral prefrontal cortices influence autonomic and endocrine function
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(Price, 1999) integrating bodily states and goal-directed behavior. These brain regions are
some of the most highly sexually dimorphic regions in the brain, demonstrating in vivo sex
differences in brain volumes and brain activity in healthy populations (Filipek et al., 1994;
Witelson et al., 1995; Giedd et al., 1996; Murphy et al., 1996; Paus et al., 1996; Passe et al.,
1997; Rabinowicz et al., 1999; Nopoulos et al., 2000; Goldstein et al., 2001; Williams et al.,
2005; Derntl et al., 2008; McRae et al., 2008; Domes et al., 2010; Mather et al., 2010), and
schizophrenia (Gur et al., 1999; Frederikse et al., 2000; Goldstein et al., 2002; Goldstein et
al., 2007; Mendrek, 2007).

We previously argued that there is shared pathophysiology between sex differences in stress
response circuitry deficits and endocrine dysregulation in schizophrenia that originate during
key fetal periods of sexual differentiation (Goldstein, 2006). Our hypotheses are based on
the premise that normal sexual dimorphisms go awry in the development of schizophrenia
(Goldstein et al., 2002), resulting in sex differences in adult stress response and
neuroendocrine function. We hypothesize that sex differences in abnormalities in this
circuitry are shared with other major psychoses, such as bipolar psychoses, whose etiologic
origins begin in fetal development during this sensitive period. Thus, we predict participants
with psychoses compared with healthy controls will demonstrate elevated BOLD signal in
subcortical stress response circuitry regions and hypoactivity in cortical inhibitory regions.
Furthermore, we expect the level of hyperactivity will be greater in men than women, and
associated with elevated cortisol and low gonadal hormone deficits (low free androgens in
men with psychoses; low estradiol in women with psychoses). Finally, although analyses are
exploratory given our sample sizes, we predict shared sex-dependent stress response deficits
in non-affective and affective psychoses.

2. Methods

2.1. Sample

Participants for this study were selected from adult offspring of a community sample of
women who were originally recruited during their pregnancies 45 years ago, and have been
followed by our team over the last 20 years, studies known as the New England Family
Studies (NEFS) (Goldstein et al., 2013). In a series of case-control and high risk studies, we
identified offspring participants (in their mid-forties) with psychoses. Expert diagnosticians
(J.G., L.S. and J. Donatelli, Ph.D.) reviewed all information collected from systematic
diagnostic interviews (First et al., 1996) and medical records, if available, to determine final
best estimate diagnoses (Goldstein et al., 2010a; Seidman et al., 2013), resulting in 114 cases
with DSM 1V psychoses and 108 comparable controls (Goldstein et al., 2013).

We recruited 32 participants (50% women) with psychoses and 39 healthy controls (~44%
women) for this functional MRI (fMRI) study of sex differences in stress response circuitry
and hormonal deficits in psychoses. Approximately 20% were non-New England Family
Study subjects but were recruited using the same criteria and from the same community
catchment area and were not different on any sociodemographic or clinical characteristic
than the rest of the sample. “Psychoses” included so-called “non-affective psychoses”
(schizophrenia, schizoaffective, depressed type and psychosis not otherwise specified) and
“affective psychoses” (bipolar disorder with psychosis, schizoaffective disorder, bipolar
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type) (see Table 1), a categorization that has been previously validated in multiple studies
(Faraone and Tsuang, 1985; Kendler et al., 1985; Goldstein et al., 2010a) and successfully
applied by our group and others (Goldstein et al., 2010a). Healthy controls were adult
offspring from the New England Family Study for whom parents and grandparents and
parents’ and controls’ siblings were free of any known lifetime history of psychosis, bipolar,
schizotypal, recurrent major depressive disorder, suicide attempts, or psychiatric
hospitalizations, as described previously (Goldstein et al., 2010a). Human subjects and
methods approval were at Harvard University, Brown University, Partners Healthcare
system, and local psychiatric facilities. Written consent was obtained from all study
participants, and subjects were compensated for their participation.

2.2. Sample description

Clinical and demographic characteristics are presented in Table 1. There were no significant
differences between cases and healthy controls within sex, except for younger age of female
cases compared with healthy women. (Given this, analyses controlled for age.) Of the 16
men with psychoses, 44% were classified affective, 56% non-affective. Of the 16 women
with psychoses, ~62% were classified as affective, 38% non-affective. The male-female
ratio of non-affective (specifically, schizophrenia) patients is typical for schizophrenia and
reflects sex-dependent prevalence. Among subjects with psychoses, males reported younger
ages of onset and longer illness durations than females, as previously demonstrated
(Goldstein, 2006). The majority were Caucasian, with more minorities among cases than
controls.

Given our previous work on sex differences in the healthy brain using this paradigm
(Goldstein et al., 2005; Goldstein et al., 2010b), we recruited women during the late
follicular/mid-cycle menstrual phase when sex differences in the healthy brain would be
larger (co-occurring with higher estradiol and relatively low progesterone) than during early
follicular timing. Here we present fMRI data in women (n=26) during mid-cycle timing,
defined as 10-15 days from start of cycle. Seven women (three cases, four controls) did not
have regular menstrual cycles due to conditions such as endometrial ablation or partial
hysterectomy. However, average cycle length for women with and without psychoses was
similar (controls: M = 30.26, SD = 3.46; cases: M = 29.21, SD = 2.95). There were no
women in menopause assessed systematically by the standard, follicular stimulating
hormone and estradiol level profile.

2.3. Clinical ratings

Mood and anxiety were assessed using the Profile of Mood States (POMS; McNair, 1992)
and the Spielberger State-Trait Anxiety Inventory (STAI; Spielberger, 1983). The POMS
rates the degree to which a number of affective adjectives apply to current mood state (0 — 4
scale). The STAI rates anxiety-related statements using a 1 — 4 scale, and differentiates
“trait” from “state” anxiety. POMS and STAI were administered immediately pre- and post-
scanning.

Psychiatry Res. Author manuscript; available in PMC 2016 June 30.
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2.4. fMRI acquisition and paradigm

The fMRI studies were conducted using a Siemens Tim Trio 3T magnetic resonance scanner
with a 12-channel head coil and the following parameters: 180 functional volumes were
acquired using a spin echo, T2*-weighted sequence (repetition time=2000 ms; echo time=40
ms; field of view=200x200 mm; matrix=64x64; in-plane resolution=3.125 mm; slice
thickness=5 mm; 23 contiguous slices aligned to the anterior commissure-posterior
commissure plane). Our fMRI stress paradigm has been described previously and
demonstrated reliability and validity in activating circuitry defining stress response to
negative valence stimuli (Goldstein et al., 2005; Goldstein et al., 2010b). Briefly,
participants viewed three stimulus blocks (6 images/block) for 30 s (1 image/5 s) ordered as:
fixation, neutral, and negative. Subjects viewed this sequence four times during each of
three runs (i.e., 72 images (24 images/condition/run), and pressed a button each time a new
image appeared to ensure attention to images (see Fig. 1).

Images were drawn from the International Affective Picture System (IAPS; Lang et al.,
2008) according to affective valence and arousal (negative = unpleasant + high arousal,
neutral = neutral + low arousal). This adapted set of images did not represent any particular
IAPS-assessed emotion, but rather a set of images that evoked specifically quantified
negative valence and high arousal levels, regardless of specific emotion and established in
numerous population studies by the original Lang team (Lang et al., 1998). In numerous
studies of ours, we demonstrated that this set of images evoked a stress response to negative
imagery in the key brain regions of this circuitry that are associated with physiologic stress
responses (e.g., Holsen et al., 2011; Holsen et al., 2013). Fixation images were based on
Fourier transformations of each neutral image to create an image with the same physical
properties of the original but without recognizable content. After fMRI, participants were
shown two blocks of the negative and neutral images and provided subjective ratings of
arousal using Self-Assessment Manikin (SAM; Bradley and Lang, 1994). Averaged scores
from each block for negative and neutral images among cases and controls were similar
(ts<1).

2.5. Novel hormonal sampling in imaging environment

Here we present a novel method for acquiring hormones in response to the visual stress
challenge “in real time” during functional imaging. All subjects arrived at 7:30am for a
fasting blood draw (overnight fasting after midnight). Blood samples were acquired
throughout the scanning session, timed to hormonal responses based on pituitary (15-30 min
post-visual stress challenge) and steroid hormones (60-90 min post-stress challenge) (see
Fig. 1 for illustration of task and hormonal acquisition timing). When subjects arrived,
nurses inserted a saline-lock intravenous (i.v.) line into the antecubital fossa of the non-
dominant arm and baseline fasting blood was acquired. Participants then were given a small
standardized breakfast and were administered questionnaires and then taken to the scanner.

Participant’s head was positioned at magnet’s isocenter, 5 min of pre-scan protocols were
completed, and in-scanner baseline blood samples (Time 0) were acquired. Subsequent
samples were drawn at 15 and 30 min in-scanner and 60 and 90 min out-of-scanner in a
quiet room (approximately 30 cc of blood). Clotting time was allotted, samples spun to
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separate sera from blood cells and stored at =80 °C at the Brigham and Women’s Hospital-
Harvard Partners Center for Genetics and Genomics. Harvard Clinical Translational Science
Center laboratory analyzed hormones (estradiol, progesterone, testosterone, cortisol, sex
hormone binding globulin (SHBG), and diepiandrostendione-sulfate (DHEAS)) in duplicate
with commercial radioimmunoassay (RIA) kits [estradiol (sensitivity 20 pg/mL, intra-assay
variation 12-21%), progesterone (sensitivity 0.08 ng/ml, intra-assay variation 6.11—
11.19%), testosterone (sensitivity 10 ng/dl, intra-assay variation 4.22—7.08%), cortisol
(sensitivity 0.04 ug/dl, intra-assay variation 4.4-6.7%), SHBG (sensitivity 0.33 nmol/l, intra-
assay variation 4.5-4.8%), and DHEAS (sensitivity 2 ug/dl, intra-assay variation 1.6-8.3%):
Access Immunoassay System, Beckman Coulter, Miami, FL]. DHEAS has anti-
glucocorticoid action, and thus cortisol: DHEAS was used as a standard functional measure
of hypercortisolemia, at 90 min post-visual stress challenge. The Free Androgen Index was
calculated as the standard: [(Testosterone X 3.47)/SHBG].

2.6.1. fMRI data processing—®Participants’ functional runs were pre-processed using
Statistical Parametric Mapping-8 (Neuroimaging, 2008): motion realignment, normalization
to Montreal Neurological Institute template, and spatial smoothing at 6-mm full width at
half-maximum, which was then re-sampled to 3 mm isotropic. Statistical Parametric
Mapping-8 analyzes voxels’ blood oxygen-level dependent (BOLD) time series applying a
high-pass filter (180 s) to control for low-frequency scanner drift and modeling the time
series with general linear models as a separate boxcar function convolved with a canonical
hemodynamic-response basis function. Additionally, we added a regressor of no interest for
each volume that created an artifactual change in global signal intensity. These volumes
were identified using the artifact detection tool for Statistical Parametric Mapping-8
(Whitfield-Gabrieli, 2011), corresponding to participant movement between volumes >0.7
mm or a change in global signal intensity >3 standard deviations from the mean.

Masks were created excluding voxels outside the brain and including voxels in the brain
regardless of signal intensity, to ensure that voxels in regions with high inter-participant
variability in signal drop-out (e.g., orbitofrontal cortex) were not arbitrarily excluded. Linear
contrasts of the effect of negative minus neutral images were used to create statistical
parametric maps where significant voxels showed greater activation for negative than
neutral stimuli for individuals and combined for group analyses.

2.6.2. Group statistical analyses—Independent sample t-tests were used to compare
groups (within-sex; psychoses vs. healthy controls; non-affective versus affective
psychoses) on the main contrast of interest (negative — neutral), treating participants as a
random effect. Given specific hypotheses about stress circuitry and our previous work
(Goldstein et al., 2005; Goldstein et al., 2010b), we used a priori regions of interest for
small-volume correction of the results. Regions of interest were identified by manually
segmenting the Montreal Neurologic Institute-152 brain template into hypothalamus,
amygdala, anterior hippocampus, parahippocampal gyrus, orbital, medial prefrontal and
anterior cingulate cortices, and periaqueductal gray and implemented as overlays on the
Statistical Parametric Mapping-8 canonical brain using the Wake Forest University
PickAtlas Region of Interest toolbox for Statistical Parametric Mapping (Maldjian et al.,
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2003). We applied a voxel-wise height threshold of p <0.05 (uncorrected for multiple
comparisons), and a cluster was deemed significant if small-volume correction using
anatomical regions of interest resulted in a peak-level family-wise error-corrected (FWE) p-
value <0.05.

Following between-group analyses within Statistical Parametric Mapping-8, percent signal
changes within a region of interest were extracted for each participant using the region-of-
interest-extraction (REX) toolbox for Statistical Parametric Mapping-8 (Whitfield-Gabrieli,
2009). The percent signal change value represents the percent change in BOLD signal in the
negative > neutral condition averaged across all voxels within an anatomical region of
interest. This procedure extracts BOLD signal within an a priori region of interest using
independently-derived anatomical coordinates (i.e., not based on results from between-group
independent sample t-tests within Statistical Parametric Mapping-8). These percent signal
change values were then exported to SAS (2001) for the following additional analyses.

First, percent signal change values were used to calculate an effect size difference (Cohen’s
d) for regions of interest which met a threshold of p < .05 (uncorrected for multiple
comparisons) between groups (e.g. Psychoses versus Healthy controls): d = 2t / Vdf, where t
is the two-tailed independent samples t-test value for the between-group comparison of the
percent signal change attributable to negative images (relative to neutral). For regions of
interest demonstrating significant group differences (p < 0.05, FWE-corrected), steroid
hormones were entered as covariates into mixed linear models to assess their impact on
BOLD percent signal changes between-groups (e.g., Psychoses vs. Healthy Controls), within
sex (given sex differences in gonadal hormones) and between sexes with regard to adrenal
hormone responses. Hormone levels in the mixed models were natural log (In) transformed
due to significant skew |> 0.8| in order to normalize the distributions for analyses. Models
within sex included estradiol and progesterone in women and free androgen index in men,
and models shared across sex included cortisol:DHEAS levels (a standard measure of
functional cortisolemia) 90 min post-stress challenge, controlled for baseline in-scanner
values. We used 90-min values, controlled for in-scanner baseline, in order to assess in real
time the physiologic hormonal responses to the stress challenge in tandem with the neural
response. Finally, as a post-hoc exploratory analysis, regions of interest identified from the
original Statistical Parametric Mapping-8 analyses above (within-sex, between-group
results) which met statistical thresholding in one sex, but not the other, were analyzed using
mixed linear models (SAS, 2001) to examine group (Psychoses, Healthy Controls) by sex
interactions in percent signal change values in these regions of interest.

3.1. Sex differences in stress circuitry

As seen in Table 2, compared with control males, males with psychoses showed
significantly higher activity in most of the hypothesized stress response regions [right
hypothalamus (z = 2.3; left anterior cingulate cortex (z = 3.08); medial prefrontal cortex (z
= 1.73); bilateral orbiofrontal cortex (z = 2.05 [left] and z = 2.10 [right]; right
parahippocampal gyrus (z = 2.12); and periaqueductal gray (z = 1.73)], with right
hypothalamus and anterior cingulate cortex significant with FWE correction, p < 0.05. The
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only region showing significantly less activation in response to negative stimuli was left
hypothalamus (FWE-corrected, p < 0.05, z = 2.48; see Table 2), but accompanied by
significantly greater activation in right hypothalamus. Females with psychoses compared to
healthy females showed hyperactivity in bilateral amygdala (z=1.73 [left] and z = 1.71
[right]) and left anterior hippocampus (z = 1.95), and hypoactivity in medial prefrontal
cortex (z = 2.91) and left orbitofrontal cortex (z = 1.84), with the former remaining
significant at p < 0.05 after FWE-correction (see Table 2 and Fig. 2A,B).

Important for demonstration of sex differences, there was a significant interaction of sex by
case status in BOLD signal changes in medial prefrontal cortex (=0.134, p=0.01) and
marginally significant for left orbitofrontal cortex ($=0.07, p=0.09), with female cases
exhibiting less activity than female controls and males (see Fig. 3).

3.2. Are steroid hormone deficits associated with sex differences in brain activity deficits?

Supplementary Table 1s is a descriptive table to present steroid hormone levels
(untransformed) for cases and healthy controls by sex. In summary, at fasting baseline,
males with psychoses had a lower free androgen index (M = 50.3 vs. M = 58.4, d = 0.43).
Females with psychoses had lower estradiol levels than control females (M = 63.8 pg/ml vs.
M =91.0 pg/mL; d = 0.51) and higher progesterone (M = 4.2 ng/mL vs. M = 2.0 ng/mL; d =
0.49). Despite the medium effect sizes between cases and controls, mean differences (when
log-transformed) were not significant (ps > 0.15), most likely given small sample sizes and
substantial variability among the cases.

Regarding adrenal hormones, males and females with psychoses compared to healthy
controls expressed higher levels of cortisol 90 minutes post-visual stress challenge: Males
with psychoses vs. control males (M = 12.04 pg/dl vs. M = 9.95 ug/dl, d = 0.47); females
with psychoses vs. control females (M = 10.78 pg/dl vs. M = 8.44 pg/dl, d = 0.52). In
contrast, diepiandrostendione-sulfate (DHEA-S) was lower in males with psychoses vs.
controls (M = 179.5 pg/dl vs. M = 220.96 pg/dl, d= 0.49), but higher in females with
psychoses vs. controls (134.75 pg/dl vs. M = 108.40 pg/dL; d= —0.39). Cortisol: DHEAS
ratio is typically used as a measure of functional cortisolemia.

Hormonal abnormalities [in both sexes, cortisol: DHEAS response at 90 min post-stress
challenge, controlled for in-scanner baseline level; in women, estradiol; in men, free
androgen index] were entered into mixed models for regions showing significant BOLD
changes in cases vs. controls by sex (i.e., medial prefrontal and left orbitofrontal cortices).
As illustrated in Fig. 4A,B, high cortisol:DHEAS (i.e., hypercortisolemic) response to stress
was associated with hyperactivity in prefrontal cortices in male cases and hypoactivity in
prefrontal cortices in female cases compared with their healthy control counterparts. When
cortisol:DHEAS was added to the model, it attenuated the beta estimates for the case-by-sex
interaction by 72% in both medial prefrontal and left orbitofrontal cortices, thereby
explaining much of the variance in the interaction with sex.

Impact of low free androgen levels on hyperactivity in medial prefrontal cortex among the
male cases versus controls was significant (8 = 0.10, p<0.05), an effect that was, in part,
accounted for by the high cortisol: DHEAS levels in male cases [i.e., in mixed model with
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androgens and cortisol: DHEAS, the beta for androgens was attenuated from p =0.10to f =
0.09, p=0.08]. Low estradiol was associated with hypercortisolemia in female cases with
little correlation among the controls (Spearman’s r = —0.49 vs. —0.07, respectively).
However, low estradiol did not account for variance in the impact on prefrontal cortex over
and above hypercortisolemia in female cases vs. controls.

3.3. Does psychosis type matter?

Although we had less statistical power to test for differences by psychosis type, we
conducted exploratory analyses of non-affective and affective psychoses cases and controls
to provide initial insight into specificity of findings that could then be replicated in future
studies (see Supplementary data, Table 2s). Briefly stated, in response to the mild stressful
stimuli, males with non-affective versus affective psychoses were primarily similar except in
right parahippocampal gyrus (p <0.05, z = 2.64). In contrast, females with non-affective
compared with affective psychoses expressed significantly lower activity in the left
hypothalamus (z = 3.28), right parahippocampal gyrus (z = 2.32), and periaqueductal gray (z
= 2.24) and left anterior cingulate cortex (z = 3.21), all significant FWE-corrected (see
Table and Fig. in 2s). Further, males versus females with non-affective psychoses showed
significantly greater BOLD signal changes in left hypothalamus (z = 3.11) and right
parahippocampal gyrus (z = 2.76) (p <0.05, FWE-corrected), with trend-level differences in
left anterior cingulate cortex (p = 0.07, z = 2.80) and periaqueductal gray (p =0.07,z =
2.76). Males versus females with affective psychoses were similar. Thus, in response to a
mild visual stress challenge, females compared to males with non-affective psychoses were
significantly different (i.e., less BOLD response) than male and female healthy controls.
Interaction tests were not significant, given the small sample sizes when separated by sex
and psychosis type, thus replication is necessary. Hormonal abnormalities in association
with brain activity deficits within males and females were similar regardless of psychosis

type.

3.4. Potential confounds

Regarding psychotropic medications, there were three males and seven females who were
unmedicated. While unmedicated males with psychoses had slightly elevated levels of brain
activity compared to medicated males with psychoses, these values fell within one standard
deviation of the male psychoses group mean (except for left amygdala and orbitofrontal
cortex falling within 1.5 standard deviations). When medicated subjects were removed from
the analysis, hyperactivity in case males compared with healthy control males was
attenuated, but not eliminated. Hypoactivity in the left hypothalamus remained significant.
For females, removing subjects on medications also attenuated (but did not eliminate) case-
control differences, and hypoactivity in the medial prefrontal cortex remained significant.
Thus, these findings demonstrated that, not surprisingly, medications affect brain activity in
case men and women, but findings held in the unmedicated subjects. We had a small number
of male cases off medications, and therefore our finding needs replication.

Regarding anxiety, again not surprisingly, cases were more anxious than control participants
(see Table 3), measured by pre-scan state anxiety, post-scan state anxiety, and trait anxiety.
However, change in state anxiety from pre- to post-scan did not vary by psychiatric status.
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Moreover, male and female cases and controls reported similar valence ratings (t (63) = —.
38, n.s.) and arousal ratings of negative images (t (63) = 0.09, n.s.), and no significant
interactions were present. Thus, state anxiety was not driving case-control differences in
brain activity deficits by sex.

4. Discussion

Compared with control males, males with psychoses expressed hyperactivity in most of the
hypothesized stress response regions, demonstrating substantial effect sizes that were
present regardless of psychosis type. In contrast, females with psychoses compared with
healthy females showed hyperactivity in subcortical stress response regions and anterior
cingulate cortex, and hypoactivity in orbital and medial prefrontal cortices, the latter of
which were significantly different from males. We had adequate statistical power to test for
sex differences in psychoses, and the sample presented here was generally representative of
the population from which they were drawn, as shown in a recent publication (Goldstein et
al., 2014a).

We further found that differences across group (psychoses vs. healthy controls) and sex
were differentially associated with steroid hormone abnormalities. Hypercortisolemia was
present in male and female cases compared to their healthy counterparts, but had a
differential effect on brain activity deficits in prefrontal cortex in males and females.
Hypercortisolemia was associated with hyperactivity across stress response regions in men
with psychoses, including prefrontal cortices. In contrast, hypercortisolemia was associated
with hypoactivity in medial prefrontal (and orbitofrontal) cortices in females with psychoses,
a difference that was not present among male and female controls. Not surprising,
hypercortisolemia in cases was associated with low gonadal hormone expression regardless
of sex (i.e, for male cases, low free androgen, and for female cases, low estradiol). The
impact of low androgens on explaining hyperactivity in prefrontal cortex in male cases was
only, in part, explained by hypercortisolemia, whereas the variance accounting for
hypoactivity in prefrontal cortices in female cases was explained through its relationship to
hypercortisolemia. These findings suggest adrenal and gonadal hormone abnormalities are
associated with brain activity deficits in stress response regions but have differential effects
on brain dependent on sex.

Neural-hormone deficits are not surprising given that stress response circuitry regions, such
as anterior hypothalamus, amygdala, and hippocampus, are governed by the coordinated
action of HPG and HPA axis hormones. They are regions dense in estrogen, progesterone,
androgen, and glucocorticoid receptors (Kato et al., 1994; Donahue et al., 2000; Osterlund et
al., 2000a; Osterlund et al., 2000b; Guerra-Araiza et al., 2002; McClellan et al., 2010;
Zuloaga et al., 2011; Stratton et al., 2011). In fact, as evident in the cases in this study, HPA
dysregulation, i.e., hypercortisolemia, had a significant impact on attenuating HPG response
(i.e., lower gonadal hormone expression). There is a long history to the idea that HPA
dysregulation is implicated in schizophrenia (Walker and Diforio, 1997), described as
hypercortisolemic and hyperresponsive to stress (Breier et al., 1988; Walder et al., 2000),
physiologic responses attributed to bipolar psychoses as well. Previous work, including our
own, also demonstrated abnormalities in gonadal hormone levels (lower in cases) (Seeman
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and Lang, 1990; Héfner et al., 1991; Canuso et al., 2000; Kulkarni et al., 2001) and
endocrine function (Beumont et al., 1974; Ghadirian et al., 1982; Sullivan and Lukoff, 1990;
Reicher-Rossler et al., 1994). Findings in the study presented here extend earlier work
demonstrating brain-hormone deficits may be shared across psychotic disorders.

Dysregulation of brain-hormone associations in women was also found in our recent study
of HPG abnormalities in women with major depression compared with healthy controls, in a
sample from the same New England Family Study population cohort (Jacobs et al., 2015). In
that experimental within-woman design, 17p estradiol was significantly related to
attenuation of BOLD activity in key subcortical stress response regions in healthy women,
but no modulation by 178 estradiol in depressed women. In our previous study in these
women with depression using the same fMRI paradigm as in the current study of psychoses,
they were also hypercortisolemic, which related to hyperactivity across the stress response
circuitry (Holsen et al., 2013). We suggested that abnormalities in the paraventricular
hypothalamic nucleus may be one of the regions driving the steroid hormone deficits, given
that in clinical, postmortem and preclinical studies, it has been implicated in depression (Bao
et al., 2005; Tobet et al., 2013; Goldstein et al., 2014b). Abnormalities in this region in
depression in women may be shared with psychoses in women.

In fact, we previously demonstrated structural abnormalities (increased volume) in the
hypothalamus in schizophrenia, particularly in females in the area that included the
paraventricular hypothalamic nucleus (Goldstein et al., 2007), which was also significantly
associated with increased anxiety (Goldstein et al., 2007). The paraventricular hypothalamic
nucleus (located in anterior hypothalamus) has the highest density of corticotropin releasing
hormone in the brain and is the key brain region central to HPA-HPG axes function. Thus,
abnormalities in this region could be mechanistically involved in a hyperactive subcortical
stress response in psychoses for which, in females, there is less ability to inhibit or regulate
by prefrontal cortex. Further, pituitary abnormalities in schizophrenia may also be present,
given earlier work reporting pituitary volume abnormalities in first episode female
schizophrenia (Pariante et al., 2004).

Together, our previous work on volumetric abnormalities in anterior hypothalamus coupled
with findings here demonstrating hyperactivity in hypothalamus and other subcortical
regions in response to stress and less ability to inhibit arousal, particularly by medial
prefrontal cortex, underscore the importance of mechanistically understanding sex
differences in neural-hormone deficit associations with psychoses compared with healthy
controls. The studies suggest that sex differences in psychoses and disorders of mood/
anxiety may share pathophysiology associated with mood dysregulation and anxiety,
hypersensitivity to stress, and steroid hormone dysregulation, which may contribute to
understanding some of the shared pathophysiology we found between non-affective and
affective cases. In fact, previously, we also demonstrated that steroid hormone abnormalities
were associated with sex-dependent deficits in arousal circuitry shared between stress
circuitry and fear conditioning (Lebron-Milad et al., 2012; Lebron-Milad and Milad, 2012).

As discussed, a potential limitation of our study for investigating psychoses specificity is the
small sample size for comparisons of non-affective and affective cases by sex. While our
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main comparisons of sex by psychoses case status had sufficient numbers, the more refined
analyses of non-affective and affective cases by sex had low statistical power. Although
results were exploratory and relegated to a Supplement, there were some significant brain
activity differences within sex by psychosis type, corrected for multiple comparisons,
potentially reflecting large effect sizes. Still, findings must be replicated. Further, the
majority of male cases in this study were on medications and thus these findings must be
replicated in a larger unmedicated sample.

The regulation of the stress response has been implicated in nearly every chronic disease,
including major psychoses. We demonstrated here that an understanding of this in the brain
necessitates a sex-dependent lens that implicates abnormalities in steroid hormone pathways.
Shared significant case-control differences among men and women across psychoses were
primarily in subcortical regions, with significant sex differences primarily in the cortical
inhibitory control of arousal. Together, these regions are among those with the highest
density of steroid hormone receptors in the brain underscoring the validity of the neural-
hormone associations presented here. Our novel strategy for assessing brain-steroid hormone
responses to stress in vivo in real time allowed us to refine our understanding of neural-
hormone associations in ability to regulate the stress response. Our results also provide
insights for the development of innovative sex-dependent therapeutics that implicate
hormonal modulation or supplementation to psychotropic medication that may be relevant
across psychoses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. lllustrative Schemata of the fMRI Stress Response Task* and Timed Blood Draws
* fMRI task adapted from International Affective Picture System (Goldstein et al, 2005b;

Lang et al, 2008; Goldstein et al, 2010b). Baseline blood draw was acquired at ~8am,
fasting since midnight. A baseline in-scanner blood was acquired and then draws were timed
to hormonal response to stress, i.e., pituitary (15, 30 min. post-stress challenge) and steroid
hormones (60, 90 min. post-stress challenge).
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L

HC >PSY mPFC

FIGURE 2. Stress Response Circuitry Deficits in Psychoses in Male (A) and Female (B) Cases
versus Healthy Controls

A and B: Activations of hypothesized regions of interest were derived using the small
volume correction tool in SPMB8, restricted to anatomical borders defined by a manually
segmented MNI brain. Peak voxel activations were significant at p<.05, FWE-corrected.

A) Male psychosis cases (PSY) showed significant hyperactivity compared to male controls
in right hypothalamus (HYPO) and anterior cingulate cortex (ACC), and hypoactivity in left
hypothalamus (HYPO).

B) Female cases showed hyperactivity in subcortical arousal regions, and hypoactivity in
medial prefrontal cortex (mPFC) by FWE-correction and orbitofrontal cortex (not shown
here, given trend-level significance).
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Figure 3. Interaction of Case Status by Sex on BOLD signal intensity changes in Prefrontal
Cortices (A) medial prefrontal cortex and (B) left orbital frontal cortex

Interaction of sex by group on BOLD signal changes (negative > neutral stimuli) in response
to stress were tested using mixed linear models (SAS 9.3, 2002-2010). Average percent
BOLD-signal change (PSC) within an ROI was extracted for each subjects using ROI-
extraction (REX) toolbox for SPM8 (Whitfield-Gabrieli, 2009). This value represents the
average of PSC values across all voxels within an anatomical ROI. Interactions are
illustrated (above) by sex-specific lines connecting mean PSC for cases and controls (mPFC:
Females, Case (0.12) < Control (0.91); Males, Case (1.04) > Control (0.45). L_OFC:
Females, Case (0.06) < Control (0.48); Males, Case (0.59) > Control (0.31). (a) mPFC
(interaction: p = 0.13, P = 0.01), and (b) L_OFC (interaction: p = 0.07, P = 0.09).
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FIGURE 4. Interaction of Sex by Case Status on Signal Intensity Changes in Prefrontal Cortices
at High Levels of Cortisol:DHEAS (i.e., hypercortisolemia)

Graphs represent mean percent signal change (natural log transformed BOLD) in the medial
prefrontal cortex (A) and left orbitofrontal cortex (B) for subjects in the highest 75t
percentile of the healthy control cortisol: DHEAS distribution at time 90. Hypercortisolemia
in male cases was associated with higher medial prefontal and left orbitofrontal cortex signal
changes compared with healthy controls and lower activity for female cases compared with
healthy controls
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