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Abstract

The development of organ transplantation as a therapy for end-stage organ failure is among the 

most significant achievements of 20th century medicine, but chronic rejection remains a barrier to 

achieving long-term success. Current therapeutic regimens consist of immunosuppressive drugs 

that are efficient at delaying rejection but are associated with significant risks such as 

opportunistic infections, toxicity, and malignancy. Thus, the induction of specific immune 

tolerance to transplant antigens is the coveted aim of researchers. The use of 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (ECDI)-treated, autoantigen-coupled syngeneic leukocytes 

has been developed as a specific immunotherapy in preclinical models of autoimmunity and is 

currently in a phase II clinical trial for the treatment of multiple sclerosis. In this review, we 

discuss the use of allogeneic ECDI-treated apoptotic donor leukocytes (allo-ECDI-SP) as a 

strategy for inducing antigen-specific tolerance in allogeneic transplantation. Allo-ECDI-SP 

therapy induces long-term systemic immune tolerance to transplant antigens by subverting 

alloimmune recognition and exploiting apoptotic cell uptake pathways to recapitulate innate 

mechanisms of peripheral tolerance. Lastly, we discuss potential indications and challenges for 

transitioning allo-ECDI-SP therapy into clinical practice.

Introduction

Organ transplantation is an invaluable component of therapeutic medicine for the treatment 

of end-stage disease and organ failure. Estimates for 2010 indicate that over 106 000 solid 

organ transplants were performed worldwide in nearly 100 countries, revealing how integral 

this recently emergent field has become to modern medicine (1). Although 1-year graft 

survival for renal transplantation has improved to roughly 90% over the past 2 decades due 

to advances in immunosuppression, long-term survival has remained relatively static due to 
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chronic rejection. At present, therapy for transplant rejection is limited to chronic 

immunosuppression that is effective at preventing acute rejection, but is associated with 

significant risks including opportunistic infections, organ toxicity, metabolic derangement, 

and malignancy. Thus, developing a therapeutic regimen for transplant rejection that does 

not compromise the immune system, but can specifically constrain the deleterious response 

to allogeneic tissue is paramount for the future of transplant medicine. However, the 

complexity of allelic variation at the HLA loci and the propensity of the immune system for 

recognizing foreign HLA alleles have made the prospect of antigen-specific tolerance 

difficult to achieve.

According to a World Health Organization report, over 2500 new HLA alleles were 

identified between the years 2004 and 2010 (2); conversely, limiting dilution studies have 

determined that approximately 1–10% of the T cell repertoire can respond “directly” to 

donor-derived APCs presenting intact foreign peptide/MHC molecules (3,4). Understanding 

how T cells selected on self-restricted molecules can react to foreign MHC with such vigor 

has been the subject of intense investigation for decades. The evolutionary bias of TCRs for 

intra-species MHC molecules, TCR degeneracy, and polyspecificity of the TCR are 

mechanisms that have been cited as contributing to the high frequency of alloreactive T cells 

in the T cell repertoire (5). Recent investigation into the nature of alloreactivity has provided 

evidence that up to 50% of the alloresponse in GvHD is mediated by T cells that have 

undergone incomplete allelic exclusion and express dual TCRs (6,7). Moreover, increasing 

evidence suggests that higher primates and humans not previously exposed to primary 

allografts can harbor existing populations of virus-specific memory T cells that are cross-

reactive and provide heterologous immunity to alloantigens (8). Additionally, the processing 

and representation of allogeneic peptides on endogenous MHC to T cells (indirect 

allorecognition) further increases the alloresponse by propagating additional cellular and 

humoral mechanisms. As a consequence of these factors, the reactivity of the T cell 

repertoire to foreign MHC is on the order of 100–1000 fold greater in magnitude than the T 

cell response to conventional antigens, and this presents a formidable barrier to the 

development of antigen-specific tolerance strategies to lead to acceptance of organ 

transplants.

Costimulation blockade strategies

The 1990s and first half of the following decade saw costimulation blockade emerge at the 

forefront of experimental strategies designed to induce transplant tolerance. T cell activation 

requires engagement of the TCR by cognate peptide/MHC in the presence of APC-derived 

costimulatory molecules, and signaling through the CD28/CD80/CD86 axis is the 

quintessential costimulatory pathway involved in T cell activation. Engagement of the TCR 

in the absence of CD28-mediated costimulation renders T cells anergic and functionally 

hyporesponsive to subsequent stimulation (9). Thus, multiple experimental strategies have 

attempted to exploit the two-signal hypothesis of T cell activation by depriving T cells of 

costimulatory signals following transplantation. CTLA-4 is a natural receptor for CD80 and 

CD86 that antagonizes T cell activation by limiting CD28 stimulation and delivering 

negative signals to the T cell. In spite of showing initial promise in laboratory settings, 

tolerance protocols using the fusion protein CTLA-4(Ig) has met with unexpected 
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difficulties in clinical translation. Treatment with the CTLA-4(Ig) fusion protein Belatacept 

in the setting of renal transplantation was successful at promoting 1-year graft survival and 

superior renal function, but was also associated with a higher frequency of acute rejection, 

malignancy, and CNS posttransplant lymphoproliferative disorder when compared to 

cyclosporine in a Phase III clinical trial (10). CD154 is a potent T cell-derived signaling 

molecule that interacts with its receptor CD40 on APCs to induce APC activation and the 

expression of IL-12 and costimulatory molecules CD80/CD86 (11). MR1, an anti-murine 

CD154 antibody has been used in preclinical studies to promote transplant tolerance with 

great efficacy, especially when used in combination with donor-specific transfusion (DST). 

This tolerance occurs through a number of mechanisms, including T cell anergy and deletion 

through targeting the indirect antigen presentation pathway by phagocytosis of the infused 

donor cells (12–15). Surprisingly, the translation of this therapy into clinical settings was 

abruptly ended by the development of thrombotic events, due to the unexpected expression 

of CD154 on platelets in higher primates (16,17). Costimulatory blockade may inadvertently 

increase the likelihood of acute rejection as previously mentioned. This may be due to the 

low reliance of memory T cells on co-stimulation, their cross-reactivity for alloantigens, and 

a reduction in CD4+ CD25+ Foxp3+ regulatory T cells (TREGS) as a consequence of their 

dependence on co-stimulation (8,18–20). Since the level of intragraft Foxp3 expression is 

associated with a superior prognosis for graft survival, a better understanding of the 

disparity in the timing and requirement for co-stimulation in different T cell populations is 

needed to minimize complications (21).

Cell-based immunotherapy

As a result of these shortcomings, cell-based immunotherapy has reemerged at the forefront 

of experimental tolerance protocols, such as mixed hematopoietic chimerism (22) and the 

adoptive transfer of ex vivo expanded, donor-specific TREGS (23). A third form of cell-based 

tolerance that has proven successful in experimental settings is the use of drug conditioned 

(24) or chemically modified allogeneic APCs (25). This form of tolerance predates 

costimulation blockade and other forms of cell-based immunotherapy by many decades, 

dating back to the hapten-drug studies of the late 1920s (26), which demonstrated that 

chemical haptens coupled to the cellmembrane of leukocytes could be used to prevent 

hapten-induced contact dermatitis in an antigen specific manner (27,28). The induction of 

regulatory cells and the clonal inhibition of cellular and humoral immunity were 

demonstrated to be the mechanisms responsible for tolerance induced by coupled-cell 

administration (25). Many strategies employing drug-conditioned APCs, such as rapamycin-

conditioned DCs (29) and vitamin D3-treated DCs (30), attempt to recapitulate these 

mechanisms by modifying the DC phenotype to favor the induction of transplant tolerance. 

However, a number of recent publications have called into question the ability of drug-

modified DC protocols to induce transplant tolerance, instead suggesting that these 

strategies risk enhancing alloimmune responses and may promote graft rejection (31,32).

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (ECDI) is a hygroscopic, water-soluble 

chemical that has been used extensively by biochemists as a cross-linker for peptide 

synthesis and conjugation. Introduction of ECDI in a reaction mixture with peptides or 

proteins activates free carboxyl groups, catalyzing the formation of covalent peptide bonds 

McCarthy et al. Page 3

Am J Transplant. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between the active carboxyl group and primary amines. Studies comparing ECDI with other 

cross-linking agents have demonstrated the superiority of ECDI as a tissue fixative for 

immunohistochemistry and as a cross-linking agent for conjugating peptides to cellular 

membranes (33,34). When compared to other cross-linking agents, ECDI-treated cells 

demonstrated better viability when maintained at 4°C. However, within hours of in vivo 

administration ECDI-treated leukocytes undergo rapid apoptosis, although the precise 

mechanism of how this occurs remains unclear (35). Thus, the association of protein and 

peptide antigens (Ag) by covalent linkage to apoptotic leukocytes promotes a highly 

efficacious method for inducing Ag-specific immune tolerance in the context of autoimmune 

and allergic disease (36). Phagocytosis and representation of antigen covalently linked to the 

apoptotic ECDI-treated leukocyte appears to be the dominant mechanism by which T cells 

recognize the associated antigen, since antigen-conjugated allogeneic splenic leukocytes or 

red blood cells were able to induce tolerance as effectively as antigen-conjugated syngeneic 

leukocytes in a model of PLP139–151-induced EAE (35). Thus, ECDI-treated Ag-coupled 

leukocytes have the potential to regulate T cell responses to cryptic or undetermined peptide 

sequences within a protein antigen, and multiple antigens can be simultaneously targeted 

(37,38). This approach is useful for modulating multi-determinant T cell responses as in the 

context of autoimmune epitope spreading or allogeneic transplant rejection. Intravenous 

infusion of ECDI-treated Ag-coupled leukocytes can be used in a therapeutic application 

without inducing anaphylaxis (39), contrary to other antigen-specific strategies such as 

soluble peptide tolerance and altered peptide ligand therapy (40,41). In agreement with these 

pre-clinical studies, a human phase I clinical trial utilizing autologous patient peripheral 

blood leukocytes ECDI-coupled with a cocktail of encephalitogenic peptides has shown 

promising results indicating that this approach may be safe and efficacious as an 

immunotherapy for multiple sclerosis (42).

In the context of allogeneic transplantation, ECDI-treated apoptotic leukocyte treatment 

represents a promising therapy for the prevention of allograft rejection. As allogeneic 

leukocytes express donor antigens directly on the cell surface, tolerance can be induced to a 

full spectrum of allogeneic MHC and minor antigens by directly fixing the membrane with 

ECDI prior to i.v. infusion. Using this method, our labs have demonstrated that intravenous 

infusion of ECDI-treated apoptotic allogeneic splenocytes from the transplant donor into 

transplant recipients at one week before and 24 h after the transplant will induce long-lasting 

tolerance for the survival of minor antigen mismatched skin grafts, full-MHC mismatched 

heart allografts, and full-MHC mismatched pancreatic islets for the restoration of 

euglycemia in a model of streptozotocin-induced diabetes (43–46). This therapy is allo-

specific (46). This approach is also flexible since B cells of donor origin can be expanded in 

vitro and subsequently treated with ECDI to induce tolerance. Additionally, the lysate from 

allogeneic donor cells can be conjugated to syngeneic splenocytes with ECDI to induce 

tolerance with no loss of efficacy (47). The potency of ECDI-treated allogeneic leukocytes 

is dependent upon their exploitation of apoptosis pathways to reshape the peripheral T cell 

repertoire by several mechanisms including anergy, deletion, and the induction of regulatory 

elements such as the expansion of Foxp3+ TREGS (46). Acting in concert, these mechanisms 

lead to effective induction of tolerance and long-term maintenance of tolerance. 

Furthermore, while antigen-coupled ECDI-treated leukocytes effectively restrain the 
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function of naive T cells, emerging evidence suggest that they also down-regulate the 

function of memory T cells. In the autoimmune EAE model, antigen-coupled ECDI-treated 

leukocytes prevent adoptive transfer EAE induced by previously activated/memory 

autoreactive T cells (38). We are currently conducting similar experiments using pre-

sensitized alloimmune transplant models, also demonstrating potential protective effect of 

ECDI-treated donor leukocytes in such recipients. Therefore, the potential of ECDI-treated 

donor leukocytes to constrain both naïve and memory T cells may significantly enhance its 

application in clinical transplantation where pre-sensitization is frequently encountered.

Apoptosis and innate immune recognition of allogeneic ECDI-treated 

leukocytes

Apoptosis has been largely implicated in the maintenance of peripheral tolerance, and 

defects in apoptotic clearance have been demonstrated to have significant consequences on 

immune homeostasis (48,49). Initial reports of the apoptosis-inducing consequence of ECDI 

demonstrated a 30–35% incidence of apoptosis in ECDI-treated allogeneic DCs cultured for 

24 h in vitro (50), while subsequent experiments in vivo have revealed that the majority of 

ECDI-treated Ag-coupled syngeneic splenic leukocytes are fragmented within 3 h of tail 

vein injection (51). When donor ECDI-treated splenocytes pre-labeled with PKH-67 were 

administered to recipients, the majority of donor cells were rapidly internalized by recipient 

MHC class II expressing splenocytes (52). Studies from the EAE model using fluorescently 

labeled cells have shown that following i.v. infusion of ECDI-treated Ag-coupled 

leukocytes, the cells localize predominantly in the lungs, liver, and spleen within 1 h and are 

almost completely fragmented at 3 h post i.v. infusion (51). These apoptotic fragments were 

primarily associated with F4/80+ macrophages in the splenic marginal zone (51), an area 

between the red pulp and lymphoid follicles that positions marginal zone APCs to capture 

blood borne matter and represent Ags to lymphocytes in the white pulp (53). Marginal zone 

macrophages (MZM) are a population of professional APCs specialized in their ability to 

capture and clear cellular debris from the blood due to the expression of various scavenger 

receptors that recognize particulate antigens (54), polyanionic molecules (55), oxidized low-

density lipoproteins (56), and dying cells (57). Targeted deletion of specific scavenger 

receptors such as DC-SIGN/SIGN-R1, SR-A, MARCO, and CD68 has been shown to 

augment autoantibody production in mouse strains susceptible to lupus (58,59), while the 

depletion of MZMs abrogates the apoptotic cell-induced upregulation of TGF-β and 

increases the expression of proinflammatory cytokines, antigen-specific T cell proliferation 

(59), and resistance to tolerance induction in a model of MOG-induced EAE (60). In spite of 

the association between the apoptotic cells and MZMs, genetic deletion of MARCO had no 

affect on tolerance induced by ECDI-treated, antigen-coupled leukocytes (61), nor did the 

depletion of splenic macrophages by clodronate liposomes (52). Upon further investigation, 

splenic DCs appear to be the critical APC population involved in mediating tolerance to 

allo-ECDI-SP since the administration of diphtheria toxin to DTR-CD11c transgenic mice at 

the time of allogeneic ECDI-treated splenocyte infusion prevented the establishment of 

tolerance (52). Although these data appear to be in conflict with observations regarding the 

role of splenic macrophages in ECDI-treated antigen-coupled cell therapy, MZMs have been 

reported to acquire and transfer antigen to splenic CD8α+ DCs for presentation to T cells 
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(62); similarly, a recent publication by Mellor and colleagues provides evidence that 

antigen-bearing, CD11c+ CD8+ CD103+ marginal zone DCs are recruited to the follicles by 

metallophilic MZMs in a CCL22-dependent manner following phagocytosis of apoptotic 

cells (63). Thus, the phagocytosis of apoptotic cells by MZMs may facilitate presentation of 

antigens by DCs to the T cells in the splenic lymphoid follicles, thereby providing a 

conciliatory mechanism for our observations regarding these splenic populations. 

Nonetheless, the spleen has been demonstrated to be required for tolerance induction 

mediated by ECDI-treated, antigen-coupled leukocytes since splenectomized mice were not 

protected from PLP139–151 induced EAE following the administration of PLP139-coupled 

splenocytes (51).

Cytokines and negative costimulation in ECDI-treated cell tolerance

The unresponsiveness induced by ECDI-treated Ag-coupled leukocytes has been attributed 

to T cell anergy and deletion. CD4+ T cells receiving cognate signals via the TCR in the 

absence of APC-derived costimulation fail to sustain IL-2 production and become anergic to 

secondary stimulation (9,64). Experiments from autoimmune models have demonstrated that 

tolerance mediated by ECDI-treated Ag-coupled leukocytes is dependent upon low APC 

expression of CD80 and CD86 which favors binding to CTLA-4 over CD28 on T cells, and 

blockade of CTLA-4 signaling at the time of tolerization inhibited unresponsiveness in the 

EAE model of MS (65). Conversely, the PD-1/PD-L1/PD-L2 pathway has been strongly 

implicated as a target for immunotherapy in tolerance models due to its role in T cell 

exhaustion and anergy (66). Expression of the PD-1 receptor is induced on T cells following 

activation where it binds to its ligands PD-L1 and PD-L2 to negatively regulate T cell 

function. PD-L1 can also bind to CD80 and prevent signaling to CD28 (67), and antibody 

blockade against either PD-1 or PD-L1 can abrogate transplant tolerance (68) and the 

protection mediated by ECDI-treated Ag-coupled leukocytes in a model of type 1 diabetes 

(69). How administration of ECDI-treated Ag-coupled leukocytes establishes an 

environment wherein negative costimulation is the favored outcome may be a consequence 

of the immunoregulatory cytokine milieu induced by recognition of apoptotic debris.

IL-10 is a regulatory cytokine that has a non-redundant role in immune homeostasis and 

inflammation (70,71). Early studies on IL-10 reported an inhibitory effect of this cytokine 

on the expression of CD80 by macrophages, without affecting MHC class II presentation 

(72), and IL-10 has also been shown to induce expression of the negative costimulatory 

ligand PD-L1 in a STAT3-dependent manner (73). In agreement with these studies, splenic 

macrophages were shown to express IL-10 following infusion of ECDI-treated Ag-coupled 

leukocytes, and both MZM and splenic CD8α+ DCs uptaking apoptotic debris demonstrated 

an IL-10 dependent increase in their expression of PD-L1 with no significant upregulation of 

CD40 or CD80 (51,52). Moreover, the inhibition of either IL-10 or PD-L1 in mice 

administered ECDI-treated leukocytes prevented tolerance in the context of both 

autoimmunity and allogeneic islet transplantation (46,51,52). Thus antigen is presented to T 

cells specific for cross-presented alloantigens (indirect allospecificity) in the context of low 

costimulation and the provision of inhibitory signals. Surprisingly, experiments examining T 

cells of indirect allospecificity showed significant activation after allo-ECDI-SP treatment. 

The administration of ECDI-treated BALB/c-SP induced TCR transgenic TEa CD4+ T cells 
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(specific for a BALB/c I-Eαd peptide complexed with the B6 MHCII I-Ab molecule) to 

undergo robust proliferation and produce IFN-γ. Following transplantation of the allogeneic 

islets and a second infusion of allo-ECDI-SP (52), these TEa T cells were later depleted by 

IFN-γ-dependent mechanisms, a finding that is consistent with a requirement for T cell 

deletion in the establishment of transplant tolerance (74). IL-10 and IFN-γ have been 

reported to condition DCs to express lower TNF-α and IL-12p40 while increasing levels of 

indoleamine 2,3 dioxygenase (IDO) (75). Additionally, both IDO and IFN-γ are critical for 

transplant tolerance mediated by allo-ECDI-SP, and recent experiments have elucidated 

splenic myeloid derived suppressor cells as a source of IDO and IFN-γ in the splenic 

environment following treatment (45,52). In lieu of the silencing effect of allo-ECDI-SP on 

the indirect allorecognition pathway, graft reactive B cells do not undergo class switching to 

produce alloantibodies, and effector cell infiltration is largely reduced in the allograft of 

tolerized recipients (45). This suppression of the indirect CD4+ T cell response may be the 

most critical outcome of allo-ECDI-SP therapy, confirming reports that the indirect 

alloresponse rapidly becomes the dominant pathway involved in graft rejection (76).

Modulation of the direct allorecognition pathway can occur by T cells directly interacting 

with allo-ECDI-SP (50), and this is in agreement with prior reports that T cells with cognate 

TCRs could be tolerized by directly engaging the peptide-MHC molecules. Indeed, antibody 

blockade of MHC molecules on ECDI-treated, antigen-coupled leukocytes prevented the 

induction of T cell unresponsiveness in an in vitro culture system (9). As treatment of cells 

with ECDI prevents the expression of costimulatory molecules CD40, CD80, and CD86 

(77), presentation by ECDI-treated-SP results in the provision of TCR signals in the absence 

of costimulation. Experiments utilizing allo-ECDI-SP cultured with allogeneic T cells 

demonstrated a 30–50% reduction in cluster formation concomitant with impaired T cell 

proliferation and IFN-γ production (50,64). Thus, for CD4+ T cells from the direct 

allorecognition pathway, intravenous infusion of allo-ECDI-SP may directly engage these 

cells and subsequently induce their anergy. Although one potential advantage of targeting T 

cells from the direct allorecognition pathway is the inactivation of graft-reactive CD8+ T 

cells, both in vitro and in vivo evidence support an argument for unresponsiveness in the 

CD8+ T cell compartment being mediated indirectly through the CD4+ T cells. In a culture 

assay examining the lytic ability of cytotoxic T cells following encounter with allo-ECDI-

SP, cytotoxic T cells lysed stimulator cells in a secondary MLR if CD4+ T cells were absent 

from the MLR, but lysis was reduced if CD4+ T cells previously cultured with allo-ECDISP 

were added to the MLR (78). In an H-Y model of skin graft rejection, tolerance to the MHC 

class-I restricted H-Y antigens failed to protect the graft from rejection while tolerance to 

the MHC class-II restricted epitope Dby prevented graft rejection and limited the activation, 

proliferation, and function of H-Y specific CD8+ T cells (79). Interestingly, a recent 

publication by Pettigrew and colleagues provides evidence for the involvement of CD4+ T 

cells of the indirect lineage in providing T cell help to directly alloreactive CD8+ T cells. 

The authors found that recipient dendritic cells could present processed and intact donor 

allogeneic MHC to activate CD8+ T cells of direct specificity, but only if the recipient DCs 

also expressed recipient MHC class II (80). Therefore, inhibition of the direct and indirect 

CD4+ T cell response to alloantigens by ECDI-SP treatment may be sufficient to limit CD8+ 

T cell activation in the context of allogeneic transplantation. Additionally, active 
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suppression by TREGS may also limit the activation of graft-reactive T cells (81). Although 

the study by Corlett et al (78) did not examine the phenotype of the CD4+ T cells that inhibit 

CD8+ T cell activation following exposure to allo-ECDI-SP, CD4+ CD25− T cells isolated 

from human PBLs and co-cultured with allo-ECDI-SP were induced to express a Foxp3+ 

TREG phenotype and demonstrated suppressive function when added to a primary MLR. 

Thus, tolerance in the CD8+ compartment following allo-ECDI-SP therapy may be mediated 

by active regulation involving Foxp3+ TREGS in addition to the absence of functional CD4+ 

T helper responses, possibly as a consequence of altered CD154 expression (79).

Regulatory cells in ECDI-treated cell tolerance

Regulatory T cells

TREGS are critical to the induction and maintenance of peripheral immune tolerance, and the 

expansion of this population has significant potential to mediate tolerance to allogeneic 

tissue (82). Recent insight into the biology of TREGs suggest that the establishment of 

transplant tolerance depends on the TREG homing to graft draining lymph nodes and the 

allogeneic tissue itself where TREGS can suppress the activation of naïve conventional T 

cells (TCONV) and the function of effector T cells, respectively (83). In vivo, TREGS have 

been shown to be critical for the induction of transplant tolerance mediated by allo-ECDI-

SP, and are preferentially expanded in frequency in the secondary lymphoid organs and 

grafts of tolerized transplant recipients. In a model of allogeneic islet transplantation, CD25 

depletion at the time of allo-ECDI-SP treatment prevented the establishment of tolerance to 

the islet grafts, although CD25 depletion during long-term tolerance maintenance did not 

have a lasting detrimental effect on graft retention (46). Whether or not these TREGS are 

expanded from an existing pool of natural TREGS or derived from TCONV has not been 

thoroughly examined, but CD4+ T cells isolated from human PBLs can be induced to 

express Foxp3 during culture with allo-ECDI-treated PBLs. These TREGS exhibited 

decreased levels of classic TREG activation markers such as CTLA-4 and GITR, arguing for 

their induction from TCONV precursors rather than expansion from nTREGS (77). 

Furthermore, the requirement for TGF-β at the time of tolerance induction to allo-ECDI-SP 

supports the conversion of TREGS from TCONV cells. Little is known regarding the 

specificity of the TREG response mediated by allo-ECDI-SP. Although TREGS were 

previously thought to mediate suppression in a non-specific bystander manner, transgene 

expression of indirect alloreactivity by TCR DNA transfer into TREGS has been shown to 

favor transplant tolerance (84), and a recent publication by the Rudensky lab has reported 

that continued expression of the TCR is critical for TREG mediated suppression (85), thereby 

supporting an argument for the importance of antigenspecificity in TREG function. In spite 

of the observations that TREGS can be induced by direct stimulation with allo-ECDISP using 

human PBLs, in the murine model, 4C Tg CD4+ T cells displaying a TCR specific for 

allogeneic MHC (I-Ad) were not observed to upregulate FoxP3 expression during tolerance 

induction by allo-ECDI-SP, nor were TEa CD4+ T cells of indirect specificity (52). 

However, studies from the EAE model have demonstrated that a transferred population of 

CD4+ CD25+ splenocytes derived from PLP139–151-SP treated donors conferred better 

protection from PLP139–151 mediated EAE disease when compared to CD4+ CD25+ 

splenocytes derived from OVA323–339-SP treated donors (51), consistent with a role for 
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antigen-specificity in TREG mediated suppression. Therefore, additional untested donor-

reactive TCR specificities may better support TREG induction or expansion. Nonetheless, 

significant questions remain regarding the biology of TREGS, their specificity, and the 

mechanism of their contribution to ECDI-treated SP tolerance therapy.

Myeloid-derived suppressor cells (MDSCs)

MDSCs are a heterogeneous population of activated but immature myeloid cells that are 

identified by their co-expression of Gr1 and CD11b. First described in cancer, these cells are 

potent inhibitors of T cell proliferation and function, and are known to suppress immune 

function under a number of inflammatory conditions (86). These cells are activated by a 

number of factors including TGF-β and IFN-γ, both of which are required for tolerance by 

allo-ECDI-SP. Treatment with allo-ECDI-SP induced a splenic population of MDSCs that 

produced significant levels of IFN-γ-dependent IDO and suppressed CD8+ T cell 

proliferation when compared to control mice. Moreover, MDSCs were found to be present 

in the cardiac allograft and suppressed the infiltration of CD8+ T cells and other effectors. 

MDSCs present in the graft were also found to produce IL-10 and to recruit TREGS in a 

CCL4-dependent manner, and depletion of MDSCs restored CD8+ T cell infiltration and 

graft rejection (87). Thus, a critical role for MDSCs in allo-ECDI-SP therapy may be the 

recruitment of TREGS into the graft, which subsequently suppress graft infiltration by CD8+ 

T cells. This argument is consistent with an early requirement for TREGS following tolerance 

induction, since the direct CD8+ T cell response is activated by passenger leukocytes from 

the graft that do not persist long-term.

Based on the above-described mechanisms involved in tolerance induced allo-ECDI-SP, 

there are several potential advantages of this strategy over other forms of cell-based 

therapies such as DST: (1) unlike DST, allo-ECDI-SP in principle does not require 

concomitant co-stimulation blockade, as the allo-ECDI-SP uniquely lack the ability to 

provide adequate co-stimulation signals themselves to the interacting T cells (52); (2) DST 

carries a potential risk for recipient sensitization, especially in recipients with preexisting 

alloimmunity (88); in contrast, allo-ECDI-SP does not display a similar risk of sensitization, 

and may in fact provide further graft protection in recipients with preexisting alloimmunity 

(Luo, unpublished data). Lastly, our unpublished work showed that in direct comparison 

with other methods of inducing cell death such as γ-irradiation or paraformaldehyde 

fixation, ECDI treatment is significantly more efficient for inducing tolerance, likely due to 

its ability to arrest the treated cells in the apoptotic stage rather than allowing them to 

progress to the necrotic stage which counters tolerance efficacy.

Conclusions

In summary, ECDI-treated apoptotic donor cells are highly effective in tempering allo-

specific immune responses via a multitude of mechanisms employing negative 

costimulation, inhibitory cytokines, and regulatory cell populations (Figure 1). The efficacy 

of this form of donor cell-based immunotherapy in allo-sensitized recipients warrants further 

detailed investigation. Ongoing studies in nonhuman primates will undoubtedly inform 

future clinical trial design using this form of negative donor vaccination for transplant 

tolerance induction in humans. Lastly, establishing a source for unlimited production of 
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donor antigens and an immune modulatory cell-free synthetic particle delivery system of 

donor antigens will likely significantly streamline the manufacturing of clinical-grade 

negative donor vaccines, and thus provide an appropriate potential path for moving this 

therapy toward clinical translation.
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Abbreviations

Ag antigen

Allo-ECDI-SP allogeneic ECDI-treated splenocytes/leukocytes

APC antigen presenting cell

CTLA-4 cytotoxic T lymphocyte antigen-4

DC dendritic cell

DST donor specific transfusion

EAE experimental autoimmune encephalomyelitis

ECDI 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide

ECDI-SP ECDI-treated splenocytes/leukocytes

GvHD graft versus host disease

HLA human leukocyte antigen

IDO indoleamine 2,3 dioxygenase

MDSC myeloid derived suppressor cell

MHC major histocompatibility complex

MLR mixed lymphocyte reaction

MS multiple sclerosis

MZM marginal zone macrophage

OVA323-339 ovalbumin protein peptide sequence 323–339

PBL peripheral blood leukocyte

PD-1 programmed cell death 1

PD-L1/2 programmed death ligand 1/2

PLP139-151 proteolipid protein peptide sequence 139–151

TCONV conventional T cells

TCR T cell receptor

TREG regulatory T cell
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Figure 1. Proposed mechanisms of Allo-ECDI-SP tolerance
Innate immune responses are required for allo-ECDI-SP tolerance induction. The splenic 

marginal zone is the primary interface between the splenic non-lymphoid compartment and 

the lymphoid compartment. It is composed of B cells and macrophages important for 

capturing exogenous Ags and debris, which may be processed for subsequent presentation to 

T cells in T cell zones. For efficient tolerance, allo-ECDI-SP must be delivered (1) via i.v. 

administration. Once within the marginal sinus, the ECDI-SP rapidly degrade via apoptotic 

pathways (2), with debris and cells recognized and rapidly taken up via scavenger receptors 

on MZMs and DCs either directly from the marginal zone sinus or via membrane transfer. 

The uptake of allo-ECDI-SP triggers the production and secretion of soluble mediators 

including IL-10 and TGF-β, which have multifarious functions including the regulation of 

costimulatory molecules, such as PD-L1, on APCs (3). The immunoregulatory milieu 

provided by the MZM response to the apoptotic allo-ECDI-SP conditions DCs to present 

antigen to T cells in the context of low CD80/CD86 expression and increased PD-L1 

expression, thereby favoring costimulation through the inhibitory receptors such as CTLA-4 

and PD-1 (4). T cells of the indirect allorecognition pathway recognizing cognate 
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peptide/MHC ligands on host APCs undergo deletion in this context (4), while T cells 

directly engaging peptide/MHC ligands on allo-ECDI-SP become anergic (5). Regulatory T 

cells of the Foxp3+ lineage expand in the presence of TGF-β to inhibit further priming in the 

secondary lymphoid organs and effector responses in the transplanted tissue (6).
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