
Vol. 28 no. 21 2012, pages 2797–2803
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/bts524

Genetics and population analysis Advance Access publication September 6, 2012

HighSSR: high-throughput SSR characterization and locus

development from next-gen sequencing data
Alexander Churbanov1,2,*, Rachael Ryan1, Nabeeh Hasan1, Donovan Bailey1,
Haofeng Chen1,3, Brook Milligan1 and Peter Houde1

1New Mexico State University, Biology Deptartment, MSC 3AF, PO Box 30001, Las Cruces, NM 88003, USA,
2Beijing Institute of Genomics (BIG), Building G, No.7 Beitucheng West Road, Chaoyang District, Beijing 100029,
P.R. China and 3Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA

Associate Editor: Martin Bishop

ABSTRACT

Motivation: Microsatellites are among the most useful genetic mar-

kers in population biology. High-throughput sequencing of microsatel-

lite-enriched libraries dramatically expedites the traditional process of

screening recombinant libraries for microsatellite markers. However,

sorting through millions of reads to distill high-quality polymorphic

markers requires special algorithms tailored to tolerate sequencing

errors in locus reconstruction, distinguish paralogous loci, rarify raw

reads originating from the same amplicon and sort out various artificial

fragments resulting from recombination or concatenation of auxiliary

adapters. Existing programs warrant improvement.

Results: We describe a microsatellite prediction framework named

HighSSR for microsatellite genotyping based on high-throughput

sequencing. We demonstrate the utility of HighSSR in comparison

to Roche gsAssembler on two Roche 454 GS FLX runs. The majority

of the HighSSR-assembled loci were reliably mapped against model

organism reference genomes. HighSSR demultiplexes pooled

libraries, assesses locus polymorphism and implements Primer3

for the design of PCR primers flanking polymorphic microsatellite

loci. As sequencing costs drop and permit the analysis of all project

samples on next-generation platforms, this framework can also be

used for direct simple sequence repeats genotyping.

Availability: http://code.google.com/p/highssr/
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Bioinformatics online.
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1 INTRODUCTION

Microsatellites or simple sequence repeats (SSRs) are tandemly

repeated DNA motifs 2–6 bp in length that typically harbor high

levels of sequence polymorphism. This level of variability has led

to widespread use of SSRs in many areas of molecular biology,

including applications in forensics and paternity testing

(Carracedo and Sánchez-Diz, 2004; Menotti-Raymond et al.,

2005)], population genetics and conservation/management of

biological resources (Luikart et al., 2003). Until recently, the

major obstacle to SSR use was slow and costly de novo isolation

of SSRs for each taxon being investigated. SSR marker develop-

ment has typically involved fractionation of the genome, enrich-

ment for SSR-containing fragments, construction of a clone

library from the enriched fraction, Sanger sequencing of clones

and informatics analysis to identify SSR-containing fragments

and PCR primer sites (Zane et al., 2002). The procedure con-

tinues with the evaluation of amplification efficiency and poly-

morphism of each locus. Thus, it entails considerable time and

investment to develop the large numbers of SSRs necessary to

study patterns of diversification between populations (Cooper

et al., 1999; Zhivotovsky and Feldman, 1995) or to construct

genetic maps (Luikart et al., 2003).

Next-generation sequencing technologies are revolutionizing

the process of SSR discovery by reducing cost and time to a

fraction of what was previously needed (Abdelkrim et al.,

2009; Dutta et al., 2011; Saarinen and Austin, 2010; Santana

et al., 2009), but the millions of raw sequencing reads they pro-

duce necessitates in silico automation of SSR prediction and

locus classification (Faircloth, 2008; Meglécz et al., 2010; You

et al., 2008).
In this article, we present the HighSSR framework for SSR

discovery and locus development from 454-generated raw data.

HighSSR facilitates the recognition of SSR motifs, the parsing

of MID tagged sequences for identification of multiplexed sam-

ples, the identification of unique SSR loci within a sample and

the development of PCR primers for the recovered loci. Unlike

other methods, HighSSR first predicts SSRs for all input se-

quences and later uses the SSRs as pivots to assemble loci. In

other words, it begins by grouping reads based on their SSR

motif and proceeds toward locus identification through compari-

sons of the more complex flanking regions. The approach greatly

reduces computational time by eliminating the need for

all-against-all alignments, as implemented in QDD framework

(Meglécz et al., 2010), and therefore permits SSR locus identifi-

cation and development from millions of reads simultaneously. It

also takes advantage of a PostgreSQL database for efficient

data management throughout the process.
In this article, we evaluate HighSSR using multiplexed

SSR-enriched sequences collected on the Roche 454 GS-FLX

platform. First (hereafter the ‘first run’), we examine two siblings

of a non-model butterfly of conservation concern (Euphydryas

anicia cloudcrofti) because previously reported Lepidoptera SSR

primers (Palo et al., 1995; Petenian et al., 2005; Sarhan, 2006)*To whom correspondence should be addressed.
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failed for their genotyping. Next (hereafter the ‘second run’),

we evaluate the performance of HighSSR in a multiplexed

experiment of 60 species including mosquito, cress plant and

chestnut blight fungus (Aedes aegypti, Arabidopsis thaliana and

Cryphonectria parasitica, respectively) for which there are pub-

lished genomes and also nine populations of Euphydryas butter-

fly without reference genomes.

2 SYSTEM AND METHODS

2.1 Overview

The work flow associated with HighSSR analysis using data

derived from a multiplex sequencing run proceeds as follows:

(1) Identify microsatellite containing reads using Tandem

Repeats Finder (TRF) (http://tandem.bu.edu/trf/trf

.advanced.submit.html; Benson, 1999).

(2) Deposit raw reads, microsatellite predictions from Step 1

and reference genomes (optional) in a PostgreSQL

database.

(3) Assign SSRs to a canonical consensus.

(4) Associate MID tags to respective samples using a hidden

Markov model (HMM) structure.

(5) Group reads into ‘crude clusters’ based on shared canon-

ical consensuses and similarity in flanking regions for each

organism. These are first approximations of loci. The

crude clusters are stored in the database.

(6) Refine crude clusters using a multiple alignment guide tree

generated by MUSCLE (Edgar, 2004a, b) with the distance

threshold between branches preset to sort potential para-

logs into separate loci that are stored in the database.

(7) Prioritize refined loci on the basis of the number of reads

from which they are constructed, the length of flanking

regions available for primer design and decreasing size of

repeat motifs.

(8) If multiple accessions of a taxon are included, select loci

for potential polymorphism across accessions.

(9) Design amplification primers for each locus using

Primer3 (Rozen and Skaletsky, 2000).

2.2 SSR prediction and normalization

SSRs are identified and scored in raw sequencing reads with

TRF (Benson, 1999), which relies on a probabilistic model.

Further analysis requires that SSRs are assigned to their canon-

ical consensuses so that microsatellites of the same type are pro-

cessed unambiguously (Fig. 1). All predicted SSRs and their

assignments to the canonical consensuses are stored in a

PostgreSQL database.

2.3 Demultiplexing reads with a universal amplification

primer

Multiplex identifiers (MIDs) are commonly used to distinguish

sequences from different DNA samples pooled on the same plate

region. HighSSR implements a program based on HMM to

recognize the MIDs along with a universal amplification

primer that was ligated to MseI restricted gDNA fragments.

The remainder of the MseI recognition site provides additional

evidence for target sequence localization. The structure of the

adapter and target DNA sequence is shown in Figure 2.
The program establishes HMM structure (Fig. 3) and identi-

fies sequence fragments by reconstructing the optimal threading

of the sequence with the Viterbi algorithm (Viterbi, 1967).

Decoded MID fragments associate target sequences to samples.

We tested the false-positive rate of demultiplexing with the

sequences from our second 454 run and unused MID sequences

described in Roche TCB No. 005-2009 technical bulletin (Fig. 4).

Levenshtein edit distances (Levenshtein, 1966) are recorded for

each MID and adapter sequence. Constraining edit distance to

be less than or equal to one significantly improves MID recog-

nition fidelity and lowers the number of false positives (Fig. 4b).

By restricting the edit distance between HMM-recognized MIDs

and the target MIDs, only those sequences that can be assigned

to their original sample with high confidence are retained, be-

cause mistakes inMIDs normally indicate poor overall quality of

a read (Quince et al., 2009, 2011).

(a) Number of demultiplexed reads sorted by regions and

MIDs.

(b) Number of demultiplexed reads sorted by regions and

MIDs. Since MIDs listed have never been used in our

experiments, here we asses false-positive rate of

demultiplexing.

Fig. 1. Example of finding of canonical consensus from polyrepeat

(ACGTA)n. All possible consensuses for the SSR on sense and antisense

strands are enumerated. After sorting, first in the list is chosen as the

canonical consensus

Fig. 2. Structure of a raw reads where target DNA sequence is surrounded by auxiliary adapters such as universal amplification primer, remnants of

MSEI digestion sites and MID used to attribute a sequence to the original sample
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2.4 Crude clustering of reads and locus refinement

Sequences with the same SSR canonical consensus and the same

flanking sequences are grouped into ‘crude clusters’ by the fol-

lowing process. SSRs originating from the same sample are first

binned to groups that share the same canonical consensus. Each

round of crude clustering starts with a seed SSR with both flanks

ideally 50 nt in length and 30 nt at a minimum. Candidate se-

quences are added to the cluster one by one based on comparison

with the seed sequence. Flanking sequences of the seed SSR are

compared in a 7-nt sliding window to each candidate added to

the group. The threshold should be set to least 30 – 7¼ 23 for the

number of oligonucleotides matching on a flank of a seed SSR

and a crude cluster candidate SSR, following an observation that

one substitution would result in 7 oligo mismatches. Clustering

in each group continues iteratively until the group is exhausted,

and the groups are processed sequentially, starting with the lar-

gest to free memory for further processing. Information on newly

created crude clusters and participating SSRs is deposited to the

database. Clustered SSRs do not participate in the subsequent

clustering rounds.
Crude clusters are aligned with MUSCLE (Edgar, 2004 a, b) to

identify paralogs. MUSCLE is chosen for its accuracy and speed

(Edgar, 2004a). A guide tree reported by MUSCLE is used to

determine whether to merge loci, beginning with the most closely

associated sequences located at the top of the tree and working

down to the root (Fig. 5). Two metrics of dissimilarity are used to

compare the consensus sequences depending on complexity of a

region (Fig. 6). In areas of high complexity, both indels and

substitutions contribute to the distance between the consensus

sequences. In low complexity regions (SSRs), indels are not

included in the distance calculation.
To estimate similarity between loci HighSSR generates all

possible 12 nt oligos from the high complexity flanks and con-

nects them by edges in a graph if the number of oligos shared

between the loci (nodes) is more than 4. It builds a histogram

representing the number of times an oligo is detected in the

locus-flanking regions and approximates this distribution by a

Mixture of Gaussians (MOG). A 10-component MOG is fit to

the histogram using an expectation maximization algorithm

(Bilmes, 1998). The program eliminates from further analysis

all the oligos that are classified by maximum a posteriori to a

Gaussian component with the maximum mean value. This strat-

egy sorts out inflated homology scores associated with oligos

that are ubiquitous among the target sequences (such as frag-

ments of mobile elements) and also oligos that are parts of un-

filtered auxiliary sequencing adapters. To deal with the unfiltered

auxiliary adapters and recombinant DNA fragments that

(a)

(b)

Fig. 4. Demultiplexing performance for the second sequencing run

Fig. 3. HMM structure used to recognize universal amplification primers along with the MIDs and remnants of digestion sites. Unlikely transitions are

shown as dashed lines
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normally stick out of the multiple sequence alignments resulting
from restriction digestion (Fig. 5), we trim flanking multiple

alignment columns that are below minimum occupancy

(non-gap symbols) at a threshold of 5%.
The maximum number of sequences per locus is reported.

Loci are listed in decreasing order of their SSR insert size
because longer SSRs are most frequently the most polymorphic

markers (Buschiazzo and Gemmell, 2006). Paralogs are not
reported.

2.5 Sequencing library preparation

We tested the performance of HighSSR in the analysis of two

Roche 454 GS-FLX sequencer runs. SSRs were enriched as fol-
lows (modified from Glenn and Schable, 2005; Zane et al., 2002).

Genomic DNA was digested with MseI, sequencing adaptors
were ligated to the fragment ends (these include the universal

amplification component plus diagnostic MID) and the frag-

ments were amplified by PCR for 30 cycles. The resulting ampli-
cons were enriched for SSRs by hybridization with a mixture of

biotinylated probes ((AG)n, (TG)n, (AAC)n, (AAG)n, (AAT)n,
(ACT)n, (ATC)n). We recommend enriching genomic DNA for

trinucleotide (or larger) repeats because dinucleotide SSRs are
subject PCR slippage (Ellegren, 2004; Perlin et al., 1995) and

more difficult to score. Subsequent library preparation was per-
formed according to the Roche protocol.

2.6 Genotyping experiments

Thirteen loci identified in the first run by HighSSR were chosen

for genotyping on the criteria of exhibiting three to six nucleotide
repeats and four or fewer alleles (to reduce potential complica-

tions in analysis from paralogs), and flanking regions with a high

GC content. PCR conditions are described in Supplementary
Materials. Amplicons were sequenced (ABI 3100) and aligned

to closely matching alleles using MUSCLE (Edgar, 2004a, b)
and consensus sequences were reconstructed from the corres-

ponding HighSSR loci (Supplementary Materials).

3 RESULTS

In the first run, HighSSR reduced 41:3 million raw sequence
reads to 1901 unique SSR-containing loci with a consensus size

of 3–6 nt shared between two samples (Tables 1, 4 and 5).

The number of reconstructed loci is substantially lower than

the number of putative loci (37 072) because paralogous loci

and loci with flanking sequences of low complexity are removed.

Three of 13 primer pairs chosen for genotyping from the first run

were verified in three individuals by Sanger sequencing as re-

ported in Supplementary Materials.
The number of sequences demultiplexed from the second run

is reported in Supplementary Materials and Figure 4. Positively

identified MIDs out-number false positives by two orders of

magnitude. The number of predicted false positives compares

directly to that predicted by Roche demultiplexing utility

sffinfo with several hundred false positives per quarter plate

region. Table 2 lists the number of unique loci reconstructed

using HighSSR in comparison to gsAssembler for model spe-

cies in the second run. For all but one sample (A. aegypti),

HighSSR recovered at least five times more loci

than gsAssembler (Table 2). In our experiments, we ran

gsAssembler on raw reads from the same sample. Although

gsAssembler can report microsatellite polymorphisms among

the variants found, default assembly settings proved very rudi-

mentary for efficient microsatellite handling. We mapped all loci

recovered by HighSSR to the published genomes of A. thaliana,

A. aegypti and C. parasitica (Table 3) using gsMapper with

default parameters to test HighSSR’s ability to assemble com-

plex loci and parse orthologs into separate loci. All reconstructed

loci were also reciprocally mapped with BLASTN (Altschul et al.,

1990 using an expectation threshold of 10�50Þ. Between 85% and

100% of all loci recovered by HighSSRmapped to the published

genomes and 100% of the mapped regions corresponded to

unique non-overlapping locations in the genome.

Fig. 5. Locus reconstruction based on the MUSCLE guide tree.

Consensuses D and X are treated as paralogs if they are too distant.

Arrows indicate what consensuses are combined according to a guide

tree toward unified consensus representing a multiple alignment combin-

ing corresponding raw reads

Fig. 6. Schematic representation of multiple sequence alignment used for

locus reconstruction. The consensus is reconstructed by assigning a nu-

cleotide at each position most common in the multiple alignment column

corresponding to that position

Table 1. SSRs for the first run with consensus size 3–6nt

Feature Number

Number of raw reads 1 335 650

Number of SSR-containing reads 1 028 072

Number of crude clusters 59 489

Number of putative loci 37 072

Number of reported SSR-containing loci 1901
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4 DISCUSSION

Programs predicting SSRs within genomic DNA can be subdi-

vided into several categories according to their underlying ap-

proach. RepeatMasker (http://www.repeatmasker.org) and

DUST/SIMPLE (Alba et al., 2002; Hancock and Armstrong,

1994) are used to mask low-complexity fragments in biological

sequences to speed up genome-wide pattern-match searches.

STAR (Delgrange and Rivals, 2004) and TROLL (Castelo et al.,

2002) look for predefined tandem motifs in the query sequence.

TRF (Benson, 1999) is a popular SSR prediction and scoring tool

that is based on sound probabilistic model. TRDB (Gelfand et al.,

2007), InSatdb (Archak et al., 2007), TRbase (Boby et al.,

2005), VNTRfinder along with PolyPredictR (O’Dushlaine

et al., 2005) and UCSC genome browser (Kent et al., 2002) use

TRF as an internal microsatellite prediction engine. We also

adopted TRF for SSR prediction following the observation that

raw sequencing reads frequently contain sequencing artifacts and

polymorphic variations.
HighSSR represents an improvement over existing programs

for the discovery of SSRs from next-generation sequence files.

Table 2. Number of loci assembled from SSR containing samples

Accession number Organism Number of raw reads Number of

HighSSR loci

Number of

Newbler loci

121 Arabidopsis thaliana 2140 65 3

122 Arabidopsis thaliana 5349 257 39

123 Arabidopsis thaliana 2655 55 10

124 Arabidopsis thaliana 2125 62 3

65 Arabidopsis thaliana 1897 65 7

81 Aedes aegypti 6690 104 103

EP146 Cryphonectria parasitica 2241 51 6

EP155 Cryphonectria parasitica 3775 141 24

HighSSR reconstructs more loci than Roche gsAssembler (Newbler).

Table 3. Mapping results for HighSSR assembled loci against known reference genome

Accession number Organism Number of loci used Percent mapped loci Percent bases mapped

121 Arabidopsis thaliana 65 100.0 98.06

122 Arabidopsis thaliana 254 98.83 97.22

123 Arabidopsis thaliana 47 85.45 81.34

124 Arabidopsis thaliana 60 96.77 96.22

65 Arabidopsis thaliana 64 98.46 96.64

81 Aedes aegypti 104 100.0 94.26

EP146 Cryphonectria parasitica 51 100.0 98.84

EP155 Cryphonectria parasitica 133 94.33 93.31

Majority of the HighSSR assembled loci map against the reference genome. All the loci mapped against the reference genomes in unique non-overlapping positions.

Table 4. Geographic location of Euphydryas samples

Accession number Location Run Number

of Loci

DHC Deerhead Canyon, NM First 1901

C1 Cox Canyon, NM Second 145

C2 Cox Canyon, NM Second 116

D4 Deerhead Canyon, NM Second 158

D7 Deerhead Canyon, NM Second 392

HMT1 Horseshoe Mountain, CO Second 10

HMT2 Horseshoe Mountain, CO Second 3

HOP1 Hopewell Lake, NM Second 47

HOP2 Hopewell Lake, NM Second 50

Table 5. Number of SSR-containing loci predicted by HighSSR shared

between Euphydryas

C2 D4 D7 HMT1 HMT2 HOP1 HOP2 DHC

C1 4 4 7 1 0 4 3 10

C2 1 5 1 0 2 1 11

D4 27 2 1 6 4 21

D7 4 0 6 4 56

HMT1 1 0 0 3

HMT2 0 0 0

HOP1 2 4

HOP2 5
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MsatFinder (http://www.genomics.ceh.ac.uk/msatfinder/),
SSRIT (Temnykh et al., 2001), MISA (Thiel et al., 2003 and

SSR finder (http://www.maizemap.org/bioinformatics/

SSRFINDER/SSR_Finder_Download.html) search for SSRs

with regular expressions, while Sputnik (http://espressosoft

ware.com/pages/sputnik.jsp), ATR-hunter (Wexler et al.,

2005), TandemSWAN (Boeva et al., 2006), Mreps (Kolpakov
et al., 2003) and TRStalker (Pellegrini et al., 2010) search for

SSRs based on repeat size. None of the these report summary

statistics and locus information. Imperfect SSR Finder
(http://ssr.nwisrl.ars.usda.gov/), SciRoKo (Kofler et al., 2007),

IMEx (Mudunuri and Nagarajaram, 2007) and TRF (Benson,

1999) efficiently screen genome sequences for perfect and imper-
fect microsatellites and report such statistics. However, they do

not quantify the number of alleles of each SSR locus. Additional

advantages of the HighSSR framework include the storage of

intermediate results in a PostgreSQL database, permitting the

examination of intermediate results and arranging analysis in a

distributed server/client paradigm, and the use of freely available

third-party software.
Our results confirm duplication of numerous SSR loci in in-

sects (Vant Hof et al., 2007). In E. a. cloudcrofti among 1901
unique SSR-containing loci, 78 (4.1%) had three or more pre-

dicted alleles with perfectly matching flanking regions.

Although we present HighSSR as a platform for characteriz-
ing SSR loci for subsequent traditional PCR amplification and

sizing, this framework and others like it will ultimately be amen-

able to genotype large sets of individuals run exclusively on

next-generation sequencing platforms. This would take the

same processing steps involved in design of PCR primers for

SSR genotyping, where all the statistics on the alleles detected

in the designed loci would be summarized in the table.
HighSSR can be applied to cluster reads made with newer

platforms, such as Illumina HiSeq 2000/2500 and Ion Torrent

PGM. Such improvements will permit comparisons of individ-
uals across large numbers of loci, providing previously

unheard-of resolving power.
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