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Abstract

Background—Mitochondrial dysfunction has been implicated in the pathogenesis of 

Parkinson’s disease (PD) but the cause of this dysfunction is unclear.

Methods—Platelet mitochondrial complex I and I/III (NADH cytochrome c reductase, NCCR) 

activities were measured in early PD patients and matched controls enrolled in a population based 

case-control study. Ambient agricultural pesticide exposures were assessed with a geographic 

information system and California Pesticide Use Registry.

Results—In contrast to some previous reports, we found no differences in complex I and I/III 

activities in subjects with PD and controls. We did find that NCCR activity correlated with 

subjects’ exposure to pesticides known to inhibit mitochondrial activity regardless of their 

diagnosis.

Conclusions—ETC activity is not altered in PD in this well-characterized cohort when 

compared to community-matched controls but appears to be affected by environmental toxins, 

such as mitochondria-inhibiting pesticides.
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Introduction

The role of mitochondrial dysfunction in the pathophysiology of Parkinson’s disease (PD) 

was first suggested by the discovery that MPTP, a neurotoxin selective for dopaminergic 

neurons, acts by inhibiting complex I of the electron transport chain (ETC) (1). This 

discovery stimulated the evaluation of mitochondrial function from tissues in PD patients. A 

number of studies reported reduced complex I activity in platelets of PD patients varying 

from 16 to 71% although this has not been a consistent finding (Supplementary Table 1) (2–

11).

It is unknown whether the reported lower ETC activity associated with PD was due to 

genetic or environmental causes. Pesticides have been suspected as a possible etiological 

factor in PD for over 30 years (12). Several studies have reported an association of PD with 

pesticide exposure including rotenone, a known complex I inhibitor (12, 13). We utilized the 

California Pesticide Registry and subjects’ addresses to estimate pesticide exposure in a case 

control study we conducted in California (14, 15). The recruitment of incident PD patients 

and matched controls from the same counties with detailed demographic, medical and 

exposure histories offered an excellent opportunity to study potential associations of PD 

with ETC activity and pesticides.

Methods

Subjects

A total of 23 PD patients and 23 controls were enrolled in this sub-study. Incident PD 

patients and controls from the parent Parkinson Environment-Gene (PEG) study were 

identified and recruited from three rural California counties (Fresno, Kern and Tulare) as 

previously described (14, 16). The controls were matched by sex, age, and race, and the 

diagnosis of PD was confirmed by examination by a specialist in Movement Disorders 

(JMB). For the sub-study reported here, 25 patients were initially randomly selected and 

recruited for the study however two subjects were excluded in our analysis. One subject was 

determined later not to have PD and the other was excluded due to poor mitochondria yield. 

The UCLA Institution Review Board approved the use of humans in this study.

Mitochondrial Assays

Blood was drawn and shipped overnight in the identical manner as described for the 

Coenzyme Q10 Evaluation-2 (QE2) Study (17, 18). All PD patients we enrolled were off PD 

meds for at least 12 hrs. prior to the blood draw. ETC activities were determined using 

methods previously described (19, 20). Samples were excluded if the mitochondrial yield 

was low based on citrate synthase activity and analyzed in a blinded manner.

Pesticide Exposure Assessment

Pesticide exposures were assessed for both controls and PD patients using California state 

mandated pesticide use report (CA-PUR) data, land use maps, and subject residential and 

work place histories as previously described (14, 15, 21–26). We estimated the ambient 

pesticide exposure per year in an area within 500 m radius of each work and residential 
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address. We classified each participant as exposed to different pesticide groups (1) CA-PUR 

reported pesticide; (2) organophosphates (OP); (3) organochlorines (OC); (4) 

dithiocarbamates (DTC), and (5) mitochondrial complex I inhibiting pesticides 

(Supplementary Table 2). Pesticide chemical class information was based on the pesticide 

action network (PAN) and the pesticide database and California department of pesticide 

regulation (CDPR). The mitochondrial complex I inhibiting pesticide group classification 

was based on a previous study by Tanner et al (13). Since mitochondria ETC activity is 

likely affected by recent pesticide exposures, we limited exposure assessments to the 

previous five years in sensitivity analyses.

Statistical Analysis

The study was powered to detect differences in ETC between PD subjects and controls as 

previously reported6. We used student’s two-tailed t-test or chi-square tests to investigate 

between group differences in mitochondrial function. We then employed multiple linear 

regression to assess whether pesticide exposures predict mitochondrial function, adjusting 

for sex, age and minority status. We also used spearman correlation coefficients to measure 

the relationship between pesticide group exposures during the five years prior to the time of 

blood draw.

Results

ETC Activity in PD Patients and Controls

A total of 23 PD patients and 23 matched controls were enrolled in this study and their 

characteristics are listed in Table 1. Complex I and I/III activities were normalized to citrate 

synthase since it is a mitochondrial matrix enzyme that is unaffected by ETC activity and is 

relatively stable. The ratio of complex I and I/III activity to citrate synthase thus provides a 

more accurate measurement of mitochondrial function (27). ETC activities in all subjects’ 

samples were very similar to those previously reported but in this current study, we found no 

significant differences in normalized complex I (CI/CS) or complex I and III (NCCR/CS) 

activities between the PD patients and matched controls (Table 1).

Correlation of ETC Activity and Pesticide Exposure

The finding that Complex I activity was not lower in our PD cohort was unexpected given 

past reports. This finding that PD patients and controls have similar ETC activities was not 

likely due to technical issues since the diagnostic classification was carefully controlled for 

and the assays were performed using the same methods by the same group that had reported 

lower activity in PD (5, 19). Since the subjects in our study live and work in commercial 

farming communities, we hypothesized that ETC activities could be influenced by recent 

exposure to certain pesticides regardless of the subjects’ diagnosis. We therefore estimated 

pesticide exposure for each pesticide for all subjects and tested for associations between 

pesticide exposure and ETC activities (Table 2). There were 134 exposure events in the 46 

subjects during the five years prior to collection of the blood samples (Supplementary Table 

2). Thus, most subjects were exposed to more than one pesticide. There was no correlation 

between CI/CS activity and pesticide exposure in general but we did find that pesticides 

proposed to be mitochondrial complex I inhibitors and DTCs were significantly inversely 
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correlated with NCCR/CS activity (Table 2). This was not observed for other pesticides. 

Those subjects exposed to mitochondrial inhibitors and DTCs did not differ from unexposed 

subjects except in their normalized NCCR activity (Supplementary Table 3). These data 

suggest an alteration in complex III and/or coenzyme Q since complex I was unchanged and 

NCCR activity reflects both complex I and III activities along with endogenous coenzyme Q 

levels.

Discussion

Several studies have reported low ETC activities in PD tissues however, these defects have 

not been reported in all studies and methodological differences were considered the most 

likely factor to explain inconsistent findings. For this reason, we utilized methods and the 

same investigators who have consistently found that PD was associated with low complex I 

activity in purified normalized platelet mitochondria.

The disparate findings reported here compared to previous studies can best be explained by 

the different subject populations studied. In the study by Haas and colleagues in which they 

reported a significant reduction in ETC activities in PD, subjects were recruited from a 

tertiary referral care clinic in San Diego and control subjects likely did not reside in the 

same communities and cases and controls might have been exposed to different 

environmental factors affecting mitochondrial function. In support of this argument, the 

significant differences in this study were lost when the researchers compared the patients to 

spousal controls (5). The later finding may have been due to the fact that spousal controls 

come from a more similar environment than the other convenient sample controls. In the 

current study, PD patients and controls all were living within the same 3 counties in rural 

central California. For this reason, we investigated potential environmental influences on 

ETC activities with an emphasis on pesticides since exposure has been associated with PD 

and some pesticides are known mitochondrial inhibitors. Indeed, we found that NCCR 

activity correlated with exposure to pesticides reported to inhibit complex I and DTC 

pesticides. This association was not found for all pesticides. Interestingly, DTCs have also 

been found to inhibit complex I and III with preferential inhibition of complex III (28).

These findings are intriguing but need to be interpreted with caution. First, the sample size 

in our study is relatively small for performing exposure specific analysis. We also estimate 

exposures based on residential and work addresses but do not know if subjects were actually 

at home or work on the days of application. Furthermore, NCCR activity represents both 

complex I and III activity but surprisingly, we did not find an alteration in complex I activity 

in pesticide-exposed subjects even though this group of pesticides purportedly inhibits 

complex I (13).

In summary, we did not find alterations in ETC activity in PD subjects compared to controls 

in a well-matched community-based study as others have reported. We did find a correlation 

between NCCR activity and recent exposure to mitochondrial-inhibiting pesticides. Previous 

reports of lower complex I activity in PD may have been due to the use of controls from 

different communities and with different environmental exposure profiles and ETC activity 

acted as a surrogate marker for the PD patients’ exposure to mitochondrial toxins.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Characteristics and ETC Activities of PD and Control Subjects

Variable PD Patients (N=23) Controls (N=23) p-value*

Demographics

 Age (mean ± SD) 70.5 (11.8) 71.0 (9.9) 0.88

 Duration of PD (mean ± SD) 2.09 (1.2) - -

 Female (%) 56.5 52.2 0.76

 Never Smokers (%) 34.8 47.8 0.47

 Non-Caucasian (%) 17.4 13 -

Health Indicators

 UPDRS motor score (mean ± SD) 19.4 (8.4) - -

 MMSE score (mean ± SD) 27.0 (4.1) 28.9 (1.1) 0.03

Mitochondrial Function:

 Complex I (CI) (mean ± SD) 16.6 (12.6) 14.3 (8.1) 0.37

 Citrate synthase (CS) (mean ± SD) 410.5 (216.0) 361.8 (160.6) 0.39

 CI/CS (mean ± SD) 0.044 (0.02) 0.040 (0.01) 0.46

 NCCR (mean ± SD)† 34.4 (23.2) 29.5 (20.6) 0.46

 NCCR/CS (mean ± SD)† 0.078 (0.03) 0.076 (0.03) 0.82

*
P-value based on ttest or chi-square, PD patients vs Controls; not calculated in some instances due to small numbers.

†
1 additional PD case and 1 control failed NCCR experiment (n=44)
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Table 2

Parameter Estimates for Different Linear Regression Models Predicting NCCR/CS activity with Different 

Pesticide Group Exposures.

Pesticide Exposure Group* Exposed (%) Unexposed (%) β (S.E.) P-value

Any Pesticide 23 (0.53) 21 (0.47) 0.0045 (0.01) 0.64

Organophosphates 17 (0.39) 27 (0.61) −0.0096 (0.01) 0.32

Organochlorines 13 (0.30) 31 (0.70) −0.012 (0.01) 0.25

Dithiocarbamates 10 (0.23) 34 (0.77) −0.022 (0.01) 0.05

Mitochondrial Complex I Inhibitors 8 (0.18) 36 (0.82) −0.024 (0.01) 0.04

*
All models control for sex, PD, age (continuous), and minority status. (N = 46).
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