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The importance of genetic factors (e.g. sequence variation) in the absorption, distribution, metabolism, excretion (ADME) and
overall efficacy of therapeutic agents is well established. Our ability to identify, interpret and utilize these factors is the subject
of much clinical investigation and therapeutic development. However, drug ADME and efficacy are also heavily influenced by
epigenetic factors such as DNA/histone methylation and non-coding RNAs [especially microRNAs (miRNAs)]. Results from
studies using tools, such as in silico miRNA target prediction, in vitro functional assays, nucleic acid profiling/sequencing and
high-throughput proteomics, are rapidly expanding our knowledge of these factors and their effects on drug metabolism.
Although these studies reveal a complex regulation of drug ADME, an increased understanding of the molecular interplay
between the genome, epigenome and transcriptome has the potential to provide practically useful strategies to facilitate drug
development, optimize therapeutic efficacy, circumvent adverse effects, yield novel diagnostics and ultimately become an
integral component of personalized medicine.
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The proper control of absorption, distribution, metabolism
and excretion (ADME) of xenobiotics is essential for living
organisms to obtain energy, acquire necessary building blocks
(e.g. essential amino acids) and maintain homeostasis in a
complex chemical environment. Genes involved in ADME
activities encode various receptor/transporters, biotransfor-
mation enzymes and accessory proteins (PharmaADME,
http://pharmaadme.org/joomla/). These proteins include
membrane transporters responsible for the absorption and
excretion of specific molecules and enzymes to convert xeno-
biotics for excretion. To date, over 300 transporters and
enzymes directly involved in ADME process have been
described. This long list of components makes the study of
ADME inherently complex, as transporters and enzymes work
in concert to respond dynamically to diverse external factors.
Despite the formidable complexity of the field, an under-
standing of ADME is critical for drug development in order to
increase therapeutic efficacy and reduce adverse effects
(Caldwell et al., 2009; Emoto et al., 2010; Bell and Wang,
2012).

It is well known that there are considerable inter-
individual variations in response to drug treatment (Alomar,
2014). Besides polymorphisms within the sequence of thera-
peutic targets, genetic variations in ADME-related genes have
been shown to affect therapeutic response through drug
transportation and metabolism (Nakajima and Aoyama,
2000; Evrard and Mbatchi, 2012). However, genetic variations
cannot completely explain the differences observed between
individuals. Recent studies using high-throughput global
molecular profiling technologies have shown that ADME

activities have also been affected by a number of epigenetic
factors, including DNA methylation, post-translational
histone modifications and non-coding regulatory RNAs,
which directly or indirectly alter the expression of ADME
genes (Ivanov et al., 2012). For example, microRNAs
(miRNAs) are short, non-coding regulatory RNAs involved in
modulating ADME-related gene expression and protein trans-
lation levels (Liu and Pan, 2014). The study of epigenetic
factors on drug metabolism, pharmacoepigenetics, is a
rapidly growing field and plays an important role in thera-
peutic efficacy by affecting the pharmacokinetic (PK) and
pharmacodynamic properties of drugs. In this review, we
summarize the current understanding on the involvement of
miRNAs in ADME.

MicroRNA

More than 60% of human genomic DNA is transcribed into
RNA, yet protein-coding genes account for only less than 3%
of the genome (Bernstein et al., 2012; Kellis et al., 2014).
Non-coding RNAs (ncRNAs) are RNAs that are not translated
into proteins. Some ncRNAs, such as ribosomal RNAs and
transfer RNAs, have well-established cellular roles. However,
there are other classes of ncRNAs that have been recently
discovered (Esteller, 2011). Among them, miRNAs are prob-
ably the best studied due to their important roles in the
post-transcriptional regulation of messenger RNAs (mRNAs).
miRNAs were originally discovered in the nematode Caeno-
rhabditis elegans as mediators of temporal pattern formation

Tables of Links

TARGETS

Enzymesa Transportersc

CYP1A1 ABCA1

CYP1B1 ABCB1, MDR1/P-gp

CYP2E1 ABCC1

CYP3A4 ABCC2

DNMT1, DNA methyltransferase 1 ABCC3

DNMT3A, DNA methyltransferase 3α ABCC4

HDAC ABCC5

Histone methyltransferase EZH2 ABCC10

Nuclear hormone receptorsb ABCE1

ESR1, oestrogen receptor α, NR3A1 ABCG2

Glucocorticoid receptor, NR3C1 Cystine/glutamate exchanger, SLC7A11

LXRA, liver X receptor α, NR1H3 SERT, 5-HT transporter, SLC6A4

PPARα, NR1C1 SLC15

PXR, pregnane X receptor vGLUT1, vesicular glutamate transporter 1,
SLC17A7RXR, retinoid receptors

LIGANDS

17β-oestradiol Raloxifene

Acetaminophen, paracetamol Tamoxifen

Cholesterol Testosterone

Cisplatin Topotecan

Cocaine Vinblastine

Dexamethasone

Dox, doxorubicin

Fluoxetine

Gemcitabine

GSH, glutathione

Halothane

Isoflurane

Methadone

Mitoxantrone

These Tables list key protein targets and ligands in this article which are hyperlinked to corresponding entries in http://
www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Pawson et al., 2014) and are
permanently archived in the Concise Guide to PHARMACOLOGY 2013/14 (a,b,cAlexander et al., 2013a,b,c).
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(Ambros, 2001; Lagos-Quintana et al., 2001). These small
regulatory RNAs were found to be conserved in metazoan
species and have also been observed in several virus
families (Pfeffer et al., 2004). miRNAs are involved in a broad
range of cellular activities, including proliferation, develop-
ment, homeostasis, immunity, metabolism and apoptosis
(Kloosterman and Plasterk, 2006; Stefani and Slack, 2008).
Because of their important regulatory roles in these diverse
biological processes, miRNAs display characteristic expres-
sion patterns in cells and tissues, different developmental
stages and disease processes.

miRNA genes are found in diverse locations throughout
the genome (Rodriguez et al., 2004) and often cluster together
(Lagos-Quintana et al., 2001; Seitz et al., 2004). Most of the
sequences that encode miRNAs are transcribed by RNA poly-
merase II (Lee et al., 2004). Many miRNAs may be transcribed
on the same primary transcript (pri-miRNA). This pri-miRNA
is then processed into a smaller hairpin structure (pre-
miRNA) by the microprocessor complex, RNase III enzyme
Drosha/DGCR8. Following nuclear export via the RanGTP-
dependent double-strand RNA binding protein exportin-5,
the pre-RNA is then cleaved by another RNase III enzyme,
Dicer, to yield an approximately 22 nucleotide-long RNA
duplex (Kim et al., 2009). Unwinding by an RNA helicase
allows a mature miRNA strand to be loaded onto the protein
Argonaute to form the RNA-induced silencing complex
(RISC). The RISC typically interacts with the 3’ untranslated
region (UTR) of mRNA targets, resulting in the translational
repression or degradation of the transcript. Unlike other regu-
latory molecules, miRNA target recognition is relatively flex-
ible, as the miRNA sequence itself is short and the interaction
between miRNA and mRNA is based upon partial sequence
complementarity (Bartel, 2009). This permits a single miRNA
to interact with many mRNA targets. Additionally, a single
mRNA can also contain many different miRNA binding sites.
It has been estimated that the majority of the human mRNAs
are targeted by one or more miRNAs (Friedman et al., 2009).
These loose constraints governing miRNA–mRNA interac-
tions increase the diversity of possible interactions and make
miRNA-mediated regulatory networks often difficult to
unravel.

At present, over 2500 human mature miRNAs have been
deposited into the online repository miRBase (v20, www.mir-
base.org) (Griffiths-Jones et al., 2008). To decipher the inter-
actions between miRNA and mRNA, a number of informatic
tools, such as TargetScan (www.targetscan.org) (Lewis et al.,
2005) and miRanda (www.microrna.org) (Enright et al.,
2003), have been developed to predict miRNA–mRNA inter-
actions based upon sequence complementation, binding sta-
bility and degree of sequence conservation. A typical
approach to evaluate the specificity of miRNA–target interac-
tions is the use of gene reporter assays in cell culture. A
specific miRNA of interest is transfected into a cell line
expressing a transgenic construct containing a reporter gene
(e.g. luciferase) and the 3′-UTR region of a putative mRNA
target. However, this approach relies upon overexpressed
components and may ultimately have limited physiological
relevance. The strongest support for in vivo relevance is
derived from a combination of experiential methods
(reviewed in Thomson et al., 2011). Although thousands of
miRNA–mRNA interactions have been predicted, few mRNA–

miRNA interactions have been empirically validated. These
validated interactions are archived in online databases, such
as miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/), Tarbase
(http://diana.imis.athena- innovation.gr/DianaTools/ index
.php?r=tarbase/index) and miRecords (http://mirecords
.biolead.org/).

MicroRNAs regulate the expression of
ADME phase I and II enzymes

Increasing evidence has indicated that a substantial number
of transporters and drug metabolizing enzymes are regulated
by miRNAs (Yu, 2007; 2009) (Table 1 and Figure 1). We col-
lected all miRNA–ADME interactions from literature and con-
structed a miRNA-mediated regulatory network for ADME
(Figure 1). The network contains 189 interactions among the
381 nodes, which includes 120 miRNAs and 261 ADME
genes.

The biotransformation of xenobiotics is generally sepa-
rated into two phases: phase I includes the addition or
exposure of chemically reactive functional groups such as
amine (–NH2), hydroxyl (–OH), sulfhydryl (–SH) or carboxyl
(–COOH) group by enzymes, in preparation for phase II,
where the phase I products are further modified with water-
soluble or charged chemical motif(s), converting them into
water-soluble structures for excretion. Cytochrome P450
(CYP450, a class of monooxygenases) is the largest group of
phase I enzymes. In humans, there are 57 functional CYP450
genes, which can be grouped into 18 different families based
upon sequence similarity (Lewis, 2004). A number of miRNAs
have been shown to be involved in the post-transcriptional
regulation of cytochrome P450 genes (Table 1 and Figure 1).
For example, the expression level of CYP1A1 was correlated
with the levels of miR-18b and miR-20b (Wang et al., 2009;
Glubb and Innocenti, 2011). CYP1B1 and CYP3A4 were
found to be regulated by miR-27b (Tsuchiya et al., 2006; Pan
et al., 2009a), and CYP2E1 by miR-378 (Mohri et al., 2010).

A few phase I enzymes have gained more attention due to
their involvement in metabolizing important therapeutic
agents. CYP3A4, a member of the CYP3 family predomi-
nantly expressed in liver and intestine, metabolizes more
than 50% of the therapeutic drugs currently on the market
(Plant and Gibson, 2003). It is also involved in the synthesis
and metabolism of a number of endogenous molecules,
including cholesterol, steroid hormones (e.g. testosterone),
bile acids and vitamin D (Wang et al., 2013c). Because of its
important role in drug metabolism, changes in CYP3A4 activ-
ity (either through altered gene expression or inhibition of
enzyme activity) cause a number of adverse effects associated
with drug usage. CYP3A4 can be induced by ligands that bind
and activate the pregnane X (PX) receptor (Lehmann et al.,
1998). Experimental data also indicate that the level of
CYP3A4 is affected by epigenetic factors, including histone
acetylation and methylation (Dannenberg and Edenberg,
2006; Kacevska et al., 2012) and also miRNAs.

A recent study based upon several different miRNA target
prediction programmes identified 105 miRNAs that may
potentially interact with CYP3A4 mRNA (Wei et al., 2014).
Among the 105 miRNA candidates, 14 of them were
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Table 1
List of interactions between miRNA and drug metabolism-related genes

Gene ID Function Interacting miRNA References

CYP1A1 Phase I enzyme miR-18b, -20b Wang et al., 2009; Glubb and Innocenti, 2011

CYP1B1 Phase I enzyme miR-27b Tsuchiya et al., 2006; Chuturgoon et al., 2014

CYP2A3 Phase I enzyme miR-126*, -34 Kalscheuer et al., 2008

CYP2E1 Phase I enzyme miR-378 Mohri et al., 2010; Takahashi et al., 2014

CYP2J2 Phase I enzyme Let-7b F Chen et al., 2012a

CYP3A4 Phase I enzyme miR-27b, -577, -1, -532-3p, -627,
-223, -148

Takagi et al., 2008; Pan et al., 2009a; Takahashi et al., 2014; Wei et al., 2014

CYP7A1 Phase I enzyme miR-122a, miR-422a Song et al., 2010

CYP19A1 Phase I enzyme miR-19b, -106a, let-7f Shibahara et al., 2012; Kumar et al., 2013

CYP24A1 Phase I enzyme miR-125b Komagata et al., 2009

GSS Phase I enzyme miR-125b Tili et al., 2012

GPX7 Phase I enzyme miR-122 Akinc et al., 2008

SULF1 Phase I Enzyme miR-516a Takei et al., 2011

GSTP1 Phase II enzyme miR-133a, -513a-3p Zhang et al., 2012; Uchida et al., 2013

SULT1A1 Phase II enzyme miR-631 Yu et al., 2010

UGT1A Phase II enzyme miR-491-3p Dluzen et al., 2014

ABCA1 Transporter miR-33, -33*, -758, -106b, -613,
-27a, -27b, -145, -101, -135b

Ramirez et al., 2011; Borel et al., 2012; Kim et al., 2012; Goedeke et al., 2013;
Kang et al., 2013; Rottiers et al., 2013; Zhang et al., 2014; Zhao et al., 2014

ABCB1/P-gp/MDR1 Transporter miR-451, -27a, -298, -354, -7,
-200c, -19a/b

Kovalchuk et al., 2008; Zhu et al., 2008; Pogribny et al., 2010; Bitarte et al.,
2011; Bao et al., 2012; J Chen et al., 2012b; F Wang et al., 2013a

ABCB11 Transporter miR-33 Allen et al., 2012

ABCC1/MRP-1 Transporter miR-134, -326, -1291, -199a/b,
-296

Guo et al., 2010; Liang et al., 2010; Borel et al., 2012; Pan et al., 2013

ABCC2 Transporter miR-379, let-7c Haenisch et al., 2011; Zhan et al., 2013

ABCC3 Transporter miR-9* Jeon et al., 2011

ABCC4/MRP4 Transporter miR-124a, -506, -125a/b Borel et al., 2012; Markova and Kroetz, 2014

ABCC5 Transporter miR-128 Zhu et al., 2011

ABCC6 Transporter miR-9* Jeon et al., 2011

ABCC7/CFTR Transporter miR-145, -494, -1246, -509-3p Gillen et al., 2011; Ramachandran et al., 2013

ABCC10 Transporter Let-7a/e Borel et al., 2012

ABCE1 Transporter miR-124, -203, -26a, -135b, -145 Furuta et al., 2010; Borel et al., 2012

ABCG1 Transporter miR-33 Marquart et al., 2010; Rayner et al., 2010

ABCG2/BCRP Transporter miR-520h, -519c, -328, -487a,
-181a

Liao et al., 2008; Pan et al., 2009b; To et al., 2009; Wang et al., 2010; Li et al.,
2011; Padmanabhan et al., 2012; Jiao et al., 2013; Ma et al., 2013

SLC6A4 Transporter miR-16, -15a Baudry et al., 2010; Tamarapu Parthasarathy et al., 2012; Moya et al., 2013

SLC7A5 Transporter miR-126 Miko et al., 2011

SLC7A11 Transporter miR-27a Drayton et al., 2014

SLC15A1/PEPT1 Transporter miR-92a Dalmasso et al., 2011b

SLC12A2 Transporter miR-384, -494, -1246 Gillen et al., 2011

SLC16A1/MCT1 Transporter miR-124, -29a/b KK Li et al., 2009b; Pullen et al., 2011

NR1I2/PX receptor Nuclear Receptor miR-148a Takagi et al., 2008

NR3C1/GR Nuclear Receptor miR-18, -124a Vreugdenhil et al., 2009

NR2B1/RXRA Nuclear Receptor miR-27a, -27b Ji et al., 2009; Komagata et al., 2009; Mohri et al., 2009

NR1I1/VD receptor Nuclear Receptor miR-27b, -125b Mohri et al., 2009; Pan et al., 2009a

NR1C1 Nuclear Receptor miR-10b, -506, -21, -27b Zheng et al., 2010; Kida et al., 2011; Tong et al., 2011; Zhou et al., 2011

NR1C3 Nuclear Receptor miR-130, -27b, -27a Jennewein et al., 2010; Kim et al., 2010; Lee et al., 2012

NR1C2 Nuclear Receptor miR-15a, -199a, -214, -9 Yin et al., 2010; el Azzouzi et al., 2013; Thulin et al., 2013

NR1H3/LXRA Nuclear Receptor miR-613, -206, -1 Ou et al., 2011; Zhong et al., 2013; Vinod et al., 2014

NR2A1/HNF4A Nuclear Receptor miR-24, -34a Takagi et al., 2010

NR3A1 Nuclear Receptor miR-221, -222, let-7a, miR-130a,
-22, -206

Iorio et al., 2005; Adams et al., 2007; Zhao et al., 2008; 2011b; Pandey and
Picard, 2009; Xiong et al., 2010; Tang et al., 2011

RXRA Modifier miR-27a/b Ji et al., 2009
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experimentally verified to interact directly with the 3′-UTR of
CYP3A4 transcript in HEK293T cells. Analysis of the miRNAs
identified in vitro and CYP3A4 transcript and protein levels in
human liver samples suggested that four of these miRNAs
(miR-1, -532-3p, -577 and -627) attenuate the translation of
CYP3A4 in vivo. Besides showing that miRNAs affect both
transcript and protein levels in vivo, results from this study
also illustrated our limited understanding of how miRNAs
select their targets in cells, since only about 10% of the
predicted interactions could be verified experimentally.

CYP2E1 is involved in the metabolism of anaesthetics,
such as isoflurane and halothane, organic solvents, such as
ethanol and benzene, acetaminophen (paracetamol) and
other compounds. Computational analysis predicted a poten-
tial miR-378 binding site within the 3′-UTR of CYP2E1
(Mohri et al., 2010), the functionality of which was verified
by in vitro reporter assays. In addition, an inverse correlation
between CYP2E1 protein levels and miR-378 abundances was
observed in a panel of 25 human liver specimens, providing
further support for the possible significance of this interac-
tion in vivo (Mohri et al., 2010).

CYP1B1 is overexpressed in diverse cancers (e.g. breast,
colon, lung, oesophagus, skin, lymph node, brain and testis)
relative to their corresponding normal tissues (Murray et al.,
1997) and is known to activate various pro-carcinogens
(Shimada et al., 1996). In addition, CYP1B1 enhances the
conversion of 17β-oestradiol into 4-hydroxyestradiol (Han
and Liehr, 1994; Newbold and Liehr, 2000), a metabolite
known to cause DNA damage through free radical production
and which may promote the development of oestrogen-
dependent cancers. Examination of the 3′-UTR of CYP1B1
transcript revealed a high-quality target site for miR-27b
(Tsuchiya et al., 2006), which was confirmed using luciferase
reporter assays. Ablation of miR-27b targeting via an anti-
sense oligonucleotide increased the abundance and activity
of endogenous CYP1B1 in MCF-7 cells. In addition, the
amount of miR-27b was inversely correlated with CYP1B1
protein level in most of the oestrogen receptor/progesterone
receptor positive breast cancer samples examined (Tsuchiya
et al., 2006).

GSH is synthesized from glutamylcysteine and glycine by
glutathione synthetase (GSS) in an ATP-dependent process
(Snoke and Bloch, 1955). GSH has many cellular functions,
including the scavenging of peroxides and free radical
species, and the detoxification of xenobiotics (Pastore et al.,
2003). Overexpression of miR-125b in chronic lymphocytic
leukaemia-derived cell lines reduced GSS protein abundance
and led to a decrease of GSH activity (Tili et al., 2012). Using
a luciferase reporter assay, miR-125b was verified to directly
interact with the 3′-UTR of the GSS transcript.

Glutathione peroxidase 7 (GPX7) counters oxidative
stress generated from polyunsaturated fatty acid metabolism
(Utomo et al., 2004) and can neutralize hydrogen peroxide in
the absence of glutathione (Peng et al., 2012). Knockdown of
GPX7 expression resulted in an increase in reactive oxygen
species, DNA damage and apoptosis in oesophageal squa-
mous epithelial cells upon exposure to bile acids in vitro.
GPX7 level was found to be up-regulated in the livers of mice
treated with antagomiR-122 (a miR-122 antagonist). This sug-
gests a possible interaction between miR-122 and GPX7 tran-
script (Krutzfeldt et al., 2005; Akinc et al., 2008).

UDP-glucuronosyltransferases (UGTs) are responsible for
the phase II processing of many endogenous (e.g. bilirubin,
steroid hormones) (Bosma et al., 1994; Belanger et al., 2003)
and exogenous (e.g. drugs, chemotherapeutics and carcino-
gens) compounds (recent review in Rowland et al., 2013).
This family of enzymes is composed of two subfamilies
(UGT1A and 2B) and catalyses the addition of carbohydrate
groups (e.g. glucuronide) to its substrates for excretion
(Mackenzie et al., 2005; Nagar and Remmel, 2006). The
UGT1A family has nine alternatively spliced protein isoforms
sharing a common 3′-UTR. In silico analysis of the UGT1A
3′-UTR identified a potential miR-491-3p target sequence
(Dluzen et al., 2014). Introducing a miR-491-3p mimic into
HuH-7 cells reduced UGT1A1 mRNA abundance by 48% rela-
tive to non-targeting control mimics and direct interaction
between miR-491-3p and UGT1A1 3′-UTR was also confirmed
by reporter assays. This reduction in UGT1A1 mRNA was
complemented with a significant reduction in UGTA1 enzy-
matic activity, as measured by the conversion of raloxifene
into glucuronidated metabolites (raloxifene-6-glucuronide
and -4′-glucuronide). Knockdown of the endogenous miR-
491-3p level in HepG2 cells increased the abundance of these
metabolites, although without reducing UGT1A1 mRNA
levels (Dluzen et al., 2014). An inverse correlation between
miR-491-3p abundance and the quantity of UGTA3 and A6
isoforms (sharing the same 3′-UTR as UGT1A1) was also
observed in samples of normal human liver (Dluzen et al.,
2014).

MicroRNAs regulate the expression of
transporter proteins

miRNAs have also been observed to regulate two major
classes of drug transporters: ATP-binding cassette (ABC) and
solute carrier (SLC) proteins (Table 1 and Figure 1). As these
membrane transporters facilitate the uptake and excretion of
many endo- and xenobiotics, alterations in their levels may
affect the PK properties of drugs.

A recent study reported that the levels of a number of ABC
transporters were increased in hepatocellular carcinoma and
that the increase is associated with the decrease of several
miRNAs (Borel et al., 2012). Using luciferase reporter assays,
Borel et al. confirmed the interactions of some ABC trans-
porter transcripts and miRNAs including ABCA1 (interaction
with miR-101 and miR-135b), ABCC1 (miR-199a/b and miR-
296), ABCC4 (miR-125a/b), ABCC5 (miR-101, -125a and let-
7a), ABCC10 (let-7a/e) and ABCE1 (miR-26a, -135b and -145)
(Borel et al., 2012). In addition to miR-101 and miR-135b,
experimental data also suggest an interaction between
ABCA1 and miR-33, since administration of a locked nucleic
acid miRNA antagonist (antimiR) of miR-33 into a non-
human primate model resulted in functional de-repression of
the ABCA1 level. This finding demonstrates the possibility of
modulating the interaction between specific miRNA and
mRNA using antimiR, and provides proof of principle for this
antimiR-based therapeutic modality (Rottiers et al., 2013).

Besides miR-199a/b and miR-296, ABCC1 transcript is
also targeted by miR-326. Overexpressing miR-326 reversed
the multidrug resistance phenotype, sensitizing the drug-
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resistant MCF-7/VP cells to doxorubicin (DOX) (Liang et al.,
2010). The ABCC1 transcript was also observed to be targeted
by miR-134 and the ABCC1 protein level is decreased by the
increased level of miR-134 in drug-resistant H69AR cells (Guo
et al., 2010).

Other miRNA–ABC transporter interactions have also
been reported. For example, miR-379 interacts with the
3′-UTR of ABCC2 and suppresses ABCC2 transcript level in
HepG2 cells (Haenisch et al., 2011). miR-298 overexpression
in vitro down-regulated the level of ABCB1, also known as
the drug transporter multidrug resistance protein 1/P-
glycoprotein (MDR1/P-gp), which leads to breast cancer cell
sensitivity to DOX (i.e. decreased the efflux of DOX from
cells). miR-298 was found to directly interact with 3′-UTR of
ABCB1 transcript (Bao et al., 2011). MiR-451 and miR-27a
have also been observed to suppress the expression of ABCB1
and sensitize breast cancer cells to DOX (Kovalchuk et al.,
2008). In a display of the complexity of miRNA–mRNA regu-
latory networks, overexpression of miR-19a/b has been
shown to increase the abundance of the ABCB1 transcript,
which is likely to be mediated through indirect interactions
with other gene expression regulatory factors (Wang et al.,
2013a).

Cancer cells can become resistant to chemotherapy by
evading miRNA-based control of ADME genes. For example,
ABCG2 plays an important role in cellular transport of anti-
cancer drugs, such as mitoxantrone, doxorubicin and topote-
can, and has been observed to acquire a truncated 3′-UTR in
drug-resistant cells relative to the parental cell line (To et al.,
2008). The truncated mRNA omits a miR-519c binding site,
which mediates a decrease in ABCG2 expression level by
miR-519c. This adaptive truncation of the 3′-UTR was later
found to be present in several ABCG2-overexpressing cell
lines (To et al., 2009). In addition to miR-519c, other miRNAs
such as miR-520h and miR-328 have also been found to
interact with ABCG2 transcript. The levels of miR-520h and
miR-328 are lower in cells expressing ABCG2 relative to
ABCG2-negative cells (Wang et al., 2010). Results from a com-
parative study indicated stronger inhibition of ABCG2
expression in human breast cancer cells by miR-519c and
miR-328 than miR-520h (Li et al., 2011).

miRNAs have also been found to affect the absorption and
excretion of small molecules through SLC proteins. Folate,
nucleoside and amino acid transporters all belong to the SLC
transporter family and mediate the uptake of hydrophilic
drugs such as gemcitabine and other nucleoside analogues
(Candelaria et al., 2010). These levels of membrane transport-
ers are also regulated by miRNA. For example, the expression
of SLC15 was found to inversely correlate with miR-92b,
which was then demonstrated to reduce SLC15 mRNA,
protein and transport activity levels in Caco2-BBE cells
(Dalmasso et al., 2011b). Another SLC transporter, serotonin
transporter 1 (SERT1, SLC6A4), has been found to be sup-
pressed by miR-16 (Baudry et al., 2010). In silico target predic-
tion identified miR-16 as a potential regulator of SLC6A4.
Overexpression of miR-16 in 1C11 cells reduced the SLC6A4
level. Reduction of miR-16 by an anti-miR-16 oligonucleotide
resulted in an increase of SLC6A4 level. This interaction has
also been demonstrated in vivo: in mouse studies, administra-
tion of the selective serotonin reuptake inhibitor fluoxetine
was found to increase miR-16 abundance in serotonergic

raphe nuclei with a reduced SLC6A4 level (Baudry et al.,
2010).

miRNA profiling data identified miR-27a as down-
regulated in cisplatin-resistant bladder cancer cell lines, rela-
tive to the cisplatin-sensitive lines from which they were
derived (Drayton et al., 2014). MiR-27a was found to directly
target the cystine/glutamate exchanger – SLC7A11, which
forms a heterodimer with SLC3A2 to assemble the xc-cystine-
glutamate transporter. This protein complex imports cysteine
(as cystine) for the synthesis of GSH, which enables cisplatin
detoxification. miR-27a expression was found to inversely
correlate with SLC7A11 level in patient samples. Low miR-
27a and high SLC7A11 were found to correlate with poor
patient prognosis.

MicroRNAs regulate the expression of
nuclear receptors

Nuclear receptors play important roles in cellular responses
towards environmental stimulation by activating or inacti-
vating the expression of genes, including those that encode
drug transporters and biotransformation enzymes. For
instance, the retinoid X receptor (RXR) heterodimerizes with
the steroid family of orphan nuclear receptors, the constitu-
tive androstane receptor (CAR) or the pregnane X receptor
(PXR) to participate in the xenobiotic-mediated transcrip-
tional activation of CYP2B and CYP3A. This type of interac-
tion increases the complexity of the role of miRNAs in
regulating ADME activities, since miRNAs may affect the
expression of ADME genes via indirect targeting the 3′-UTRs
of nuclear receptors (Table 1 and Figure 1). For example,
the interactions between miR-27b and miR-125b with the
vitamin D (VD) receptor/RXRA alter CYP3A4 expression
(Komagata et al., 2009; Mohri et al., 2009). The level of
CYP3A4 is also affected by miR-148 through its interaction
with PXRs (Takagi et al., 2008).

The PPARα (NR1C1) regulates the expression of a number
of ADME genes and its abundance is affected by the levels of
miR-21or miR-27b (Kida et al., 2011). An independent study
showed that the overexpression of miR-506 also suppresses
NR1C1expression, which leads to hydroxycamptothecin
resistance in a colon cancer cell line (Tong et al., 2011).
Another miRNA-regulated nuclear receptor is liver X receptor
α (LXRA/NR1H3), which is closely related to RXR and PPAR,
and can be targeted by miR-613. The activation of LXRA
resulted in an increased level of miR-613 (Ou et al., 2011).
This type of feedback loop probably plays an important part
in maintaining proper ADME activity, which is critical for
endo- and xenobiotic transport and metabolism.

The oestrogen receptor α (ESR1) and the glucocorticoid
receptor (NR3C1) are known to affect the expression of
CYP3A4 and ABCG2. MiR-221 and -222 inhibit ESR1 expres-
sion. Overexpression of miR-221/222 in a breast cancer cell
line resulted in the cells becoming resistant to tamoxifen (an
antagonist of the oestrogen receptor) treatment, while knock-
ing down the level of miR-221/222 sensitized the cells (Zhao
et al., 2008). A similar effect was also observed with let-7b
and let-7i (Y Xhao et al., 2011b). The ESR1 transcript has also
been observed to be targeted by miR-206, and ESR1 mRNA
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abundance negatively correlates with the miR-206 level (Iorio
et al., 2005; Adams et al., 2007). To further understand the
interaction of miRNA and ESR1 transcript, Picard et al. per-
formed a study on 14 miRNAs, which might be involved in
ESR1expression and found that miR-22 exerted the strongest
inhibition of oestrogen signalling through targeting ESR
mRNA (Pandey and Picard, 2009).

Effects of epigenetic factors on
miRNA expression

Even though numerous studies showed the effects of specific
miRNAs on ADME-related transcripts, the levels of individual
miRNA sequences are affected by intrinsic and extrinsic
factors. Like other transcripts, the expression of miRNAs can
be affected by epigenetic factors, such as DNA methylation.
For example, rapid changes to miRNA levels have been
observed upon treating cells with histone deacetylase
(HDAC) inhibitors (Scott et al., 2006). Alterations to miRNA
promoter methylation status are associated with disease con-
ditions. For example, the promoter of the tumour suppressor
miR-125b is hyper-methylated in human breast cancer,
leading to a lower level of miR-125b and the de-repression of
its target transcription factor, ETS1 (V-Ets avian erythroblas-
tosis virus E26 oncogene homologue 1) (Zhang et al., 2011).
In addition, the promoter of the metastasis suppressor miR-
355 is also hyper-methylated in breast cancer (Png et al.,
2011). Hypo-methylation has also been observed to alter
miRNA expression, as let-7a-3 has been found to be heavily
methylated in normal human tissue, but hypo-methylated in
some human lung cancers (Brueckner et al., 2007).

In a display of further complexity, miRNAs can recipro-
cally influence epigenetic states by targeting transcripts that

encode enzymes involved in DNA methylation and histone
modifications (Table 2). Several HDACs have been observed
by reporter assays to be regulated by different miRNAs (Scott
et al., 2006; H Li et al., 2009a; Sato et al., 2011; Wang et al.,
2013b). In addition, some polycomb proteins that are
involved in the remodelling of chromatin structure are also
regulated by miRNAs. For example, the expression of the
histone methyltransferase EZH2 is repressed by miR-101
(Varambally et al., 2008).

Influence of xenobiotic drugs on
miRNA expression

miRNA expression also can be affected by exposure to xeno-
biotics. For example, the abundances of a number of miRNAs
(miR-27a, -148a, -124a and miR-451) in MCF-7, Caco2,
SH-SY5Y and BE(2)-M17 cell lines were affected by exposing
the cells to common pharmacological agents, including dex-
amethasone, vinblastine, bilobalide and cocaine (Rodrigues
et al., 2011). As miRNAs regulate drug metabolizing enzymes
and transporters, this might lead to considerable changes in
the PK properties of the drug itself.

Suppression of miRNAs that control drug metabolism and
disposition may explain changes in the expression of efflux
transporters (Yu, 2009). For instance, the induction of
CYP3A4 and ABCB1 by dexamethasone functions at least
partially through the suppression of miR-27b, -451 and -148a,
which may interact with CYP3A4 and ABCB1 transcripts
(Rodrigues et al., 2011). Vinblastine reduces the levels of miR-
27a/b, -324-3p, -328, -148a and -451, which may cause the
increase of ABCC1 expression in MCF-7 cells (Schrenk et al.,
2001), ABCB1 in LS-180 cells (Harmsen et al., 2010) and
CYP3A4 in HepG2 cells (Smith et al., 2010). Another example

Table 2
List of microRNAs affecting enzymes involved in epigenetic modifications

Gene ID Gene description Interacting miRNA References

DNMT1 DNA (cytosine-5-)-methyltransferase 1 miR-126, -152, -185,
-148, -140, -342

Wang et al., 2011; S Zhao et al., 2011a; Takata et al.,
2013; Azizi et al., 2014; Xiang et al., 2014

DNMT3A DNA (cytosine-5-)-methyltransferase 3
alpha

miR-29b, -143, -199a,
-370

Fabbri et al., 2007; Garzon et al., 2009; Ng et al., 2009;
2014; Qi et al., 2013; Chen et al., 2014

DNMT3B DNA (cytosine-5-)-methyltransferase 3
beta

miR-29, -148, -495 Fabbri et al., 2007; Duursma et al., 2008; Garzon et al.,
2009; Yang et al., 2014

HDAC1 Histone deacetylase 1 miR-34, -449, -520h Noonan et al., 2009; Zhao et al., 2013; Shen et al., 2014

HDAC2 Histone deacetylase 2 miR-145 Noh et al., 2013

HDAC4 Histone deacetylase 4 miR-1, -155, -365 Chen et al., 2006; Guan et al., 2011; Sandhu et al., 2012

HDAC5 Histone deacetylase 5 miR-2861 H Li et al., 2009a

HDAC6 Histone deacetylase 6 miR-433 Simon et al., 2010

EZH2 Enhancer of zeste homologue 2 miR-26a, -26b, -101,
-214, -124, -181a,
-210, -424, -138

Sander et al., 2008; Varambally et al., 2008; Juan et al.,
2009; Zhang et al., 2013; Overhoff et al., 2014; Xie
et al., 2014

BMI1 B lymphoma Mo-MLV insertion region
1 homologue

miR-200c, -203 -183,
-128

Godlewski et al., 2008; Wellner et al., 2009
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is the brain-specific miR-124a, a major regulator of neuronal
identity (Conaco et al., 2006; Maisel et al., 2010). The abun-
dance of this miRNA was reduced by psychoactive drugs
(cocaine, methadone and fluoxetine), which might present a
mechanism of neuroplasticity in response to xenobiotic
agents.

Xenobiotic drugs may act on other proteins responsible
for miRNA processing, leading to an altered expression of
mature miRNAs (Shan et al., 2008; Melo et al., 2011). For
example, enoxacin, a broad-spectrum antibacterial fluoroqui-
nolone, enhanced endogenous miRNA production, including
tumour suppressor miRNAs, by targeting the pre-miRNA pro-
cessing protein TAR RNA-binding protein 2 (Melo et al.,
2011).

Host miRNA expression changes in
response to the gut microbiome

The gastrointestinal tract contains a broad spectrum of micro-
bial species that modulate the utilization of xenobiotics
beyond the capability encoded in the host genome (Kau et al.,
2011; Haiser and Turnbaugh, 2013). Alterations to the micro-
biome population can influence the therapeutic efficacy of
drugs (Viaud et al., 2013). In addition, microbes can also
contribute to dose-limiting toxicity of other agents, an unde-
sirable effect that can be relieved by inhibition of bacterial
β-glucuronidases (Wallace et al., 2010).

The gut microbiome can also affect host miRNA expres-
sion, which may modulate the levels of various ADME genes
and affect the ADME system. Comparison of the colon
miRNA profiles of germ-free and control mice identified
several dys-regulated miRNA species, including miR-128,
-200C*, -342-5p, -465c-5p, -466d-3p, -466d-5p, -665 and -683
(Dalmasso et al., 2011a). Using various experimental tools
including luciferase assays and immunoblotting, it has been
shown that the ABCC3, a cell surface transporter, is a direct
target of miR-665. Microbiome inoculation down-regulated
miR-665 level, which, in turn, increased the level of ABCC3
in enterocytes at both the mRNA and the protein levels
(Dalmasso et al., 2011a). Although the exact effects of the
changes of ABCC3 level are yet to be determined, the biliary
transport and excretion of organic anions are most likely to
be affected . This finding demonstrates the complex interac-
tions between gut microbiome and xenobiotic metabolism.
The interaction is not just directly at chemical levels but also
involves complex gene/protein networks through regulatory
factors such as miRNA and other epigenetic factors.

Conclusions and future prospects

Variation between individuals in response to therapeutic
agents is often attributed to the differences in host genetic
factors. However, our knowledge of other contributors
including epigenetic factors and microbiome dimensions is
rapidly increasing. miRNA plays an important role in various
physiopathological processes and substantial evidence is
accumulating for its involvement in ADME. However,
miRNA-mediated regulatory process is complex; although a

number of computational algorithms have been developed to
predict miRNA–mRNA interactions (Enright et al., 2003;
Lewis et al., 2005), the accuracy of these predicted interac-
tions is limited. In addition, most biological studies have
been performed in vitro with only limited in vivo complemen-
tation. The precise physiologically relevant effects of miRNAs
on ADME remains unclear and further study is required to
generate detailed, highly substantiated empirical interaction
networks to realize their diagnostic and therapeutic potential.

The recent realization of the complexity of the gut micro-
biome and its capacity to manipulate xenobiotics provides a
new front in the study of drug metabolism and its effects on
miRNA expression. Even though germ-free animal models
provide some important insights on the effect of gut micro-
biome on host gene and miRNA expression, the host–
microbiome interaction is complex and remains to be
deciphered. Systems biology seeks to integrate results from
different high-throughput profiling technologies to under-
stand the dynamic changes of a biological system and predict
its responses to various inputs. Using this approach to study
the effects of epigenetic factors and microbiome on drug
metabolism would provide a more comprehensive view on
how different parts of the system interact with each other. A
better understanding of factors affecting drug metabolism
will be integral to personalized medicine, as it would provide
guidance on drug development, increase the therapeutic effi-
cacy, tailor specific treatment strategies for individuals and
reduce adverse effects.
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