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Abstract: Although reduced working memory brain activation has been reported in several brain regions of co-
caine-dependent subjects compared with controls, very little is known about whether there is altered connectiv-
ity of working memory pathways in cocaine dependence. This study addresses this issue by using functional
magnetic resonance imaging-based stochastic dynamic causal modeling (DCM) analysis to study the effective
connectivity of 19 cocaine-dependent subjects and 14 healthy controls while performing a working memory
task. Stochastic DCM is an advanced method that has recently been implemented in SPM8 that can obtain
improved estimates, relative to deterministic DCM, of hidden neuronal causes before convolution with the he-
modynamic response. Thus, stochastic DCM may be less influenced by the confounding effects of variations in
blood oxygen level-dependent response caused by disease or drugs. Based on the significant regional activation
common to both groups and consistent with previous working memory activation studies, seven regions of in-
terest were chosen as nodes for DCM analyses. Bayesian family level inference, Bayesian model selection analy-
ses, and Bayesian model averaging (BMA) were conducted. BMA showed that the cocaine-dependent subjects
had large differences compared with the control subjects in the strengths of prefrontal-striatal modulatory (B
matrix) DCM parameters. These findings are consistent with altered cortical-striatal networks that may be
related to reduced dopamine function in cocaine dependence. As far as we are aware, this is the first between-
group DCM study using stochastic methodology. Hum Brain Mapp 35:760-778, 2014.  © 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Functional magnetic resonance imaging (fMRI) univari-
ate analysis of regional activation is valuable for under-
standing the regional neural substrates associated with
cognitive functions. However, this method has a potential
inherent disadvantage when it is used for studying dis-
ease, i.e., difficulty in interpreting the results because of
significant variations in blood oxygen level-dependent
(BOLD) response caused by the disease [Buxton, 2009].
Changes in the BOLD signal could be confounded by the
possible disruption by disease or drugs on neurovascular
coupling and/or hemodynamic response [lannetti and
Wise, 2007]. Correspondingly, a previous study [Choi
et al.,, 2006] has shown that the direct effects of dopamine
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on the vasculature need to be considered when measuring
the hemodynamic coupling associated with dopaminergic
drugs. This is especially relevant in cocaine dependence,
for which studies have suggested is a disorder associated
with reduced dopamine neurotransmission in the brain
[Volkow et al., 2007, 2009].

Interregional connectivity is generally quantified by
using functional connectivity or effective connectivity anal-
ysis techniques [Friston, 1995a]. Functional connectivity
refers to the correlations between spatially remote neuro-
physiological events [Friston, 1995a]. Unlike functional
connectivity, effective connectivity measures the causal
effect that one region’s activity has on that of another
region [Friston, 1995a]. Dynamic causal modeling [DCM;
Friston et al., 2003; Li et al., 2011a) can explicitly evaluate
the directional modulation effects of contextual experimen-
tal conditions on effective connectivity [Stephan et al.,
2007a]. Furthermore, effective connectivity in DCM is
modeled at the underlying neuronal level rather than the
observed hemodynamic level [Friston et al., 2003; Stephan
et al., 2007a]. In addition, DCM may reduce the potential
hemodynamic confounding effects on effective connectiv-
ity through jointly optimizing the underlying neuronal pa-
rameters of the effective connectivity and the regionally
specific hemodynamic response functions [Stephan et al.,
2007b]. DCM has been successfully used to study the effec-
tive connectivity of several diseases [see Seghier et al.,
2010 for review].

An advance in DCM technique that has recently been
implemented in SPMS, stochastic DCM [Daunizeau et al.,
2009; Li et al, 201la), is an extension of deterministic
DCM, which seeks to improve model estimation by model-
ing random fluctuations (or noise variance) and hidden
neuronal causes in the differential equations of the neuro-
nal states [Li et al.,, 2011a]. Stochastic DCM can obtain
improved estimates, relative to deterministic DCM, of hid-
den neuronal causes before convolution with the hemody-
namic response [Li et al., 2011a]. Therefore, the effective
connectivity estimated by stochastic DCM may be less
influenced by the confounding effects of significant varia-
tions in BOLD response caused by disease or drugs.

Cocaine dependence is associated with several cognitive
deficits, including working memory [Ardila et al., 1991;
Beveridge et al., 2008; George et al., 2008; Jovanovski et al.,
2005; Sofuoglu, 2010]. Current functional neuroimaging
research on cognitive deficits in substance dependence has
focused on identifying regional neural substrates media-
ting the impaired cognitive functions [see Aron and Pau-
lus, 2007; Lundqvist, 2010 for review). Several research
groups have used fMRI to study regional brain activation,
finding differences in BOLD activation between cocaine-
dependent subjects and controls while performing a work-
ing memory task. For example, using an n-back working
memory task, Tomasi et al. [2007] found lower working
memory load-dependent activation in the prefrontal and
parietal cortices in cocaine abusers compared with con-
trols. Another study using an n-back task reported that,

relative to controls, cocaine-dependent subjects showed
reduced activation in the right inferior parietal cortex [Bus-
tamante et al., 2011]. Using a working memory task with
variable load, Moeller et al. [2010] found that cocaine-de-
pendent subjects showed significantly lower working
memory load-dependent activation in several cortical and
subcortical regions compared with normal control subjects,
including caudate nucleus, middle, superior, and inferior
frontal gyri, and thalamus.

Accumulated findings from human and animal studies
have led to models for interpreting the neural basis of cog-
nitive functions as interactions between functionally
related brain regions [Collette and Van der Linden, 2002;
D’Esposito, 2007; Funahashi, 2006; Fuster, 2006; Vuilleum-
ier and Driver, 2007]. Recent studies have shown that
interregional connectivity methods are more sensitive to
the presence or severity of diseases and/or treatment
effects than the traditional univariate analysis of regional
activations [reviewed by Rowe, 2010].

Several studies [Camchong et al., 2011; Gu et al., 2010;
Hanlon et al., 2011; Kelly et al., 2011; Li et al., 2011b; Tom-
asi et al., 2010; Wilcox et al., 2011] have used functional
connectivity to study cocaine dependence. For example,
Tomasi et al. [2010] used a drug-word fMRI paradigm and
found that, relative to controls, cocaine abusers had lower
functional connectivity of midbrain with thalamus, cere-
bellum, and rostral cingulate. In addition, the lower func-
tional connectivity was associated with less activation in
thalamus and cerebellum and greater deactivation in ros-
tral cingulate [Tomasi et al., 2010]. These studies demon-
strated abnormal functional connectivity in cocaine users
during tasks [Hanlon et al., 2011; Li et al., 2011b; Tomasi
et al., 2010] or during resting state [Camchong et al., 2011;
Gu et al.,, 2010; Kelly et al.,, 2011; Li et al.,, 2011b; Wilcox
et al., 2011]. In addition, other studies using diffusion ten-
sor imaging found reduced white matter integrity in the
anterior and posterior corpus callosum in cocaine-depend-
ent subjects compared with controls [Ma et al., 2009; Moel-
ler et al, 2005 2007]. The findings of these studies
suggested that transcallosal connections, including those
that are important for working memory, may be compro-
mised in cocaine-dependent subjects.

Based on these findings in the context of interregional
connectivity models for working memory [e.g., Fuster,
2006, 2008, 2009; Ma et al., 2012], and the findings that co-
caine dependence is associated with reduced dopamine
neurotransmission in the brain [Volkow et al., 2007, 2009],
we hypothesized that the effective connectivity of brain
regions involved in working memory is altered in cocaine-
dependent subjects. To test this hypothesis, we used sto-
chastic DCM to measure the differences in fMRI-based
effective connectivity of the working memory system
between nineteen cocaine-dependent subjects and fourteen
normal control subjects while they performed a working
memory task with variable loads. As far as we are aware,
this is the first between-group DCM study using stochastic
methodology.
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MATERIALS AND METHODS
Subjects

This study was approved by the institutional review
board at the University of Texas Health Science Center at
Houston and was performed in accordance with the Code
of Ethics of the World Medical Association (Declaration of
Helsinki). Subjects with current cocaine dependence and
nondrug-using normal controls were recruited through
advertisements for research volunteers. Informed consent
was obtained from all subjects.

All subjects were screened for psychiatric disorders using
the Structured Clinical Interview for Diagnostic and Statisti-
cal Manual of Mental Disorders, Fourth Edition [DSM-IV;
First et al., 1996]. All subjects underwent physical examina-
tion, and their medical history was obtained. Subjects also
underwent the Addiction Severity Index [McLellan et al.,
1992] to document possible lifetime drug and alcohol use.
All female subjects underwent a urine pregnancy test imme-
diately before MRI scanning. Each subject’s urine was
screened for tetrahydrocannabinol, opiates, cocaine (ben-
zoylecgonine), amphetamines, and benzodiazepines using
an immunochromatographic assay (Syva Company, Dear-
field, IL), and each subject was screened for alcohol using
an Intoximeter Alcosensor III breathalyzer (Intoximeters, St.
Louis, MO) immediately before MRI scanning.

After meeting the inclusion and exclusion criteria, a total
of 19 cocaine-dependent subjects (cocaine group) and 14
control subjects (control group) were included in this study,
out of 71 subjects (28 controls and 43 cocaine subjects) who
were initially screened. Among the 33 subjects in this study,
eight cocaine subjects and six controls had been previously
studied in Moeller et al. [2010], which was purely an fMRI
activation study that did not perform any DCM or other
connectivity analysis. Among the 14 control subjects in this
study, 13 of them had been used in the DCM study by Ma
et al. [2012], which examined effective connectivity in nor-
mals only and did not involve any group comparisons.
None of the cocaine subjects in this study had ever been
studied previously using DCM or any other functional or
effective connectivity analysis. This study is the first time
that our group has compared fMRI-based connectivity in co-
caine users with normal controls. See Supporting Informa-
tion for the inclusion and exclusion criteria, and the details
regarding the subjects who were excluded.

IMT/DMT fMRI Protocol

The immediate memory task (IMT) and delayed mem-
ory task (DMT) working memory protocol has been
described in detail in Moeller et al. [2010] and the referen-
ces therein. In DMT, the target and probe stimuli are sepa-
rated by distracter stimuli, consisting of strings of zeros, and
the memory delay between the end of the target stimulus
and beginning of the probe stimulus is 3.5 s. In IMT, there
are no distracter stimuli, and thus the memory delay is 0.5 s.

The A’ score [Donaldson, 1992] is used as an accuracy mea-
sure. The IMT/DMT fMRI protocol is a block design, and the
duration of each block is 42.5 s. There are 12 blocks alternat-
ing between IMT and DMT within each run. Each stimulus
string can be three, five, or seven digits in length, which is
held constant within a block. In detail, the blocks during each
run were: three-digit-IMT, three-digit-DMT, five-digit-IMT,
five-digit-DMT, seven-digit-IMT, and seven-digit-DMT;
which were then repeated during the same run, in which the
order of the three, five, and seven digits was counterbalanced
across runs and subjects. In addition there was a 20-s rest pe-
riod at the beginning of the run, and a 10-s rest period
between each of the above blocks.

Data Acquisition

MRI data, including three-dimensional spoiled gradient
recalled echo (3D-SPGR), fMRI, and fluid-attenuated inver-
sion recovery sequences were acquired on a Philips 3.0 T
Intera system with an eight-channel receive head coil (Phi-
lips Medical Systems, Best, Netherlands). Single shot spin-
echo echo planar imaging (EPI) was used for acquiring the
fMRI data. The spin echo EPI sequence eliminates signal
losses caused by through-slice dephasing in medial orbito-
frontal cortex [Kruger et al., 2001; Norris et al., 2002; Wang
et al., 2004]. The fMRI acquisition parameters were: SENSE
factor = 2.0, repetition time = 2212 ms, echo time = 75 ms,
flip angle = 90°, number of axial slices = 22, field-of-view =
240 mm x 240 mm, in-plane resolution 3.75 mm x 3.75 mm,
slice thickness = 3.75 mm, gap = 1.25 mm, repetitions = 294
after 10 dummy acquisitions, and total scan duration = 10
min 47 s. Each subject had two runs of fMRI scans.

Stimulus presentation and recording of behavioral IMT/
DMT performance data during fMRI scanning were man-
aged through the Integrated Functional Imaging System-
Stand Alone (IFIS-SA, Invivo Corporation, Orlando, FL)
fMRI system or the Eloquence (an update of IFIS-SA) fMRI
System (Invivo Corporation, Orlando, FL). The software
controlling the task was exactly the same in both systems.
Using the two systems, we ascertained that each subject
could see the visual stimuli adequately on the screen
before the start of the fMRI scan. Fourteen IFIS subjects
and 19 Eloquence subjects were included for final analysis.

fMRI Preprocessing

Preprocessing of the fMRI data was performed using
AFNI software [Cox, 1996] (http://afninimh.nih.gov/
afni/) and Statistical Parametric Mapping 8 (SPMS8) soft-
ware (http://www filion.ucl.ac.uk/spm/) from the Well-
come Department of Cognitive Neurology, London, UK,
implemented in MATLAB 7.1 (MathWorks, Sherborn,
MA). Preprocessing consisted of examination for artifacts
using AFNI, and slice-timing correction, realignment, core-
gistration, normalization, and smoothing using standard
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SPM8 modules. See Supporting Information for details of
the fMRI preprocessing.

Univariate fMRI Statistical Parametric
Mapping Analysis

First-level univariate statistical analysis of the fMRI data
was conducted using SPM8. The IMT and DMT blocks for
each digit condition were modeled by boxcar functions
convolved with the SPMS8 canonical hemodynamic
response function. The parameters for each condition were
estimated using the General Linear Model [Friston, 1995b]
at each voxel without global normalization. The fMRI time
series was high-pass filtered with an optimized cut-off pe-
riod of 330 s determined by the Fourier transformation of
each condition’s time model. Activation for each digit con-
dition was defined as the contrast of DMT minus IMT pa-
rameter estimates (“DI”) for that digit condition (i.e., DI3,
DI5, and DI7 for three digits, five digits, and seven digit
conditions, respectively). In addition, the following con-
trast images were defined to determine the interaction
effects between the memory delay (IMT and DMT) and
the digit load (three digits, five digits, and seven digits):
DI5 minus DI3, DI3 minus DI5, DI7 minus DI3, DI3 minus
DI7, DI7 minus DI5, and DI5 minus DI7. The following
contrast image was defined to determine the main effects
of memory delay (pooled across three digits, five digits,
and seven digits): combined DI3, DI5, and DI7. The sum-
mary contrast images were output for each subject for
entry into the second-level analysis.

Because DCM in patients focuses on the characterization
of abnormal connectivity in a common network of regions
in which the models must have identical nodes, Seghier
et al. [2010] recommended that only commonly activated
regions in patients and controls should be included as
nodes in DCM [Seghier et al., 2010]. According to the prac-
tical steps in a typical DCM analysis suggested by Seghier
et al. [2010; Fig. 1], random effects group analysis can be
used to determine the DCM nodes. Consistent with Segh-
ier et al’s recommendation and previous DCM studies
[e.g., Bitan et al., 2005; Deserno et al., 2012; Dima et al.,
2009; DiQuattro and Geng, 2011; Wang et al., 2011], we
used random effects [Holmes and Friston, 1998] group
analysis to determine the regions that significantly acti-
vated across both groups in this study, along with con-
servative correction for multiple voxelwise comparisons, to
provide a valid generalization of the results to the popula-
tions from which the subjects were sampled. In a relatively
large cognitive fMRI-based DCM study such as this (14
controls and 19 patients), there is no guarantee that each
individual subject activates exactly the same region in
common with all the other subjects, unless extremely low
thresholds are used ad hoc in some subjects without
adequate protection against Type I statistical error due to
multiple voxelwise comparisons. In our preliminary analy-
sis we found this to be the case even when using SPM8

Small Volume Correction (data available on request). In
addition (see Stochastic DCM section), the principal eigen-
variate was extracted from the volume of interest and
used as a summary of the time series. This procedure does
not assume homogenous responses within the volume of
interest, and uses the temporal covariance of voxels in the
volume of interest to find coherent spatial modes of activa-
tion [Friston et al., 2006]. Furthermore (see Stochastic DCM
section), individual differences between subjects in DCM pa-
rameters can be captured by the Bayesian model averaging
(BMA) procedure which was conducted in this study. For
each type of summary contrast image, the group difference
and the main effects across the means for both groups were
determined with the default nonsphericity correction for
unequal variance between groups.

Statistical significance of the univariate fMRI analysis was
defined to be false discovery rate (FDR) corrected cluster P
less than 0.05. The cluster-defining threshold was voxel t =
2.4. Approximate anatomical labels for regions of activation
were determined using the Anatomical Automatic Labeling
[Tzourio-Mazoyer et al., 2002] toolbox for SPM.

Stochastic DCM

Stochastic DCM [Daunizeau et al., 2009; Li et al., 2011a],
as implemented in DCM10 (SPM8 revision 4010), was
used for effective connectivity analysis. Stochastic DCM is
an extension of deterministic DCM, which seeks to
improve model estimation by modeling random fluctua-
tions (or noise variance) and hidden neuronal causes in
the differential equations of the neuronal states [Li et al.,
2011a]. In stochastic DCM for fMRI, the dynamics of the
neural states underlying the BOLD response are modeled
by a differential state equation that describes how the neu-
ral states change based on the current neural states and
the exogenous inputs [Friston et al, 2003]. In addition,
random fluctuations [Li et al., 2011a] are modeled in sto-
chastic DCM, which are not modeled in deterministic
DCM. In this differential equation, the interactions
between the neural states are termed as endogenous con-
nections and quantified by A matrix parameters. The con-
textual experimental conditions can bilinearly modulate
the connections as quantified by B matrix parameters, or
affect the nodes of DCM as driving inputs as quantified
by C matrix parameters [Friston et al., 2003; Stephan et al.,
2007a]. If there are connections that are gated by some
regions in the system, the gating effects (nonlinear) can be
modeled by D matrix parameters [Stephan et al., 2008].
The random differential equation treats the driving inputs
as priors on the hidden neuronal causes because the fluc-
tuations induce uncertainty about the way that the driving
inputs affect neuronal activity [Li et al., 2011a]. Li et al.
[2011a] have demonstrated that stochastic DCM can show
improvement in parameter estimation over deterministic
DCM. More recently, Daunizeau et al. [2012] have vali-
dated stochastic DCM and shown that stochastic DCM is
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superior over deterministic DCM in both model structure
inference and model parameter inference. We used bilin-
ear stochastic DCM in this study (the nonlinear D-matrix
option was not applied).

Regions of interest

The regions of interest (ROIs) were chosen based on the
following criteria: (1) these regions showed significant acti-
vation in the univariate SPM second-level analysis of the
main effect of memory delay for the combined groups (see
Results section); (2) previous meta-analyses of neuroimag-
ing studies have shown that these regions activate consis-
tently during verbal working memory tasks [Owen et al.,
2005; Wager and Smith, 2003]; (3) these regions have been
implicated in working memory processes, e.g., encoding
[Woodward et al., 2006], storage [Hartley and Speer, 2000],
maintenance [Hartley and Speer, 2000; Wager and Smith,
2003; Woodward et al., 2006], and executive control [Hart-
ley and Speer, 2000]. Based on these criteria, the ROIs for
the DCM analyses in this study were: (1) left (L) inferior
frontal cortex (IFC), (2) L middle frontal gyrus (MFG) (i.e.,
representing left dorsolateral prefrontal cortex), (3) L pos-
terior parietal cortex (PPC), (4) right (R) PPC, (5) combined
left and right (LR) supplementary motor area (SMA), (6) L
striatum (STR), and (7) R STR. The LR SMA was treated
as a single ROI because the detected activation in SMA
contiguously spanned both L and R sides combined.

Volumes of interest and time series extraction

We followed the method of constructing the volumes of
interest that was described in Ma et al. [2012]. The signifi-
cant group level activation clusters formed the volumes of
interest, which were further constrained [Stephan and Fris-
ton, 2010] to be within the boundaries of the aforemen-
tioned seven ROIs, as defined by anatomical atlases. The
atlas-derived binary masks of the regions were obtained
from the Anatomical Automatic Labeling atlas [Tzourio-
Mazoyer et al., 2002] as implemented in the WFU (Wake
Forest University) PickAtlas SPM toolbox [Maldjian et al.,
2003, 2004]. The binary mask of IFC was the set-theoretic
union of the atlas-based binary masks of inferior frontal
gyrus pars opercularis and inferior frontal gyrus pars tri-
angularis. The binary mask of PPC was the union of the
atlas-based binary masks of superior parietal lobule and
inferior parietal lobule. The binary mask of STR was the
union of the atlas-based binary masks of caudate, puta-
men, and nucleus accumbens. The atlas-derived binary
mask of the nucleus accumbens was obtained from the
Harvard-Oxford Subcortical ~Structural atlas (http://
www.cma.mgh.harvard.edu/) as provided in the FSL soft-
ware [Smith et al., 2004; Woolrich et al., 2009]. Each vol-
ume of interest was obtained by the intersection of the
atlas-based binary masks with the significant activation
clusters in common for both groups, as determined by the
SPM second-level random effects univariate analysis. After

the volumes of interest have been determined, it is neces-
sary to obtain a summary of their activity. The principal
eigenvariate of the volume of interest (the first principal
component of the local multivariate time series over all
voxels in the volume of interest) is usually used as such a
summary for fMRI-based DCM analysis [Stephan and Fris-
ton, 2010]. Different from the mean, the principal eigen-
variate does not assume homogenous responses within the
volume of interest and uses the temporal covariance of
voxels in the volume of interest to find coherent spatial
modes of activation [Friston et al., 2006]. Thus the princi-
pal eigenvariate avoids the cancellation of positive and neg-
ative responses in extracting a summary time series across
voxels [Friston et al., 2006, Stephan and Friston, 2010]. For
each subject, the principal eigenvariates were obtained from
all volumes of interest. Each principal eigenvariate was
adjusted for the F-contrast of effects of interest before it was
input into DCM for model estimation [Stephan and Friston,
2010]. In SPM, the F-contrast of effects of interest includes
each parameter corresponding to each condition (except for
the constant representing the mean). The same volumes of
interest were used for all subjects.

Endogenous connections

Full endogenous connections (the DCM “A” matrix)
were specified between all the ROIs (Supporting Informa-
tion Fig. 1). In other words, each ROI connected all other
ROIs. Thus, there were 42 endogenous connections, and
they were used in all subsequent DCM analyses.

DCM structure inference at group level

In the studies comparing DCMs between groups that
were reviewed by Seghier et al. [2010], one study [Rocca
et al., 2009] located the optimal DCM in controls and used
this DCM in comparison to patients. The majority of stud-
ies in that review conducted model inference independ-
ently in patients and controls, based on the same set of
alternative models [e.g., Allen et al., 2010; Almeida et al.,
2009; Rowe et al., 2010; Schlosser et al., 2008, 2010; Sonty
et al., 2007]. In addition, Seghier et al. [2010] suggested
that Bayesian model comparison can be conducted sepa-
rately on patients and controls to identify the best family
of models in patients and controls. In this study, consistent
with Seghier et al.’s recommendation, inference on DCM
structure was conducted separately in both controls and
cocaine subjects. If group differences in DCM structure
were not found, group differences were then inferred at
the DCM parameter level.

We used a heuristic strategy for finding the group-level
optimal DCMs (or DCM families), which has been
described in Ma et al. [2012]. In brief, we used random
effects Bayesian family level inference [Penny et al., 2010]
and Bayesian model selection [BMS; Stephan et al., 2009]
to consider increasingly complex models, based on the
model with the highest evidence at each level of
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complexity as reflected by the Bayesian exceedance proba-
bility [Stephan et al., 2009]. The exceedance probability (®)
for a given model denotes the probability that this model
was more likely to have generated the observed data than
any other model considered [Stephan et al., 2009]. Accord-
ing to Stephan et al. [2009], random effects BMS derives
the so-called “exceedance probability”, which is the proba-
bility that a particular model is more frequent than any
other model tested, given the group data. Note that the
exceedance probability of a model differs in a subtle but
important way from the conventional posterior probability
of a model in Bayesian model comparison at the subject
level. This is because when considering a group of sub-
jects, the frequency of models in the population is itself
treated as a random (unknown) variable. In this context,
the exceedance probability is a statement of belief about
the frequency of models within the population. So, for
example, when we say that the exceedance probability is
98%, we mean that we can be 98% confident that the
favored model is more frequent than any other model
tested. In addition to BMS, exceedance probabilities are
useful in reporting the results of Bayesian family level in-
ference [Penny et al., 2010]. For the Bayesian family level
inference and BMS procedures in this article, we used the
criterion that exceedance probability ® = 095, as the
threshold to determine an optimal DCM (or family), to
reduce model selection risk (i.e. the probability of picking
a wrong model).

Based on our design, we tested three putative modula-
tion types (B-matrix) based on the three available types of
contextual experimental conditions. Modulation Type 1: a
putative all-visual-stimulus modulation includes all 12 ex-
perimental blocks (but not the rest periods). Modulation
Type 2: the putative memory-delay modulations consist,
respectively, of the IMT blocks that represent the relatively
shorter memory delay period of 0.5 s (two blocks of three-
digit-IMT, two blocks of five-digit-IMT, and two blocks of
seven-digit-IMT), but not including the rest periods; and
the DMT blocks that represent the relatively longer mem-
ory delay period of 3.5 s (two blocks of three-digit-DMT,
two blocks of five-digit-DMT, and two blocks of seven-
digit-DMT), but not including the rest periods. In the
DCM analysis of B matrix modulations, a parameter is
estimated for the IMT condition and a parameter is esti-
mated for the DMT condition. The IMT and DMT parame-
ters can vary independently from each other with respect
to the mean because the mean also takes into account the
rest periods. Modulation Type 3: the putative digit-length
modulations consist, respectively, of the three-digit blocks
(two blocks of three-digit-IMT, and two blocks of three-
digit-DMT); the five-digit blocks (two blocks of five-digit-
IMT, and two blocks of five-digit-DMT); and the seven-
digit blocks (two blocks of seven-digit-IMT, and two
blocks of seven-digit-DMT), but not including the rest
periods. In the DCM analysis of B matrix modulations, a
parameter is estimated for each putative digit-length con-
dition. The digit-length parameters can vary independ-

ently from each other with respect to the mean because
the mean also takes into account the rest periods. We used
Bayesian family level inference and BMS to determine
which of these three modulation types is the optimal mod-
ulation type, and also used Bayesian family level inference
and BMS to determine which connection(s) is (are) the
optimal location(s) for the modulation.

Similarly, we tested three putative driving input types
(C-matrix ) based the three types of contextual experimen-
tal conditions. Driving Input Type 1 consists of the same ex-
perimental conditions as Modulation Type 1 above, Driving
Input Type 2 consists of the same experimental conditions
as Modulation Type 2 above, and Driving Input Type 3 con-
sists of the same experimental conditions as Modulation
Type 3 above. We use Bayesian family level inference and
BMS to determine which of these three driving input types
is the optimal driving input (C-matrix), and also used
Bayesian family level inference and BMS to determine
which ROI(s) is (are) the optimal driving input location(s).

Group differences in DCM parameters

To conduct inference on DCM parameters [Stephan and
Friston, 2010], we used BMA [Penny et al., 2010; Stephan
and Friston, 2010]. BMA is a Bayesian approach that aver-
ages each parameter across subjects and across models
such that the contribution of each model (of each subject)
for that parameter is weighted by each model’s posterior
probability for that subject. When multiple competing
DCMs are averaged for each group, BMA avoids the rigid
assumption of an identical single DCM for all subjects in
both groups that is required in classical “Frequentist” anal-
ysis of model parameters. In this study, the parameter
strengths for each group were determined by conducting a
separate BMA analysis within each group.

During the BMA analysis, a software bug was found
that some values exceeded the machine limits resulting in
MATLAB infinity or divide by zero errors. All BMA
results in this article were determined after the bug was
fixed by regularizing extreme values to be within the
MATLAB range for finite numbers.

Statistical Analyses

Student’s t-test and Fisher’s exact test were used to eval-
uate group differences on continuous and categorical de-
mographic variables, respectively. Linear mixed models
analysis, as implemented in SPSS Version 19 (SPSS, Chi-
cago, IL) for Windows (Microsoft Corp., Redmond, WA),
was used to analyze the main effects of the three factors
and their interaction effects on the behavioral accuracy
scores (A’). The between-subjects factor in this analysis was
group (cocaine and control groups), a within-subjects factor
was memory delay (IMT and DMT), and another within-
subject factor was digit load (three digits, five digits, and
seven digits). If main effects or interactions were statistically
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significant, then post hoc analyses were conducted with the
Bonferroni correction for multiple comparisons.

RESULTS
Demographics

There were 6 females and 13 males in the cocaine group,
and five females and nine males in the control group. The
ages were: cocaine group 372 *+ 6.0 (mean =+ standard
deviation) years (range 23.1 — 47.7); and control group 37.2
+ 8.2 years (range 19.7 — 48.8). The education durations
were 13.0 £+ 1.6 years (range 10.0 — 16.0) for the cocaine
group; and 13.6 £ 2.5 years (range 11.0 — 19.0) for the con-
trol group.

Student t-tests showed that there were no significant dif-
ferences in age (t = 0.010, P = 0.992, degrees of freedom
[df] = 31) and education duration (t = 0.871, P = 0.391,
and df = 31) between groups. Fisher’s exact tests revealed
that there were no significant differences in proportion of
female and male subjects (P > 0.999, two tails) and pro-
portion of IFIS and Eloquence subjects (P > 0.999, two
tails) between groups.

DSM-1V Diagnosis

None of the control subjects had a DSM-IV diagnosis of
any drug abuse or dependence. All the cocaine subjects had
a DSM-1V diagnosis of current cocaine dependence. Among
the 19 cocaine-dependent subjects, 11 of them were treat-
ment-seeking subjects, and eight of them were nontreat-
ment-seeking subjects; 10 of them had cannabis abuse and/
or cannabis dependence diagnoses, and nine of them did
not have any of these cannabis diagnoses; and eight of
them had alcohol abuse and/or past alcohol dependence,
and 10 of them did not have any of these alcohol diagnoses.
See Supporting Information for any additional DSM-IV
diagnoses for the cocaine-dependent subjects.

Behavior During fMRI Scanning

The mean and standard deviation of the subjects’ per-
formance accuracy (A’) in each group during memory
delays and different digit loads are shown in Table I. The
SPSS linear mixed model analysis revealed statistically sig-
nificant main effects of digit load (F = 43.08; df = 2, 93.17;
P < 0.001). The main effects of subject group (F = 0.035; df
=1, 129.621; P = 0.853) and memory delay (F = 2.010; df
=1, 129.621; P = 0.159) were not statistically significant.
The interactions of subject group x memory delay (F =
0.360; df = 1, 129.621; P = 0.550), subject group x digit
load (F = 1.790; df = 2, 93.173; P = 0.173), and memory
delay x digit load (F = 0.149; df = 2, 93.173; P = 0.861)
were not statistically significant. The three-way interaction of
subject group x memory delay x digit load also was not sig-
nificant (F = 1.096; df = 2, 93.173; P = 0.338). Post hoc compar-

isons showed that A" during seven digits was significantly
lower than A’ during five digits (P < 0.001, corrected) and
significantly lower than A’ during three digits (P < 0.001, cor-
rected). In addition, A’ during five digits was significantly
lower than A’ during three digits (P < 0.001, corrected).

To test whether there were group differences in behav-
ior that could have been obscured because of the heteroge-
neous treatment and diversity of substance abuse, we
partitioned the cocaine-dependent subjects into the follow-
ing subgroups: (1) treatment-seeking (11 subjects) and non-
treatment-seeking (eight subjects) cocaine groups, (2)
cannabis (with cannabis abuse and/or cannabis depend-
ence, 10 subjects) and noncannabis (without cannabis
abuse and without cannabis dependence, nine subjects) co-
caine groups, and (3) alcohol (with alcohol abuse and/or
past alcohol dependence,’ eight subjects) and nonalcohol
(without alcohol abuse and without alcohol dependence, 11
subjects) cocaine groups. We did not conduct other sub-
group partitions because there were only sporadically other
DMS-1V diagnoses. Three separate SPSS linear mixed mod-
els analyses were conducted to test whether there were
group differences in behavior between any of the cocaine
groups and control group or between the cocaine groups.

Treatment-seeking cocaine group, and nontreatment-seeking
cocaine group, versus control group: The SPSS linear mixed
model analysis revealed statistically significant main
effects of digit load across all groups (F = 36.971; df = 2,
92.649; P < 0.001). The main effects of subject group (F =
0.401; df = 2, 130.652; P = 0.670) and memory delay (F =
2.283; df = 1, 130.652; P = 0.133) were not statistically sig-
nificant. The interactions of subject group x memory delay
(F = 0.278; df = 2, 130.652; P = 0.758), subject group x
digit load (F = 1.533; df = 4, 92.649; P = 0.199), and mem-
ory delay x digit load (F = 1.023; df = 2, 92.649; P = 0.364)
were not statistically significant. The three-way interaction
of subject group x memory delay x digit load also was not
significant (F = 0.802; df = 4, 92.649; P = 0.527). Post hoc
comparisons showed that A’ during seven digits was signifi-
cantly lower than A’ during five digits (P < 0.001, corrected)
and significantly lower than A’ during three digits (P <
0.001, corrected) across all groups. In addition, A’ during
five digits was significantly lower than A’ during three dig-
its (P < 0.001, corrected) across all groups.

Cannabis cocaine group, and noncannabis cocaine group, ver-
sus control group: The SPSS linear mixed model analysis
revealed statistically significant main effects of digit load
(F = 38.856; df = 2, 93.419; P < 0.001) across all groups.
The main effects of subject group (F = 1.508; df = 2,
131.944; P = 0.225) and memory delay (F = 2.523; df =1,
131.944; P = 0.115) were not statistically significant. The
interactions of subject group x memory delay (F = 0.196;
df = 2, 131.944; P = 0.822), subject group x digit load (F =
1.069; df = 4, 93.419; P = 0.376), and memory delay x digit
load (F = 1.176; df = 2, 93.419; P = 0.313) were not statisti-
cally significant. The three-way interaction of subject
The subjects who had a DSM-IV diagnosis of current alcohol de-
pendence were excluded from the study
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TABLE I. Mean and standard deviation of the performance accuracy (A’) in each subject group during different digit
loads and memory delays

IMT

DMT

Three digits Five digits

Seven digits

Three digits Five digits Seven digits

0.941 £ 0.088
0.967 £ 0.047

0.883 £ 0.092
0.904 £ 0.078

Cocaine
Control

0.843 £ 0.114
0.762 £ 0.121

0.945 + 0.056
0.941 £ 0.051

0.853 + 0.143
0.887 £ 0.059

0.782 £ 0.137
0.771 £ 0.169

group x memory delay x digit load also was not signifi-
cant (F = 0.802; df = 4, 93.419; P = 0.527). Post hoc compar-
isons showed that A’ during seven digits was significantly
lower than A’ during five digits (P = 0.001, corrected) and
significantly lower than A’ during three digits (P < 0.001,
corrected) across all groups. In addition, A’ during five
digits was significantly lower than A’ during three digits
(P < 0.001, corrected) across all groups.

Alcohol cocaine group, and nonalcohol cocaine group, versus
control group: The SPSS linear mixed model analysis
revealed statistically significant main effects of digit load
(F = 37.005; df = 2, 93.631; P < 0.001) across all groups.
The main effects of subject group (F = 0.067; df = 2,
132.227; P = 0.935) and memory delay (F = 2.373; df = 1,
132.227; P = 0.126) were not statistically significant. The
interactions of subject group x memory delay (F = 0.204;
df = 2, 132.227; P = 0.815), subject group x digit load (F =
0.857; df = 4, 93.631; P = 0.493), and memory delay x digit
load (F = 1.360; df = 2, 93.631; P = 0.262) were not statisti-
cally significant. The three-way interaction of subject
group x memory delay x digit load also was not signifi-
cant (F = 1.286; df = 4, 93.631; P = 0.281). Post hoc compar-
isons showed that A" during seven digits was significantly
lower than A’ during five digits (P = 0.001, corrected) and
significantly lower than A’ during three digits (P < 0.001,
corrected) across all groups. In addition, A’ during five
digits was significantly lower than A’ during three digits
(P < 0.001, corrected) across all groups.

Cocaine groups partitioned based on individual DCM results
versus control group: To test whether there were group dif-
ferences in behavior that could have been obscured
because of the heterogeneity in individual optimal DCMs
among the cocaine-dependent subjects (see DCM analysis
section and Supporting Information), we partitioned the
cocaine group into: Cocaine Group I (seven subjects), in
which the subjects had an optimal DCM that was the
same as the optimal DCM of the control group (the mem-
ory delay modulated the connection from L MFG to L
IFC), and Cocaine Group II (12 subjects), in which the sub-
jects had optimal DCMs that were different from the opti-
mal DCM of the control group. Within Cocaine Group II,
four subjects (Cocaine subgroup II.1) had optimal DCM in
which the memory delay modulated the connection from
L IFC to L MFG; three subjects (Cocaine subgroup I1.2)
had optimal DCM in which the memory delay modulated
the connection from L IFC to L PPC; two subjects (Cocaine

subgroup II.3) had optimal DCM in which the memory
delay modulated the connection from L PPC to L IFC; one
subject (Cocaine subgroup I1.4) had optimal DCM in
which the memory delay modulated the connection from
R PPC to L IFC; one subject (Cocaine subgroup I1.5) had
optimal DCM in which the memory delay modulated the
connection from L IFC to LR SMA; and 1 subject (Cocaine
subgroup I1.6) had optimal DCM in which the memory
delay modulated the connection from LR SMA to L IFC.

An SPSS linear mixed models analysis was conducted to
test whether there were statistically significant group dif-
ferences in A’ accuracy score between the control group
and Cocaine Groups I and II. Because of the small number
of subjects within each of the Cocaine II subgroups, the
Cocaine II subgroups were not statistically analyzed indi-
vidually. This SPSS linear mixed model analysis revealed
statistically significant main effects of digit load (F =
38.146; df = 2, 93.500; P < 0.001) across all groups. The main
effects of subject group (F = 1.340; df = 2, 132.008; P = 0.265)
and memory delay (F = 2.586; df = 1, 132.008; P = 0.110)
were not statistically significant. The interactions of subject
group x memory delay (F = 0.232; df = 2, 132.008; P = 0.793),
subject group x digit load (F = 0.976; df = 4, 93.500; P =
0.424), and memory delay x digit load (F = 1.280; df = 2,
93.500; P = 0.283) were not statistically significant. The three-
way interaction of subject group x memory delay x digit
load also was not significant (F = 0.829; df = 4, 93.500; P =
0.510). Post hoc comparisons showed that A’ during seven
digits was significantly lower than A’ during five digits (P =
0.001, corrected) and significantly lower than A’ during three
digits (P < 0.001, corrected) across all groups. In addition, A’
during five digits was significantly lower than A’ during
three digits (P < 0.001, corrected) across all groups.

A separate SPSS linear mixed models analysis was con-
ducted to test whether there were group differences in A’
accuracy score between the control group and Cocaine
Group II, in which the cocaine subjects had optimal DCMs
that were different from the optimal DCM of the control
group. This SPSS linear mixed model analysis revealed stat-
istically significant main effects of digit load (F = 34.186; df
=2, 69.850; P < 0.001) across both groups. The main effects
of subject group (F = 0.211; df = 1, 94.478; P = 0.647) and
memory delay (F = 1.465; df = 1, 94.478; P = 0.229) were not
statistically significant. The interactions of subject group x
memory delay (F = 0.212; df = 1, 94.478; P = 0.646), subject
group x digit load (F = 2.120; df = 2, 69.850; P = 0.128), and
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Figure I.
Plots showing the values of the mean (bar) and standard deviation (error bar) of the A’ accuracy
scores for the control group, Cocaine Groups | and Il and each of the subgroups within Cocaine
Group Il. Error bars are not shown for Cocaine subgroups 1.4, 1.5, and 1.6 because there was
only one subject in each of those subgroups. The top panel is for the IMT (shorter memory
delay) condition, and the bottom panel is for the DMT (longer memory delay) condition. CTL =

control and COC = cocaine.

memory delay x digit load (F = 0.285; df = 2, 69.850; P =
0.753) were not statistically significant. The three-way inter-
action of subject group x memory delay x digit load also
was not significant (F = 1.106; df = 2, 69.850; P = 0.337). Post
hoc comparisons showed that A’ during seven digits was
significantly lower than A’ during five digits (P = 0.001, cor-
rected) and significantly lower than A’ during three digits
(P < 0.001, corrected) across both groups. In addition, A’
during five digits was significantly lower than A’ during
three digits (P < 0.001, corrected) across both groups.

The values of the A’ accuracy scores (mean and standard
deviation) for the control group, Cocaine Groups I and II, and
each of the subgroups within Cocaine Group II are displayed
graphically in Fig. 1, which shows that there are no marked
differences in A" among any of the groups or subgroups.

SPM Univariate Analysis of fMRI

The SPM univariate second-level GLM analysis of the
fMRI data revealed four FDR corrected significant clusters
for the main effects of the delayed minus immediate mem-
ory conditions pooled across three digits, five digits, and
seven digits per stimulus and across both groups com-

bined (Fig. 2 and Table II). In addition, the univariate SPM
second-level analysis found a cluster with trend of signifi-
cance (P = 0.095, FDR-corrected) showing a group differ-
ence in activation (control greater than cocaine) at the
seven-digit condition (DI7). No significant clusters were
found for the other SPM second-level analyses. For each of
the clusters (Clusters 1-4), the cluster-level FDR corrected
P value, number of voxels, mean difference in activation
across all voxels in cluster, and the Montreal Neurological
Institute (MNI) coordinates of the voxel with relative max-
imal t value are listed in Table II.

For the main effects of memory delay, Cluster 1 was
found in portions of L inferior parietal lobule, L superior
parietal lobule, and other posterior regions (see Supporting
Information for details). Cluster 2 was found in portions
of R inferior parietal lobule, R superior parietal lobule,
and other posterior regions (see Supporting Information
for details). Cluster 3 was found in portions of L SMA, R
SMA, L MFG, and other frontal regions (see Supporting
Information for details). Cluster 4 was found in portions
of L MFG, L inferior frontal gyrus pars triangularis, L infe-
rior frontal gyrus pars opercularis, L caudate, R caudate, L
putamen, and other frontal and subcortical regions (see
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Figure 2.

False discovery rate corrected significant clusters for the main
effect of the delayed minus immediate memory conditions
pooled across three digits, five digits, and seven digits per stimu-
lus and across both groups combined, detected by the univariate
SPM8 second-level GLM analysis. Brain activations are overlaid

Supporting Information for details). Another cluster which
had trend of significance (FDR corrected cluster P = 0.095,
number of voxels = 650) for the group difference (control
greater than cocaine) at the seven-digit condition, was
found in portions of R superior frontal gyrus, R MFG, R
anterior cingulate cortex, R superior medial frontal gyrus,
and R middle cingulate cortex.

DCM Analysis

The number of voxels, volume, and center of mass of
the seven volumes of interest are listed in Supporting In-
formation Table 1.

in color on axial slices of the MNI template brain. The number
above each slice indicates slice location (mm) of the MNI z
coordinate. Scale on color bar represents voxel t values. The
viewer’s left (L) side of each slice is left hemisphere of the brain,
and right (R) side of each slice is right hemisphere of brain.

Inference on DCM structure

Optimal driving input type (C matrix) established at fam-
ily level. A random effects Bayesian family level inference
analysis in the control group established that Driving
Input Type 1 (all-visual-stimulus) was the optimal driving
input (C matrix) type (@ = 0.984, relative to the other five
model families), and this Bayesian family level inference
analysis also established that the optimal number of
regions receiving the driving input was one region (L IFC)
for the control group.

A separate Bayesian family level inference analysis con-
ducted independently in the cocaine group established
that, same as the control group, Driving Input Type 1 (all-
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TABLE Il. Univariate SPM second-level general linear model analysis (random effects) of regional activation for the
main effect of the delayed minus immediate memory conditions pooled across three digits, five digits, and seven
digits per stimulus and across both groups combined

Mean
activation across

all voxels in cluster Maximal
Cluster [percent of whole Maximal voxel t MNI Maximal
Cluster P [FDR-  Number of brain activation] voxel coordinates voxel t
Contrast label corrected] voxels (+CI) t value (31 df) [x, v, z] location
Main effects of memory 1 <0.001 2396 1.04 (0.21) 7.61 —28, =56, 40 L inferior parietal
delay (pooled across lobule
three digits, five digits,
and seven digits, and
across both groups
combined)
2 <0.001 2104 0.79 (0.19) 6.73 28, —64, 34 L parietal lobe
white matter
3 0.006 979 0.94 (0.23) 6.60 —6, 4, 54 L supplementary
motor area
4 <0.001 4265 0.81 (0.34) 6.18 —42, 10, 24 L precentral g

Within each significant cluster, the voxel with relative maximal t value and its approximate anatomical location are listed. CI = 90%
confidence interval. x, y, and z = MNI standard space coordinates (mm). Negative x = left hemisphere. Smoothness of residual field
(FWHM) = [13.2 12.8 11.1] mm. Search volume = 125,395 voxels = 495.0 resolution elements (resels). FDR, false discovery rate corrected

probability; L, left; R, right; g, gyrus; df, degrees of freedom.

visual-stimulus) was the optimal driving input (C matrix)
type (® = 0. 999, relative to the other five model families),
and this Bayesian family level inference analysis also
established that, same as the control group, the optimal
number of regions receiving the driving input was one
region (L IFC) for the cocaine group.

See Supporting Information for detailed description of
above Bayesian family level inference analyses.

Optimal modulation type (B matrix) established at family
level. Based on the above findings, a third random effects
Bayesian family level inference conducted independently
within the control group showed that Modulation Type 2
(memory delay) was the optimal bilinear modulation type
(B matrix) for the control group (® = 0.991, relative to the
other five modulation families). This optimal DCM family
for the control group consisted of 42 DCMs, and the only
difference among these DCMs was which connection was
modulated by the memory delay. In each of these 42
DCMs, the optimum driving input (C-matrix) entered the
model through L IFC, as established in the previous step
for the control group.

Similarly, Bayesian family level inference conducted in-
dependently within the cocaine group showed that Modu-
lation Type 2 (memory delay) was also the optimal bilinear
modulation type (B matrix) for the cocaine group (® =
0.989, relative to the other five model families). This opti-
mal DCM family for the cocaine group consisted of 42
DCMs, and the only difference among these DCMs was
which connection was modulated by the memory delay. In
each of these 42 DCMs, the optimum driving input (C-ma-

trix) entered the model through L IFC, as established in
the previous step for the cocaine group.

See Supporting Information for detailed description of
above Bayesian family level inference analyses and the
optimal DCM family.

Inference on DCM structure at model level. Within the
optimal DCM family (Modulation Type 2) described above
for the control group, random effects BMS analysis con-
ducted independently for the control group (Fig. 3, left
panels) revealed that the DCM with the location of the
bilinear memory-delay modulation on the connection from
L MFG to L IFC had the highest exceedance probability (®
= 0.901, relative to the other 41 DCMs).

Within the optimal DCM family (Modulation Type 2)
described above for the cocaine group, random effects
BMS analysis conducted independently for the cocaine
group (Fig. 3, right panels) likewise revealed that the
DCM with the location of the bilinear memory-delay mod-
ulation on the connection from L MFG to L IFC had the
highest exceedance probability (® = 0.698, relative to the
other 41 DCMs).

The preliminary BMS results showed that, in the cocaine
group, six of the single-modulation models had higher
exceedence probabilities than the other 36 (Fig. 3, right
panels); the exceedence probability of each of these six
DCMs was at least five times the mean exceedence proba-
bility of the other 36 DCMs. However, there was no
obvious clear-cut “winner” among these six models
because of the finding that these six single-modulation
models had exceedance probabilities that were not
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Figure 3.

Random effects BMS results (left panels for control group, and
right panels for cocaine group) of the connections modulated by
the optimal bilinear modulator (memory delay). For the control
group, two single-modulation DCMs (corresponding to connec-
tions L MFG to L IFC, and L STR to L IFC, respectively) had
exceedance probabilities that were at least five times greater
than the mean exceedance probability of the other 40 DCMs.
For the cocaine group, six single-modulation DCMs (corre-

markedly different from each other (Fig. 3, right panel),
but which were clearly superior to the other 36 single-
modulation DCMs. A possible explanation for this finding
would be that all six of these “winning” connections may
have been modulated by the memory delay in the cocaine
group. Here we used a heuristic strategy that was based
on the analysis strategy in a previous DCM study by our
group [Ma et al., 2012] by constructing a putative multi-

sponding to connections L MFG to L IFC, L IFC to L MFG, L
PPC to L IFC, L IFC to L PPC, LR SMA to L IFC, and R PPC to
L STR, respectively) had exceedance probabilities that were at
least five times greater than the mean exceedance probability of
the other 36 DCMs. See Supporting Information Table Il for the
42 endogenous connections that correspond to the 42 modula-
tion model numbers.

ple-modulation DCM, consisting collectively together in
the same model all six modulated connections (L MFG to
L IFC, L TFC to L MFG, L PPC to L IFC, L TEC to L PPC,
LR SMA to L IFC, and R PPC to L STR) that had the high-
est exceedence probability in the previous preliminary
BMS step. An additional BMS analysis showed that this
multiple-modulation DCM was “better” (® = 0.940) than
the single-modulation DCM that had shown the largest
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exceedance probability in the previous preliminary BMS
analysis (in spite of the penalty for model complexity in-
herent in the BMS procedure [Stephan et al., 2009]), but
the exceedance probability did not reach the threshold ®
= 0.95.

Applying the same reasoning and criteria to the control
group as in the cocaine group, we constructed a multiple-
modulation DCM with two modulated connections (L MFG to
L IFC, and L STR to L IFC) in the control group, based on the
finding that in the control group there were two “winning”
models that each had exceedence probabilities that were at
least five times of the mean of those of the other DCMs (Fig. 3,
left panels). Another BMS analysis showed that this multiple-
modulation DCM was “better” (® = 0.687) than the single-
modulation DCM that had shown the largest exceedance
probability in the previous preliminary BMS analysis.

Because neither the single- nor multiple-modulation
DCMs within each group had exceedance probabilities
that were greater than the threshold ® = 0.95, group dif-
ference in DCM structure could not clearly be established.
However, in each group, the multiple-modulation DCM
had exceedance probability greater than the single-modu-
lation DCM that had shown the largest exceedance proba-
bility in the previous preliminary BMS analysis,
suggesting that these putative multiple-modulation DCMs
are plausible and appropriate to be included along with
the putative single-modulation DCMs in the model space
of the subsequent BMA analysis (see next section).

Group differences on DCM parameters

Because of the fact that group difference in DCM struc-
ture could not be clearly established stemming from
Bayesian family level inference and BMS conducted inde-
pendently within each group, we used BMA to identify
quantitative differences in memory modulation parameters
between patients and controls. The relatively low exceed-
ance probabilities (less than 0.95 for both groups) of the
“winning” DCM in each group suggest high model selec-
tion risk [i.e., the probability of picking a wrong model;
Daunizeau et al., 2011]. Therefore, the inference on DCM
parameters was conducted at the family level rather than
the model level. Family inference helps to increase statisti-
cal power by pooling evidence across models belonging to
the same family [Penny et al., 2010].

We constructed the model space for the BMA analysis
for each group to consist of both of the two aforemen-
tioned putative multiple-modulation DCMs (i.e., the six-
modulation DCM from the cocaine group and the two-
modulation DCM from the control group) in addition to
all 42 putative single modulation DCMs. Thus, the same,
identical model space was used in both BMA analyses that
were conducted independently for each group.

For each endogenous connection, the posterior mean (or
group difference), standard deviation, and the probability
that a Bayesian posterior mean (or group difference
between posterior means) is different from zero are listed

separately for the cocaine group, the control group, and the
group-difference in Supporting Information Table II. The
corresponding measures are also listed for the modulation
effects exerted by IMT and DMT in Supporting Information
Table III and Supporting Information Table IV, respectively.

Twenty-eight of the 42 connections showed probabilities
of at least 0.999 that the group difference between poste-
rior means was different from zero for the bilinear modu-
lation effects exerted by the IMT condition, and 27 of the
42 connections showed probabilities of at least 0.999 that
the group difference between posterior means was differ-
ent from zero for the bilinear modulation effects exerted
by the DMT condition. For IMT condition, the connection
showing largest difference between groups was L IFC to L
STR (Fig. 4, left panels): the IMT condition exerted more neg-
ative bilinear modulation strength in the cocaine group
(—0.026 + 0.044 Hz) compared with the control group
(—0.007 £ 0.041 Hz) on this connection. For DMT condition,
the connection showing largest difference between groups
was L MFG to L STR (Fig. 4, right panels): the DMT condition
exerted a negative bilinear modulation effect on this connec-
tion in the cocaine group (—0.005 & 0.028 Hz) and a positive
modulation effect on this connection in the control group
(0.015 £ 0.033 Hz).

The driving input (C-matrix) exerted by the all-visual-stim-
ulus (Driving Input Type 1) on the L IFC showed a probabil-
ity of 0.999 that the group difference was different from zero.
The driving input in the cocaine group (0.076 + 0.024 Hz)
was greater than that in the control group (0.059 + 0.028 Hz).

Because of the heterogeneity within the cocaine group,
BMS analysis was conducted for each individual cocaine
subject to test whether this heterogeneity can be captured.
The detailed results of this analysis are shown in Support-
ing Information.

DISCUSSION

To the best of our knowledge, this is the first published
between-group study using stochastic DCM, which takes
into account random fluctuations in neuronal and vascular
responses that may have profound effects on the measure-
ment of effective connectivity [Li et al., 2011a]. Group dif-
ferences were first evaluated at the DCM structure level.
The random effects Bayesian family level inference proce-
dures showed strong evidence (® > 0.95) that the cocaine
group and the control group had the same type of bilinear
modulation (i.e., memory delay) at the family level. But
further random effects BMS procedures did not provide
strong evidence showing whether or not the cocaine group
and the control group had the same DCM structure in
terms of which connections were modulated by the mem-
ory delay. These DCM structure inference results war-
ranted DCM parameter inference to be conducted. To
avoid picking a wrong model, group differences in DCM
parameters were evaluated at the DCM family level using
BMA. The BMA analyses revealed that the cocaine-
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Figure 4.

The results of BMA analysis showing the largest group differen-
ces in posterior mean values of the DCM bilinear modulation
(B-matrix) parameters. The endogenous connections (that were
bilinearly modulated) are denoted by solid line with arrow. The
driving input (Type 1, all visual stimuli) is depicted by dotted line
with arrow. The bilinear modulation effects exerted separately
by IMT (shorter working memory delay) and DMT (longer
working memory delay) are depicted by thin lines ending with

dependent subjects had marked differences in bilinear
modulation effective connectivity strengths in prefrontal-
striatal connections compared with the control group. Co-
caine subjects differed from controls in terms of the con-
nection from L IFC to L STR being less affected by the
IMT (shorter memory delay) in the cocaine group com-
pared with the control group, and the connection from L
MFG to L STR being less affected by the DMT (longer
memory delay) in the cocaine group compared with the
control group. Consistent with previous studies comparing
cocaine users and controls using PET or fMRI [Moeller
et al., 2010; Tomasi et al., 2007; Volkow et al., 2007], pre-

solid dot. The mean strengths (in units of Hz) of the bilinear
modulation effects exerted by the IMT condition (left panels),
and the bilinear modulation effects exerted by the DMT condi-
tion (right panels) are separately shown for the cocaine group
(top panels), and the control group (lower panels). The ROIs of
the DCM analysis are depicted by gray circles. The abbreviations
for the ROI labels are defined in Regions of interest section.

frontal regions and STR were involved in this altered
effective connectivity.

The altered prefrontal-striatal effective connectivity
observed in cocaine-dependent subjects is in the associa-
tive loop of cortical-striatal connections that may be
related to cognitive functions [Leh et al., 2007, 2010], and
is consistent with findings [e.g., Hanlon et al., 2011; Wilcox
et al., 2011] and theories [e.g., Volkow et al., 2011] regard-
ing altered cortical-striatal function in cocaine depend-
ence. As discussed in Volkow et al. [2011], several brain
circuits related to reward, motivation, conditioning, and
inhibitory or executive control are thought to be critical for
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the development of addiction. Although there may be al-
ternative interpretations, e.g., brain perfusion [Tucker
et al., 2004], white matter integrity [Moeller et al., 2005;
Romero et al., 2010], or gray matter structure [Barros-
Loscertales et al., 2011], the result that dopaminergic target
regions (prefrontal regions and STR) were involved in the
connections showing the largest and most reliable group
differences lead us to speculate that the changes in dopa-
mine function in cocaine users could be an underlying fac-
tor for the altered effective connectivity. Evidence to
support a role for dopamine function in the observed
altered effective connectivity comes from a previous study
showing that dopamine synthesis capacity as measured by
6-[18F]-fluoro-L-m-tyrosine PET was correlated with fron-
tal-caudate functional connectivity during a working
memory task [Klostermann et al.,, 2012]. Other evidence
comes from a study showing that dopamineric augmenta-
tion increased frontal-striatal functional connectivity and
behavioral performance in low working-memory capacity
individuals [Wallace et al., 2011]. In addition, studies on
human subjects other than cocaine users have shown that
brain connectivity can be tuned by dopaminergic medica-
tions [Honey et al., 2003; Jahanshahi et al., 2010; Kelly
et al., 2009; Palmer et al., 2009; Wallace et al., 2011].
Consistent with the above interpretation was the nega-
tive modulation effect between prefrontal cortical regions
and STR that was observed in the cocaine-dependent sub-
jects which differed from the modulation effect in controls.
Previous studies by Volkow and associates have shown
significant correlations between reduction in dopamine D2
receptor function and glucose metabolism in orbitofrontal
cortex, anterior cingulate, and dorsolateral prefrontal cor-
tex in subjects with cocaine dependence and other drug
abuse disorders [Volkow et al., 2007, 2009]. A prefrontal-
striatal glutamatergic pathway may regulate striatal dopa-
mine function through glutamatergic efferents from pre-
frontal regions, involving both direct and indirect
projections to brainstem and STR [Carlsson et al., 2001;
Meyer-Lindenberg et al.,, 2002; Kalivas, 2004]. Evidence
from animal studies shows that stimulation of the prefron-
tal regions elevates dopamine release in the nucleus
accumbens and burst firing of midbrain dopamine neu-
rons [Karreman and Moghaddam, 1996, Murase et al.,
1993; Taber and Fibiger, 1995; Tong et al., 1996]. This is
consistent with a study in humans showing that adminis-
tration of the N-methyl-p-aspartate receptor antagonist ke-
tamine resulted in increased amphetamine-induced
dopamine release in the STR [Kegeles et al., 2000]. The
prefrontal-striatal ~ glutaminergic pathway has been
hypothesized to be critical for addictions [Koob and Vol-
kow, 2010]. Evidence for a direct link between prefrontal
cortical glutamate and striatal function includes a study
showing that prefrontal glutamate release into the nucleus
accumbens mediates cocaine-induced reinstatement of
drug-seeking behavior [McFarland et al., 2003]. Glutamate
perfused into the STR increases dopamine release [Shi-
mizu et al., 1990]. We speculate that altered prefrontal-

striatal effective connectivity in cocaine users could be
related to a reduction in prefrontal cortical glutamatergic
input to the STR, resulting in reduction in striatal dopa-
mine function. Further studies are needed to examine this
issue, including further studies on effective connectivity
between prefrontal cortex and STR in cocaine dependence.

We have found a significant group difference in effective
connectivity. However, we did not find a significant group
difference in behavioral performance, and the nonsignifi-
cance remained after the heterogeneous treatment, the di-
versity of substance abuse, and the heterogeneity in
optimal DCMs in the cocaine-dependent subjects were
considered statistically. These results are consistent with
the opinion that altered effective connectivity may not nec-
essarily produce altered behavior between groups [Seghier
et al., 2010]. Behavioral and brain activation measures are
often jointly used in neuroimaging experiments to infer
group differences between patients and controls. It is a
common observation that these two measures generate di-
vergent results [Wilkinson and Halligan, 2004]. For exam-
ple, using fMRI and an n-back working memory task,
Tomasi et al. [2007] found widespread group differences
in brain activation between cocaine abusers and controls
but did not find a significant group difference in behavior.
The combination of significant group difference in neural
activity and insignificant group difference in behavioral
measures is a possible outcome in neuroimaging experi-
ments and may not be evidence of a weak hypothesis
[Wilkinson and Halligan, 2004]. In fact, the absence of a
between-group difference in behavioral performance may
be helpful in interpreting the neuroimaging results as a
difference between groups at the neuronal level because it
reduces the confounding effects due to difference in be-
havioral performance between groups [Price and Friston,
2002]. For example, decreased performance compared with
normals may cause (rather than be a consequence of)
decreased neuronal activation because of decreased
engagement of unimpaired processes [Price and Friston,
2002]. On the other hand, abnormal neuronal responses in
the context of normal performance can indicate alternative
neuronal mechanisms for supporting the same level of
task performance [Price and Friston, 2002]. Our findings
reflect that the effective connectivity as measured by DCM
may be a more sensitive indicator of altered neural path-
ways between groups than the behavioral measures. This
interpretation may not be very surprising, because it is
possible that fairly subtle neural processes can be detected
using DCM analysis [Rowe, 2010; Stephan and Friston,
2010].

Given the relatively large number of regions, it is almost
impossible to evaluate all possible DCMs given the current
computation technique. Therefore, a relevant model space
should include a set of plausible DCMs, based on previous
knowledge of the system [Stephan and Friston, 2010]. In
our DCM analysis, when constructing the putative modu-
lation model space, we used a two-step heuristic strategy
to reduce the number of models examined to a
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manageable level. Other strategies could have been used
to reduce the model space to a manageable level, but the
heuristic strategy that we used was a plausible and prin-
cipled approach that was based on the analysis strategy in
a previous DCM study by our group [Ma et al., 2012]. We
believe that the procedure for constructing putative multi-
ple-modulation DCMs was reasonable, given that the
modulated connections in each multiple-modulation
model, respectively, corresponded to the DCMs with high-
est exceedance probabilities in the BMS analysis within
each group in the first preliminary BMS step. We would
like to emphasize that that these putative multiple-modu-
lation models were not arbitrarily selected for use in the
subsequent BMA comparison of model parameters between
groups. Instead, the multiple-modulation models were
tested against the corresponding single-modulation models
in a second BMS step, and the multiple-modulation models
were included in the BMA model search space only if the
multiple-modulation had greater exceedence probability
than the corresponding single-modulation models.

We have chosen to use stochastic DCM rather than
deterministic DCM. Unlike deterministic DCM, stochastic
DCM takes into account random fluctuations in physiolog-
ical noise that may contribute to the system connectivity
input [Li et al., 2011a] due to stochastic fluctuations in
neuronal and vascular responses [Kruger and Glover,
2001; Li et al., 2011a]. Li et al. [2011a] have demonstrated
that stochastic DCM can show improvement in parameter
estimation over deterministic DCM. More recently, Dauni-
zeau et al. [2012] have validated stochastic DCM and
shown that the stochastic DCM is superior over determin-
istic DCM in both model structure inference and model
parameter inference. In this study, we studied cocaine de-
pendence, which is a disorder associated with altered do-
paminergic (and perhaps other) neurotransmission in the
brain [Volkow et al., 2007, 2009]. In disease populations,
changes in the BOLD signal could be confounded by the
possible disruption by disease or drugs on neurovascular
coupling and/or hemodynamic response [lannetti and
Wise, 2007]. In addition, Choi et al. [2006] has shown that
the direct effects of dopamine on the vasculature need to be
considered when measuring the hemodynamic coupling
associated with dopaminergic drugs. Because stochastic
DCM can account for these confounding effects better than
deterministic DCM, we believe that stochastic DCM can
detect the altered effective connectivity in cocaine-depend-
ent subjects more accurately than deterministic DCM.

See Supporting Information for additional discussion on
the regional activation in left prefrontal regions, the
between-study comparison of regional activations, and the
between-study comparison of DCM inference on model
structure.

Several limitations regarding the application of DCM
and the IMT/DMT protocol in working memory studies
have been discussed in Ma et al. [2012]. Additional limita-
tions specifically for this study include the heterogeneous
sample in the cocaine group, which consisted of treat-

ment-seeking and nontreatment-seeking patients. The
inclusion of more than half (11) of the total sample of co-
caine-dependent subjects who had other types of sub-
stance abuse in addition to cocaine dependence also may
limit interpretation of the findings of this study. Further
studies with more homogeneous groups are necessary to
clarify these issues.

In summary, stochastic DCM analysis showed that com-
pared with normal controls, cocaine-dependent subjects had
markedly altered working-memory related prefrontal-striatal
effective connectivity that may reflect altered cortical-striatal
networks in cocaine-dependent subjects. Reduced dopamine
function in cocaine users may be an underlying factor for the
altered effective connectivity observed in this study. Future
studies are needed to test this hypothesis.
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