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Abstract

High-resolution three-dimensional (3-D) microscopy combined with multiplexing of fluorescent 

labels allows high-content analysis of large numbers of cell nuclei. The full automation of 3-D 

screening platforms necessitates image processing algorithms that can accurately and robustly 

delineate nuclei in images with little to no human intervention. Imaging-based high-content 

screening was originally developed as a powerful tool for drug discovery. However, cell 

confluency, complexity of nuclear staining as well as poor contrast between nuclei and 

background result in slow and unreliable 3-D image processing and therefore negatively affect the 

performance of studying a drug response.

Here, we propose a new method, 3D-RSD, to delineate nuclei by means of 3-D radial symmetries 

and test it on high-resolution image data of human cancer cells treated by drugs. The nuclei 

detection performance was evaluated by means of manually generated ground truth from 2351 

nuclei (27 confocal stacks). When compared to three other nuclei segmentation methods, 3D-RSD 

possessed a better true positive rate of 83.3% and F-score of 0.895+/-0.045 (p- value=0.047). 

Altogether, 3D-RSD is a method with a very good overall segmentation performance. 

Furthermore, implementation of radial symmetries offers good processing speed, and makes 3D-

RSD less sensitive to staining patterns. In particular the 3D-RSG method performs well in cell 

lines, which are often used in imaging-based HCS platforms and are afflicted by nuclear crowding 

and overlaps that hinder feature extraction.
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Introduction

This is a PDF file of an unedited manuscript that has been accepted for publication. As a 

service to our customers we are providing this early version of the manuscript. The 

manuscript will undergo copyediting, typesetting, and review of the resulting proof before it 

is published in its final citable form. Please note that during the production process errors 

may be discovered which could affect the content, and all legal disclaimers that apply to the 

journal pertain.

The objective and quantitative analysis of images from cells labeled with 

immunofluorescent probes takes microscopy from being purely visual, qualitative and 

subjective to a higher level. Quantitative analysis of fluorescently labeled molecular targets 

in cells can provide information of their spatial distribution, amounts and topology. The 

advantage of quantitative microscopy in cellular studies is further enhanced by the addition 

of automation. High-content screening (HCS) - or the automated acquisition of fluorescently 

labeled cellular images followed by an automated analysis enables the quantitative 

assessment of large numbers of images, thereby paving the way for large scale experiments 

in which multiple conditions are examined simultaneously [1-3].

HCS platforms have primarily evolved as powerful approaches for drug discovery. Due to 

the involvement of high-resolution three-dimensional (3-D) confocal microscopy and 

multiplexing of fluorescent labels cell nuclei can be outlined and nuclear targets measured, 

rendering the cell nucleus the most frequently studied compartment. The 3-D screening 

turned out as a powerful tool for measurements of nuclear deformation, chromatin 

organization and cellular heterogeneity and essential in deriving deep, functional 

information involving spatial and temporal domains from single cells during response to 

drugs and assessment of cytotoxicity [4, 5].

The high automation of 3-D HCS necessitates image processing algorithms that can 

accurately and robustly analyze large numbers of images with little to no human 

intervention. In the automated processing pipelines the image segmentation is a front-end, 

yet most vulnerable numerical procedure. As a hardware and experimentally independent 

component, the image segmentation steps should be able to reliably separate nuclei from 

background and from each other. It is known that rapidly proliferating and overlapping cells 

provide a challenge for nuclei segmentation procedures. Variable nuclear shapes, chromatin 

texture, uneven image contrast and background noise increase the difficulty of delineating 

individual nuclei [6]. A simple intensity based thresholding approach can often separate 

nuclei from background, unless they contact each other or are closely spaced. To achieve a 

reliable segmentation of nuclei numerous semi- automated segmentation techniques have 

been published. However, many of them are tailored to a specific image analysis or 

screening method, or require the setting of multiple parameters [7]. Fully automated 

methods are frequently restricted by the morphological variability of specimens, and thus 

allow only the analysis of regular or pre-selected patterns. Three larger groups for 3-D 

segmentation techniques can be distinguished and consist of: watershed-based, hybrid and 

deformable model-based segmentation techniques [8-11]. The latter is most reliable and 

requires little to no post-processing to refine the segmentation results. However, manual 
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initializations and computational burden make them less practical for HCS analyses. 

Watershed-based techniques - especially those controlled by markers (seeds) – are 

computationally less intense, and hence generally faster. Yet, post-processing procedures 

tailored to the specimen’s morphology are often necessary to determine if splitting or 

merging of closely positioned, clustered or contacting nuclei is required to correct over- and 

under-segmentations [12-14]. Another family of nuclear segmentation advances utilizes 

geometric active contour approaches based on level-sets [15-17]. The level set method was 

originally used as numerical technique for tracking shapes based on a variant of the 

geometric heat equation [18], and it is meant to detect contours connecting pixels of the 

same intensity in an image. In the level set method, contours in 2-D or surfaces in 3-D can 

be represented by curves and surfaces on a Cartesian grid without the need to parameterize. 

The level set is able to represent the shapes even if their topology is complex. They are 

widely used since they do not require explicit parameterization. Yet, their main disadvantage 

is the computational cost. To separate objects (cells or nuclei), each object has to be 

represented by a level set function. In addition, a coupling constraint inhibits overlapping of 

neighboring contours. For N nuclei in the image, N level sets and N2 coupling constraints 

are determined. These requirements dramatically increase the computational cost in highly 

confluent specimens. The method proposed by Dzubachyk et al. to segment and track cells 

by means of a coupled-active-surfaces framework [9] can be used as an example of a level- 

set based technique. In their approach connected objects determined in the first image frame 

are segmented with one level-set function using a modified Chan and Vese algorithm [19]. 

One level-set is assigned to each object. Each level-set function is iteratively evolved until 

convergence criteria are satisfied. Next, watersheds are used to perform rough splitting of 

level-set functions in connected components. The algorithm determines whether existing 

level-set functions need to be terminated or new functions introduced. In the final step, the 

Radon transform is applied to separate level-set functions of closely positioned nuclei. 

Tracking of cells is possible by propagating the final position of the level-sets from one 

image frame to another and adjusting the separation of the level-set functions accordingly.

Hybrid techniques for 2-D and 3-D nuclear segmentations such as those involving h-

minima, h- maxima, or Laplacian-of-Gaussian filtering gradient or curvature analysis are 

better optimized for speed, automation and adaptability to new applications. A known 

example is the algorithm developed by Al-Kofahi and colleagues [20]. It this method the 

foreground-background separation through graph-cuts algorithm is subjected to seed 

detection using the scale normalized response of Laplacian-of-Gaussian constrained by the 

range of predefined scales. An initial segmentation of nuclei is obtained by the seed-based 

local-maximum clustering algorithm that allows separating the majority of clustered nuclei. 

The final segmentation is obtained through a α-expansion and graph coloring. This method 

is built into FARSIGHT [21] - a free platform for image analysis. In [22] Cheng et al 

geometric active contours were used to initially segment 2-D images, and then an adaptive 

H-minima-based algorithm was used to find shape markers that served as seeds for 

watershed-based splitting of closely spaced nuclei. Another published method involves a 

cascade of geometric filters insensitive to spatial non-uniformity coupled with geodesic 

level-sets [23]. It can partition clumped nuclei based on the grouping of points of maximum 

curvature that were combined according on their spatial properties to define planes 
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dissecting clustered nuclei. Lastly, gradient methods published in [24, 25] employed a 

diffusion of gradients followed by tracking of their flow and grouping to identify individual 

nuclei in Zebrafish embryos.

Numerous other algorithms for 3-D image segmentation of cells and nuclei have been 

developed. While the majority is readily available for the analysis of non-complex cell 

images, there remains a deficiency of methods for imaging-based high-content screening 

that can deal with heterogeneity of nuclear texture and high confluency of cells. Such a 

method could enable screening and exploration of in-depth complex changes in nuclear 

morphology, signal topology, and signal co-localizations [26-28]. Thus, the main objective 

of this work is to introduce and evaluate a new approach for rapid delineation of nuclei in 

high-resolution images. According to the recent research, certain shape priors can be derived 

directly from the non-segmented image and funneled as features ahead of the actual nuclear 

segmentation routines. The core idea presented in this paper employs a 3-D radial symmetry 

transform followed by an adaptive post- processing of symmetry images to arrive at a mask 

of seeds that can guide a watershed-based segmentation. The output of 3-D radial symmetry 

transform can quantitatively approximate the circularity of nuclei without an explicit 

knowledge about their localization. It can therefore serve as an input for guiding image 

segmentation processes. In comparison to existing methods, the proposed approach requires 

only a small set of shape descriptors such as circularity and radius upfront. This concept was 

developed and tested with synthetic images. High-resolution 3-D confocal images of human 

cells exposed to anticancer drugs were used to validate the effectiveness of the technique 

and its applicability to HCS. Performance was validated by comparing three state-of-the-art 

nuclear segmentation methods.

Materials

Image data was repurposed from an imaging-based high-content screening project [28, 29] 

to characterize the potency of DNA methylation inhibitors in cancer cell lines. The material 

consisted of treated and untreated DU145 human prostate carcinoma cells, and HuH-7 liver 

carcinoma cells. Nuclei were immunolabeled with a 5-methylcytosine antibody and 4',6- 

diamidino-2-phenylindole (DAPI) – a common blue-fluorescent dye that intercalates into 

double stranded DNA. Staining was followed by confocal imaging. High-resolution optical 

sections with 1576×1576 pixels, voxel size of 120 nm×120 nm×250 nm (x-, y-, and z-axis) 

and 12 bits/pixel intensity depth were acquired to form 3-D stacks for each stain. 27 DAPI 

stacks that were generated on average from 35 slides (Tab.1) and represent a high variability 

of nuclear staining patterns and cell confluencies (Fig.1) were selected from a large set of 

pre-existing image data to test the proposed methodology. More details related to specimens, 

drug treatment schedules, staining protocol and imaging can be found in [28, 29]. Stacks 

were divided into three groups: low confluency with up to 40 nuclei per stack, moderate 

confluency (41-65 nuclei) and high confluency (73-190 nuclei). A cell biologist from our 

team manually identified and delineated 2351 nuclei (ground truth) in mid sections of the 27 

stacks as for segmentation performance assessment purposes.
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Methods

Workflow overview

This section outlines the proposed nuclei segmentation method (Fig.2). Briefly, images were 

analyzed by sequentially executed processing modules: a) preprocessing with background 

removal, b) 3-D radial symmetry detector followed by refinement of the symmetry signal, 

and c) adaptive seed placement with seed-controlled watershed segmentation of nuclei. A 

preliminary mask after the background removal (Fig. 2c) served as a guide for seed 

placement. 3-D radial symmetry transform followed by post-processing with Gaussian 

smoothing and top-hat transform yielded radial symmetry images with high intensities 

localized at or near the centers of nuclei (Fig. 3d). The adaptive seed placement was run 

twice: in coarse (1) and fine (2) modes (Fig. 3e), and was responsible for probing the radial 

symmetry images and returning a single seed for each nucleus. User-specified morphometry 

features were entered to the algorithm to selectively screen and retain seeds with desired 

shape and volume. Seeds found within the preliminary mask were used by marker-controlled 

watershed segmentation. The coarse seed placement was run over the entire image, and was 

expected to detect seeds in closely adjacent nuclei. The fine seed placement was designed to 

find seeds of nuclei in a very closer proximity or forming clusters. An example output is 

shown in Figure 3f. The 3-D radial symmetry detector and the adaptive seed placement are 

newly proposed techniques.

Preprocessing with background removal

Preprocessing (Fig.2a) was applied to remove the background and to suppress fluctuations 

of nonspecific DAPI staining seen as low-amplitude and low-frequency extra-nuclear 

signals. First, low-frequency components in the spectrum matrix obtained by the 3-D fast 

Fourier transform were shifted to the center, and coefficients inside an isotropic cube of size 

3 in x, y and z direction superimposed onto the matrix center were turned to 0. Next, an 

intensity histogram was derived from the image reconstructed by the inverse 3-D fast 

Fourier transform. A parameter- free histogram thresholding described in [30] was used to 

separate background (a narrow histogram peak) from nuclei staining (flat histogram tail). A 

preliminary mask P obtained in this manner (Fig.2c) provided rough delineation of clustered 

and separated nuclei. P was then used to guide the detection of seeds and to further split 

nuclear clusters. To reduce the computational expense in the preprocessing step, the input 

image was down-sampled by a factor of four. P originating from the down-sampled image 

was then up-sampled to match the original size as shown in Fig.2a.

3-D radial symmetry for seed detection

The concept of 3-D radial symmetry transform originates from the 2-D radial symmetry 

transform introduced as a context-free attentional operator to detect points of interest in 

facial images [31] and from its modified implementations for an automated detection of cell 

nuclei in images of cytological smears [32, 33]. The 3-D radial symmetry can be obtained 

from image gradients after gradient magnitudes and orientations are accumulated in two 

separate matrices. For the 3-D application described here, the Sobel operator with a mask 

size of 3 × 3 × 3 was applied to provide image gradients in x, y and z direction. The depth 
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related mask GZ was defined as: 

whereas the two planar masks GX and GY were respectively obtained by rotating GZ by 90 

degree around x and y axes traversing the center of the GZ mask. Gradients obtained through 

the masks’ convolution with the original image were evaluated at each pixel p and its 

proximity defined by radius r. The contribution of image gradients pointing at p(∘)(p) was 

accumulated in orientation projection Or and magnitude projection Mr images. The voting-

like technique [31] which is a function of r, mapped the degree of object roundness at p 

considered as object centers. For bright objects overlaid on a dark background the 

corresponding pixels were evaluated as follows: 

, , 

, where: round is the nearest integer rounding 

operator,  is the absolute gradient magnitude, and  is 

the unit gradient at p.

In 2-D images analyzed in [31, 32] the magnitudes in Mr were approximately two orders 

higher than those in Or . In 3-D images analyzed here, the degree of discrepancy between Mr 

and Or turned out to be much more prominent due to gradient components evaluated in all 

three dimensions. In order to balance the effect of the extent of discrepancy and the inherited 

nonlinearity of Mr and Or , a resulting radial voting image Fr was formed as a weighted sum 

of the magnitude and projection images as follows:

(1)

where: k is the normalizing constant, and a serves as the scaling parameter. Low amplitude 

gradients attributed to non-round objects, line segments and noise in Or (p) were suppressed 

by normalizing Or (p) using k = 10, and the radial strictness α = 2 as described in [31].

Next, the 3-D voting image Fr was smoothened by a Gaussian filter to obtain a 3-D radial 

symmetry image:

(2)

where:  is the Gaussian kernel, and i, j, k are the distances 

from the kernel origin along x, y and z axes respectively. Components of Gr controlling the 

degree of smoothing were adjusted according to the voxel anisotropy of confocal sections, in 

which the ratio of planar resolution to the depth resolution was approximately 1:2. Hence, 

the smoothing coefficients were set as:  and 

respectively. r is the radial distance, or simply the radius at which the gradients are 
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evaluated. For isotropic voxels in synthetic images the respective settings were equal for all 

three dimensions.

An artificial image was synthesized in order to demonstrate how the concept of the 3-D 

radial symmetry (2) can benefit the automated detection of nuclei. Four binary spheres with 

incrementally increasing radii Ri ∈ R = [3,5,7,9] with sphere centers aligned on the same z-

plane (Fig. 3a) were added to a noisy background. For an arbitrarily chosen radial distance r 

∈ R an output image Sr was calculated. An intensity profile (Fig. 3b) along a line passing 

through Sr where the sphere centers were located demonstrates the shape and dynamics of 

symmetry signals. In this brief numerical experiment particular attention was paid to the 

shape, amplitude and location of peaks in Sr defined here as local maxima: max (Sr(r, R)). In 

particular: a) Sr had high-amplitude and sharp peaks, b) all local maxima in Sr corresponded 

to the location sphere centers, c) the magnitude of maxima in Sr depended on the 

relationship between r and R: max (Sr (r = Ri, R)) > max (Sr(r ≠ Ri , R)) (Fig.3b). In other 

words, the closer r was to R the higher magnitude was observed, d) for any two spheres with 

radii Ri ≠ Rj and radial distances r matching the radii: max (Sr (r = Ri, {Ri, Rj })) ≠ max (Sr 

(r = Rj , {Ri, Rj })). As consequence of a)-e) if r was selected so that it closely corresponded 

to the radius of the target sphere, the local maximum was strong enough to be easily 

separated from background symmetries originating from noise.

In the above context, r can be considered as a key parameter controlling magnitudes in Sr, 

and the way its peaks can be detected. Thus, by utilizing 3-D radial symmetries and some 

knowledge pertinent to the size of objects of interest it is possible to indicate the object’s 

location. Our next goal was to extend the above technique and calculate a series of Sr - one 

for each r from a priori given set of radii R, and analyze aggregated Sr s as a combined 3-D 

radial symmetry image in the following way:

(3)

where: wr is the weight corresponding to single r, and c is the normalizing constant. Both wr 

and c can be derived from artificial images as in Fig.3a-b to normalize the output for various 

r.

Profiles traced throughout 3-D symmetry images aggregated in this manner are shown in 

Figure 3c. For implementation in real images the weights wr were fixed as described in the 

‘Seed detector properties and parameter settings for real images’ section.

Top-hat transform

In contrast to ideal spheres evaluated in the artificial image shown in Fig.1, the cell nuclei in 

confocal images have more arbitrary shapes and less definite centers. Moreover, nuclear 

texture can negatively contribute to orientation and magnitude of gradients related to the 

object’s circularity, and collectively alter the shape of S . Hence, the output of radial 

symmetry transform can be prone to coinciding shifts as well as widening and flattening of 
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the radial symmetry peaks. 3-D top-hat transform [34] was implemented to alleviate this 

degradation, suppress local nonuniformities outside of main peaks in S̄ , and to better 

preserve the steepness of S̄:

(4)

where: ∘ is the gray-scale opening operator and B is the structuring element.

B was chosen to match the shape and volume of the largest object to be preserved. For 

anisotropic voxels an ellipsoidal neighborhood with size (r, r, r/2) along x, y and z-direction 

was set. For isotropic voxels the neighborhood size can be equal to r.

Adaptive seed placement (ASP) and segmentation of nuclei

Top-hat enhanced 3-D radial symmetry image Ŝ served as an input for the ASP to arrive at a 

mask of seeds. In contrast to other seed placement techniques in which a seed was 

considered a spot that is significantly smaller than the object to be segmented, in this 

approach an ideal seed is meant to mark nearly the entire nuclear volume and follow as 

closely as possible the boundary of nuclear envelope. A systematic thresholding of Ŝ was 

implemented for this purpose. Thresholds t were determined between the min(Ŝ) and max(Ŝ) 

found in the radial symmetry image, and the range [min(Ŝ) , max(Ŝ)] was split into a number 

of intervals that differed by a small constant Δ. The application of a single threshold t 

yielded a binary image Ŝb with multiple 3-D seed candidates that were automatically 

retained or rejected according to the following pseudo code:

where : coarse and fine modes refer to the main workflow (Fig. 1), P is the preliminary 

mask of nuclei obtained during the preprocessing, Ŝ is the top-hat transform enhanced 

image, Objects is the variable storing seed candidates, vObj is the volume of a seed 

candidate,  and  are the 

2-D circularity and solidity features of a seed candidate calculated from the maximum 

intensity projection on the z-plane. rmin – is the smallest of the radii substituted to (2, 3), exy 

and shullxy are thresholds, ∩ and ∪ are the set intersection and sum, ⊆ is the set inclusion 

operator, and Image is the input 3-D image.
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Figure 4 illustrates in detail all processing steps including ASP (Fig.4 f,g) along with 

example outputs obtained for a 3-D stack passing the whole workflow in Fig.2. Binary seeds 

detected in the coarse mode were used in the marker-controlled watershed segmentation to 

delineate nuclei and nuclear clusters. Isolated nuclei and nuclear clusters segmented in this 

way were inspected to separate nuclei from clusters that were parsed to the fine mode. If the 

solidity of a cluster was lower than a predefined threshold shullxy, then a 3-D bounding box 

containing this cluster was extracted from a higher resolution image and pushed through the 

fine seed detection. If no more clusters meeting this criterion were found, the segmentation 

was completed.

The 3-D bounding box with clustered nuclei was subjected to fine analysis in which both the 

circularity and the solidity of seeds were checked in addition to the minimal seed volume. 

Any seed candidate with circularity and solidity smaller than exy and shullxy was rejected. 

Residual seeds replaced those determined in the coarse mode, and the 3-D bounding box 

was re- segmented by the seeded-watershed. Updated segmentation results were substituted 

to the final seed mask that was returned after all binary objects were examined (Fig. 3 b,h). 

Prior to running the ASP, the parameters such as radii, shullxy and exy were derived from 

randomly selected nuclei (as described in Seed detector properties and parameter settings for 

real images section) and embedded to the above pseudo code. An example final 3-D 

delineation of nuclei rendered using ImageJ plugin [35] is shown in Figure 5.

Seed detector properties and parameter settings for real images

Some prior knowledge related to nuclear morphology is required in order to properly utilize 

the proposed segmentation workflow. This includes nuclear radii and nuclear shapes. For 

that, manual delineation of 25 randomly selected nuclei from our image data (Fig.1, Tab.1) 

was performed. Images with delineated nuclei were down-sampled to the two planar 

resolutions: 256×256 and 512×512 to reflect processing conditions in the coarse and fine 

modes. For each manually delineated nucleus and approximate radius was found. Radii from 

all nuclei (after rounding to nearest odd integers) were [3, 5, 7, 9, 11] and [9, 11, 13, 15] 

respectively for the two planar resolutions. Maximal values of solidity and circularity 

parameters were shullxy=0.95 and exy=1.5 as determined from 2-D maximum intensity 

projections of the manually delineated nuclei. shullxy and exy were same for both image 

resolutions. The radii and shape parameters were permanently embedded into the analytical 

workflow (Fig.2).

In addition, the involvement of multiple radii required weights wr (Equ.3) to be set to 

normalize amplitudes of radial symmetry images. These weights were analytically 

determined. We extended the idea outlined in Figure 3 and used a synthetic binary image 

containing seven spheres with radii R ∈ [3,15] – the same radii as those found in manually 

selected nuclei. The binary image was degraded by additive Gaussian noise with variance a 

that was gradually increased from 0 to 0.75. Radial symmetry images Sr (Equ.2) were 

calculated and values max  were recorded. Highest magnitudes max 

(Sr (: )) were observed in the center of each sphere consequently for every noise variance, 

and the increase of noise caused a progressive decline of max (Sr(: )) (Fig 6). However, the 

decline characteristics in the whole range of r = Ri pairs of were similar regardless of the 
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noise variance. This observation was essential for the entire concept of 3-D radial symmetry 

based segmentation, because it allowed weights wr in (3) to be kept constant regardless of 

image degradation. For a > 0.5 and R, r = 3 the max (Sr(: )) was found outside of the sphere. 

Thus a > 0.5 and R, r = 3 determine the theoretical limit of detection of 3D-RSD. For an 

uncorrupted image amplitude µ =1 and a > 0.5 the lowest SNR = µ/a at which the detection is 

possible is equivalent to SNR > 2 (Fig.6).

Ultimately, for the combined set of radii R=[5, 7, 9, 11, 13, 15] and an arbitrary selected 

noise level of a = 0.05 , the following weights wr = 1/[1.1, 0.8, 0.75, 0.55, 0.50, 0.44] were 

derived from Figure 6. One can note that since the characteristics max (Sr(r, Ri, : )) in Figure 

6 are similar there is a possibility to derive other sets of weights. Yet, their values will be 

proportional to those that were already selected. Thus, we assumed that choosing the 

weights should have no impact on the segmentation as long as the ratios between the 

weights are preserved. The above selected weights were permanently embedded into the 

workflow.

Method evaluation

The ground truth tracings were converted to binary masks. Following a commonly used 

segmentation evaluation methods in [36-38] the precision = TP/(TP + FP), recall = TP/(TP + 

FN) (sensitivity), and F-measure: F=2*(precision*recall)/(precision+recall) were calculated 

to assess the performance. If the outline included < 50% of the ground truth nuclear area, the 

result was counted as a FN (a miss), otherwise it was considered a TP. A lack of overlap 

with any ground truth was counted as a FP (an additional detection). In addition, the nuclear 

area agreement between the computed mask (C) and manual ground truth tracings (G) of all 

TP detections was evaluated by the Jaccard index: ; where ∩ and ∪ represent 

the intersection and union of binary images, with the summation of involved pixels. Then, 

Jaccard indices from all nuclei in a 3-D image stack were averaged.

Four segmentation methods: Level Set Cell Tracker (LSetCellTracker) [9], Farsight [21] ver. 

0.4.4-win64 downloaded from www.farsight-toolkit.org/, 2-D H-minima shape marking 

method [22] that we adapted to process images in 3-D, and 3D-RSD were evaluated in this 

manner. Nuclei segmentation routines in Farsight are parameter-free, whereas the 

LSetCellTracker is equipped with a graphical user interface through which seven settings 

controlling the level set evolution namely α0, µ0, t0 and H-minima for the initial 

segmentation step and α, µ, and t, for the main segmentation step can be manually adjusted. 

Since there are no guidelines on how to arrive at the most optimal set of parameters for this 

tool, we tuned H-minima (that is used to initially separate contacting objects) to 2 for which 

best results were obtained. The other parameters were kept default as we did not notice any 

significant change in the segmentation performance after their adjustments. The 3-D H-

minima shape marking method requires the gap parameter Δ to be set. Similarly to [22], we 

empirically determined its value and set it permanently to Δ=2 in the processing workflow 

that comprised background de-trending and removal from our processing pipeline and 

seeded-watersheds. A single set of parameters for 3D-RSD including radii, solidity and 

circularity was kept fixed permanently for all data sets. All stacks were downsampled to 
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512x512 pixels in the planar resolution to standardize processing and evaluation conditions 

for all three methods. 3D-RSD and LSetCellTracker and H-minima shape marking were 

coded in Matlab (Mathworks, Natick, MA). Farsight is a standalone application. All tests 

were run and timed on a PC-based 64-bit workstation computer.

Results

A performance evaluation was conducted utilizing 27 image 3-D stacks from two human 

cancer cell lines with highly variable nuclear staining patterns caused by drug treatment 

(Tab 1). Since nuclear confluence in image stacks varied (23 to 190 nuclei per stack), we 

split our testing set into three groups of low, moderate and high confluency and tested the 

performance of the three methodologies considering confluency as a variable. High 

confluency stacks constituted approximately 50% of all the data.

Quantitative evaluations pertinent to the TP, FP, and FN detection rates are shown in Table 

2. The method we developed, named 3D-RSD, was the most sensitive across all the 

specimens (highest recall values) and yielded highest F-scores for data sets of low and high 

confluency. The paired two-sample t-test for F-scores was used to determine whether 

LSetCellTracker (µFscore=0.857, σFscore=0.075), H-minima shape marking (µFscore=0.861, 

σFscore=0.058) and 3D- RSD (µFscore=0.895, σFscore=0.045) F-scores come from 

independent random samples (H0). The null hypothesis was rejected (p=0.035) and 

(p=0.047) at α=0.05 suggesting that 3D-RSD detected nuclei with significantly greater 

accuracy than LSetCellTracker and H-minima shape marking respectively. Farsight-based 

detections (µFscore=0.7412, σFscore=0.267) were much worse compared to the other three 

methods. We also evaluated the area overlap metrics for all TP detections (Tab.3). TPs 

constituted 83.3%, 79,4%, 76.4% and 77.3% of the ground truth for 3D- FRST, H-minima 

shape marking, LSetCellTracker and Farsight, respectively. One-way ANOVA analysis of 

Jaccard indices showed no significant difference in contour delineation performance 

between Farsight, H-minima shape marking, and 3D-RSD, yet it indicted a statistical 

difference between these three methods and LSetCellTracker (which was best, p<0.0001). 

However, Farsight, H-minima shape marking and 3D-RSD analyzed stacks significantly 

faster than LSetCellTracker. FP detections by 3D-RSD were the lowest (75), compared to 

H-minima shape, LSetCellTracker, and Farsight, which respectively detected 119, 157 and 

1724 additional false objects. In general, the segmentation rates were worse in low-contrast 

and highly confluent specimens. Example results for different cell confluencies are shown in 

Figures 7, 8 and 9 that were directly exported from the three tested methods as tiff files.

Discussion

As speed and throughput of confocal imaging technology advance, reliable 3-D high-content 

analysis platforms are often sought to investigate cell phenotypes in cultures and tissue 

scaffolds. Particularly attractive is the opportunity to quantitatively characterize nuclear 

phenotypes in a high-content manner. Yet, image processing pipelines that can reliably 

quantify various cellular phenotypes are rare because developing a one-fits-all tool 

represents a significant challenge. For instance, CellProfiler [39] – a commonly known 

platform can segment nuclei in a pseudo 3-D mode. Basically, in Cellprofiler’s workflow a 
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3-D stack is considered as a series of 2-D images and therefore the segmentation of 2-D 

images one-by-one from top to bottom of the 3-D stack is performed. This approach 

necessitates the 3-D nuclear mask to be reconstructed from individual 2-D segmentations 

and may fail if either over-, under- or lack of segmentations in individual images occur.

Thus, many existing 3-D HCS solutions still fall short in terms of image analysis and speed 

and lack what is required to robustly navigate through multi-dimensional images. The 

majority of existing methods are adjusted to meet the parameters of a particular screening 

scenario and a more unified methodology to reliably segment nuclei in a variety of cellular 

specimens is one of the major goals in the bioimage informatics field [40-43].

Specimens that consist of highly confluent cells and crowded nuclei with heterogeneous 

textures in a background that is non-uniform and noisy are particularly difficult to analyze 

when they are imaged in 3-D at high-resolution. Published methods for their analysis are 

scarce. Our work is based on 3-D image data from an epigenetic drug evaluation study [28, 

29] used to design and test a new nuclear segmentation procedure. Since some of the 

existing tools may not always perform well we implemented 3-D radial symmetries to 

pinpoint nuclear regions of interest and to address the problem of nuclear segmentation in 

highly confluent and phenotype-dense image stacks. The proposed method, 3D-RSD, was 

guided by the morphology of nuclei and arrived at a mask of seeds for watershed-based 

segmentation. Granted that the majority of cell nuclei were quasi spherical, the 3D-RSD 

successfully detected the circularity as the main feature in the image. In nuclear areas, 3D-

RSD yielded a strong and high-affinity radial symmetry signal that was converted to large 

seeds and fitted into the boundary of the binary nuclear mask that was generated in the 

preprocessing step. Hence, the 3-D radial symmetries with selective characteristics can offer 

a new way to intuitively control seeded watershed segmentations. The concept of seeds 

derived from radial votes shown in [43] is different from ours. The technique proposed here 

technique follows the early work by Loy et al [31] and our own developments of radial 

symmetries for cervical smears [32, 33]. In [43] the final landscape of iterative voting comes 

down to the localization of a center of mass – a small seed that constitutes a tiny fraction of 

the nuclear volume that is placed in the nucleus center. In our case (Fig.4) the seeds are 

obtained through a radial symmetry image that is a weighted sum of orientation projection 

and magnitude projection images derived from local image gradients. Seeds obtained the 

way we propose are much larger and by average occupy 50% of the nuclear volume. Finally, 

the detected seeds are differently utilized for separation of nuclei in close contact or clusters. 

In [43] the partitioning of touching nuclei is based on Radon transform and Voronoi 

tessellation. Our methodology employs watersheds. As we mentioned, large seeds 

significantly reduce the number of over segmented nuclei – an unwanted effect frequently 

observed in seeded-watershed algorithms that use punctate or small seeds.

The need for selection of image analysis parameters often prevents the implementation of 

full automation. User interactions are indispensable to adjust parameters that control image 

segmentation [42], and it is challenging to develop setting-free methodologies that provide 

reliable outputs for all 3-D images. The 3D-RSD method required a small set of pre-

specified parameters as an input to guide the segmentation, which include radii, circularity 

and solidity, and are derived from a training sample of different nuclei. Unlike for the 
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LevelSetCellTracker, the parameters for 3D-RSD were related to crude morphological 

features that are more intuitive to optimize for a less experienced user. More than 75% of 

nuclei were correctly segmented in the coarse pass of 3D-RSD. To improve the rates of 

segmentation in areas of high cell confluency, a fine mode was automatically used. The 

approach not only increased the TP detection rate to 83.3%, but also showed to be 

computationally efficient. Interestingly, the coarse and fine steps were involved solely the 

detection and splitting of binary objects.

Our numerical experiments involving 2351 human cells confirmed that the phenotype-dense 

specimens that exist in high-content screening studies [26, 28] can negatively affect the 

segmentation performances. Although the 3D-RSD was very robust in determining seeds for 

individual nuclei, the threshold-based background cutoff seems to be a weak component in 

the proposed workflow. In stacks with poor nucleus-to-background contrast such as those 

from experiments involving high levels of drug, this kind of preprocessing resulted in lower 

Jaccard index due to rougher nuclear contours versus the smooth ones yielded by 

LSetCellTracker. However, the two other methodologies which involved fundamentally 

different preprocessing algorithms were more compromised. Both Farsight and 

LSetCellTracker detected at least 6% fewer TP nuclei than 3D-RSD and had at least twice as 

high FP rates. Average performance of the H-minima shape marking that we directly 

adapted for 3-D processing was inferior to our technique. Yet, it outperformed other 

methods in highly confluent specimens, and thus it seems that its modifications can further 

improve its seed detection capability.

Our tests indicated that Farsight’s detection rates varied while those from LSetCellTracker 

were more consistent. Since Farsight’s nuclei segmentation algorithm is parameter free 

(parameters are fixed) we were not able to investigate the exact cause of Farsight’s low 

performance in images in question. A possible reason for Farsight’s over-segmentations in 

our image data could be the low contrast in nuclei pertinent to chromatin organization 

changes and the diversity of nuclear phenotypes in treated cells. Inferior performance of 

Farsight seems to be in line with three other studies. In [44] a slight over-segmentation due 

to spatial clustering of condensed chromatin in Drosophila embryos, and 85% detection 

accuracy in 2D/3D images of mouse embryos were respectively reported in . Nuclear 

segmentations in 3-D microscopic images of brain tissue [45] yielded TP rates between 38 

and 99%.

Collectively, we assume that our algorithm is less sensitive to different experimental 

conditions such as: a) different cell lines, b) different treatment schedules, and c) different 

nuclear size and morphology than other methods tested. Specifically, 3D-RSD performed 

better in specimens in highly confluent specimens, including those that are affected by 

fluctuations of local contrast and local staining intensity induced by drugs. 3D-RSD is a 

method than can offer a very good overall segmentation performance without compromising 

processing speed – which is in high demand as a feature in imaging-based HCS platforms. 

Most importantly, the 3D-RSD utilizes local image gradients and provides an approximate 

localization of the target objects which other methods can utilize, and we are confident that 

this important image feature can further be developed for analysis of other 3-D and 2-D 

nuclear and cell segmentation applications.

Gertych et al. Page 13

Comput Biol Med. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusions

In this paper we address the issue of a rapid segmentation of nuclei towards fast and reliable 

phenotyping of large amount cells in 3-D cultures. As a user friendly - scalable and a 

relatively low complexity method the 3D-RSD achieved remarkable performances in cells 

lines treated by drugs. Thus, it is conceivable that the 3D-RSD can be used for high-content 

screening tasks particularly for preclinical compound screening or image cytometry for 

cancer research.
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Figure 1. 
Patterns of nuclear staining, confluency and cell types encountered in our datasets: a) 

speckled, b) nucleolar, c) low intensity, d) high intensity, e) mitotic, f) high confluency area 

(about 65%), and g) DU145 untreated cells in a low confluency area (about 27%), h) DU145 

treated cells, and i) HuH-7 treated cells. All cells were prepared using the same staining 

protocol, and all images were acquired using the same microscope settings, and were 

recorded in 3-D using a 63x objective. Note changes in nuclear patterns and shape in a) vs. 

b) and c) induced by drug treatment.
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Figure 2. 
Rapid 3-D delineation of nuclei in DAPI stained human cancer cells. Workflow in a) refers 

to example output images at mid-optical section of a z-stack: b) original image, c) 

preliminary mask of nuclei after background removal, d) output of 3-D radial symmetry 

transform obtained from the original image, e) seeds superimposed onto the original image, 

and f) delineated nuclei after final seed placement followed by seeded watershed 

segmentation.
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Figure 3. 
Example 3-D radial symmetry signals in an image with binary spheres with radii set to 

R=[3, 5, 7, 9] added to a noisy background with noise variance a = 0.25: a) view of the mid- 

section with 3 equiplanar spheres of different radii, b) profile through Sr (with arbitrarily 

selected radial distance r=7 ), c) profile through S- obtained via weighted aggregation of 

Sr=3, Sr=S, Sr=7, and Sr=9.
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Figure 4. 
Illustration of 3-D nuclei segmentation with subsequent processing steps: a) mid optical 

section of a 3-D image cube and b) final segmentation results. c) shows a close-up view of 

the upper-left quarter of a). Binary mask separating nuclei from background is shown in d), 

and the respective top-hat enhanced radial symmetry Ŝ in e). Seeds are marked in red. f) 

shows seed placement after the coarse step, and g) shows seeds detected in the fine mode. 

Bounding boxes (yellow) in f) indicate areas with clustered or in-close-proximity nuclei that 

were not separated by the seeded watershed segmentation. Clustered nuclei were recognized 

by shape and volume features and then pushed through the fine stage of seeds placement g). 

Seeds detected in g) replace seeds detected in f). Final nuclei delineation by the seeded 

watershed using seeds from g) is presented in h).
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Figure 5. 
3D rendering of nuclei from Fig.3: cyan - detected seeds, and gray - segmented nuclei. The 

rendering was obtained by means of an ImageJ volume rendering plugin [35].
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Figure 6. 
3-D radial symmetry response max(Sr(r=Ri, Ri)) in an artificial image containing binary 

spheres with radii R ∈ [3,15]. Images were corrupted by additive Gaussian noise a ∈ [0,0.5].
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Figure 7. 
A comparison of nuclei segmentation in a high confluency cell set from HuH-7 cell line 

treated with a high drug dose: a) original image, b) LSetCellTracker, c) Farsight, d) H- 

minima shape marking, and e) 3D-RSD method. Note over-segmentations in c) and under- 

segmentations and lack of detections (white arrows) in b) and d). The contrast inside of 

nuclei is weak. A large diversity of shape, degree of adjacency and staining intensity are 

prominent.
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Figure 8. 
A comparison of nuclei segmentation by different methods in moderate-to-high confluency 

cells set from Huh-7 cell line treated with a low drug dose: a) original image, b) LSetCelTrk, 

c), Farsight, and d) H-minima shape marking, and e) 3D-RSD method. Note heterogeneity 

of nuclear shape Image contrast is slightly stronger when compared to that in Figure 7.
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Figure 9. 
A comparison of nuclei segmentation by different methods in low-to-moderate confluency 

cells set from untreated DU145 cell line: a) original image, b) LSetCellTracker, c) Farsight, 

d) H-minima shape marking, and e) 3D-RSD method. Note that some nuclei have more and 

some less intense staining.
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Table 1

3-D image data characteristics.

Cell line Number of
3-D stacks

Confluency of nuclei
(nuclear area/image area)

Average number
of nuclei/stack

DU145 untreated 10 20%-40% 68

DU145 treated 9 18%-45% 72

HuH-7 treated 8 55%-72% 129
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Table 2

Precision, recall and F-score for the four methods tested on 27 3-D stacks with variable nuclear confluence. 

Best rates are bolded.

Precision Recall F-score

Confluency low -
moderate high low -

moderate high low -
moderate high

3D-RSD 0.942 0.963 0.830 0.864 0.880 0.909

LSetCelTrk 0.936 0.908 0.862 0.763 0.893 0.824

Farsight 0.751 0.643 0.825 0.771 0.778 0.686

H-minima shape
marking

0.898 0.931 0.795 0.836 0.838 0.878
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Table 3

Jaccard indices and processing times of the four methods tested on 27 stacks.

Jaccard index Average processing time

Confluency low moderate high [min]

3D-RSD 0.879 0.784 0.836 3.5

LSetCelTrk 0.958 0.954 0.891 153.2

Farsight 0.853 0.904 0.825 0.8

H-minima
shape marking

0.851 0.773 0.827 2.0
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