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Abstract

For many years, linkage analysis was the primary tool used for the genetic mapping of Mendelian 

and complex traits with familial aggregation. Linkage analysis was largely supplanted by the wide 

adoption of genome-wide association studies (GWASs). However, with the recent increased use of 

whole-genome sequencing (WGS), linkage analysis is again emerging as an important and 

powerful analysis method for the identification of genes involved in disease aetiology, often in 

conjunction with WGS filtering approaches. Here, we review the principles of linkage analysis 

and provide practical guidelines for carrying out linkage studies using WGS data.

Linkage analysis was the predominant statistical genetic mapping approach used in the latter 

half of the twentieth century. More recently, the focus shifted to association studies of 

complex traits that analyse common variants, which have a modest effect. For such variants, 

association analyses are more powerful than linkage analyses, and genome-wide association 

studies (GWASs) using single-nucleotide polymorphism (SNP) marker loci became the 

preferred association mapping tool. However, an emerging view is that rare variants, which 

are not well interrogated by GWASs, could be responsible for a substantial proportion of 

complex human disease1. Importantly, the increased availability of exome and whole-

genome sequence data has brought linkage analysis once again to the forefront owing to the 

development of powerful methods to detect rare variants involved in disease aetiology using 

family-based data; such an approach has many advantages over simply using filter methods 

to identify causal variants. Several reviews2–5 and books6–8 have been written on genetic 

linkage analysis, but none, to our knowledge, covers linkage analysis coupled with whole-

genome sequencing (WGS).
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Several recent studies have generated genome-wide association data for families. For 

example, the T2D-GENES (Type 2 Diabetes Genetic Exploration by Next-generation 

sequencing in Ethnic Samples) consortium has generated WGS data on 1,043 individuals 

from 20 Mexican families and reported analysis of risk variants for type 2 diabetes. 

However, for cost reasons, most studies currently only obtain WGS data for a small number 

of family members.

To date, most family-based WGS studies have therefore been analysed using filtering 

approaches, and only a few family members are prioritized for sequencing (Fig. 1). 

However, filtering approaches do not offer statistical evidence of a variant's involvement in 

disease susceptibility, whereas linkage analysis does provide this statistical support. With 

the decreasing cost of sequencing, it will become more common-place to have WGS data 

available for every informative pedigree member.

This Review provides the reader with a practical guide for performing linkage analysis to 

identify variants that are responsible for Mendelian9 trait aetiology. After briefly mentioning 

the relative merits of linkage and association analysis, we discuss linkage algorithms and 

their implementations in computer programs, with a special emphasis on the use of sequence 

data. We then outline a step-by-step approach to successful linkage analysis using WGS 

data.

Genome-wide linkage analysis

For all informative family members, genotypes can be generated using SNP arrays and 

analysed using genome-wide linkage analysis. This approach is beneficial in that it evaluates 

DNA sample quality; elucidates whether specified familial relationships are correct; allows 

the detection of mis-specification of affection status and locus heterogeneity; aids the 

selection of an individual (or individuals) to undergo WGS; and facilitates the mapping of 

the disease locus to a region (or regions) of the genome, thus reducing the number of 

variants that need to be followed up. Linkage analysis can also provide statistical evidence 

of the involvement of a variant or gene in disease aetiology and can be performed either 

directly using WGS data or after filtering using data on variants that have been followed up 

by sequencing10 across entire families. However, it should be noted that although linkage 

analysis provides statistical evidence that a variant is involved in disease aetiology, false 

positives can occur when the variant that is tested is only in linkage disequilibrium with the 

causal variant. When filter approaches are used, phenocopies11,12 and reduced 

penetrance can inhibit the ability to elucidate the causal variant but, because parametric 

linkage analysis incorporates a penetrance model, even under these circumstances the causal 

variant can usually be mapped.

Association analysis versus linkage analysis

Pertinent reviews of family-based association analysis have previously been published13–15, 

and only highlights are therefore presented here. Genetic linkage and association between 

two loci are both related to recombination — in the former, recombination events are 

scored over a limited number of observed generations, whereas the latter relies on large 

numbers of unobserved recombination events in past generations. As generations go by after 
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an initial disease mutation has occurred, recombination events ( crossing over) with 

surrounding markers tend to occur closer and closer to the disease locus so that measurable 

association between disease and marker loci extends only over short distances of up to 100 

kb16,17, corresponding approximately to a recombination fraction (represented by θ) 

of 0.001, given 1 Mb ≈ 1 cM. Most differences between association and linkage analysis are 

due to this difference in the number of generations.

Association analysis using common variants generally allows for finer mapping than linkage 

analysis using SNP loci, but one potentially problematic aspect of association analysis is 

population stratification, which can lead to an increased number of false-positive results if 

not properly accounted for18. This is not a problem in linkage analysis because children's 

genotypes depend on those of their parents and not on population genotype frequencies. 

However, if some parental genotype data are missing, using incorrect marker allele 

frequencies can increase type I and II errors. It has thus been tempting to combine positive 

aspects of linkage and association analysis, which may be achieved by using family-based 

rather than population-based control individuals. Consider an affected individual and his or 

her parents. At a given marker locus, the alleles inherited by the child may be contrasted 

with the alleles that are not inherited19,20, where the latter can be shown to be representative 

of the alleles in the population21. The most well-known use of such family-based controls is 

probably the transmission disequilibrium test (TDT)22. For this to apply to multiple 

offspring, the null hypothesis of the TDT must include absence of linkage (θ = 0.5), so the 

TDT is a test for linkage that is only powerful when there is both linkage and association21. 

The TDT has been extended (the rare variant-TDT (RV-TDT))23 for use with WGS data 

incorporating several rare variant association tests and has been implemented in the Family-

Based Association Test Toolkit (FBAT) suite of programs24. Some rare variant association 

tests25 analyse variants in aggregate (usually across a genomic region such as a gene) 

instead of analysing individual rare variants. It has been shown that analysing rare variants 

in aggregate is much more powerful than the individual analysis of rare variants25,26.

Approaches for linkage analysis

LOD scores

Linkage analysis can be carried out between a putative disease locus and a single marker 

locus (two-point linkage) or across a set of markers (multipoint analysis) consisting of a 

small number of markers or even all markers on a given chromosome. For multipoint 

analysis, the LOD score, Z(x) = log10[L(x)/L(∞)], is computed as the logarithm of the 

likelihood ratio, with the numerator specifying a position, x, of the putative disease locus on 

the marker map. For the denominator, one assumes the disease locus to be off the map — 

that is, infinitely far away from the markers (Fig. 2). The multipoint LOD score can furnish 

a curve over all markers on a chromosome (Fig. 3); the maximum of this curve, over all 

chromosomes, then represents the estimated position of the disease locus on the human gene 

map provided that the maximum LOD score is at least equal to 3.3 (Ref. 101). Evidence for 

linkage can be obtained from a single pedigree or multiple pedigrees with LOD scores 

summed at the same θ or map position. When linkage analysis was previously performed 

with marker loci and the individual genes within a region had to be sequenced using, for 
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example, Sanger sequencing, false-positive regions would not be followed up owing to 

reasons of time and cost, so it was important for a pedigree or a group of pedigrees to meet 

the genome-wide significance level. There is less concern now with meeting this criterion 

because it is quick and relatively inexpensive to follow by WGS of associated regions. 

Smaller pedigrees with suggestive LOD scores can still be followed up with WGS, although 

there may be multiple linkage regions that could potentially harbour the causative variant. If 

a putative causal variant is identified in a small pedigree, it is imperative that additional 

families are identified that segregate either the same variant or another putatively causal 

variant within the same gene. If a variant is identified that segregates with a phenotype in a 

large pedigree and produces a LOD score >3.3, it is also desirable to have additional 

pedigrees that segregate the same variant or different variants within the same gene. Even 

with a significant LOD score, the finding could be a false positive or the variant that was 

identified may only be in linkage disequilibrium with the causal variant, which may not have 

been observed in the sequence data; for example, the variant might not have been captured 

or there might have been insufficient read depth. Additionally, performing functional studies 

can be important on two levels: to provide additional evidence for gene causality and to 

better understand the role of the gene in disease aetiology27.

A parent must be heterozygous at each of two loci to be ‘informative for linkage’; otherwise, 

there is insufficient information to distinguish recombinant from non-recombinant events in 

offspring. When grandparents are unavailable (that is, in ‘phase-unknown pedigrees’), there 

must be at least two children in the third generation for linkage to be potentially informative. 

In some instances, such as for autosomal recessive and X-linked recessive traits, 

grandparents do not help to set the phase because they are usually unaffected and disease 

allele carriers cannot be distinguished from non-carriers. Pedigrees in which the 

grandparents provide phase information are known as ‘phase-known pedigrees’. In suitable 

situations, the number of recombinant events (k) and of non-recombinant events (n – k) can 

be counted directly. The estimate of the recombination fraction is then simply θ = k/n. 

Generally, however, the recombination fraction is estimated by the maximum likelihood 

(LOD score) method.

The recombination fraction tends to be different in males and females. It may also depend 

on age28, but human studies have provided varied results29–32.

Penetrance

For many traits, penetrance is incomplete. For example, in torsion dystonia, penetrance has 

been estimated as 29%33; that is, fewer than one-third of disease-gene carriers express the 

trait. Penetrance can be age and sex dependent. For example, in Huntington disease, 

penetrance is zero at birth and gradually increases to 100% later in life34,35. Multiple 

penetrance classes in linkage analysis can have functions similar to those of predictor 

variables in logistic regression for case–control association studies6,36. If the penetrance for 

a disease is unknown or not well established, an ‘affected-only’ analysis can be performed, 

in which individuals who are unaffected are given an unknown affection status.

We distinguish between two penetrances: g for genetic cases and f for phenocopies, with g > 

f. In many linkage studies, f is taken to be a small number, such as 0.01 or smaller. The 
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penetrance ratio, g/f, is analogous to the risk ratio in epidemiology37 and indicates how well 

the disease phenotype (or any phenotype, for that matter) can discriminate between 

underlying genotypes.

Initial SNP genotyping

Performing linkage analysis with a SNP genotyping array can be beneficial in the 

identification of concerns about the data set. SNP genotyping can elucidate potential 

problems with the quality of the DNA samples, detect whether samples have been swapped 

and indicate instances in which a relationship has not been correctly specified. Additionally, 

if the pedigree produces a much lower LOD score than that expected for the number of 

informative meioses, this might indicate problems with phenotypic information that need to 

be rectified before additional analysis can be performed, or it might indicate that locus 

heterogeneity is present in the pedigree. The resulting linkage results and haplotype 

reconstruction can also aid in the selection of individuals for WGS: selection could be based 

on the smallest haplotype or on a haplotype that overlaps across affected individuals. 

Additionally, haplotype information can elucidate whether there are individuals within a 

pedigree who are phenocopies and therefore should not be selected for WGS. After 

performing WGS, fewer variants need to be followed up than when performing filtering 

alone because the causal variant is likely to be in the linked regions. For a family that can 

establish linkage, this strategy usually only yields 1–3 variants that have to be followed up 

in additional pedigree members and ethnically matched controls.

Linkage algorithms

With few exceptions38, the calculation of pedigree likelihoods is done recursively by 

starting with a portion of the data and then working through the rest of the data. Two main 

algorithms are in general use. The Elston–Stewart algorithm39–42 recursion takes place over 

individuals in a pedigree so that computing effort is linear with pedigree size but increases 

exponentially with the number of loci considered simultaneously. Conversely, the Lander–

Green algorithm43 recursion takes place over loci so that computing effort increases linearly 

with the number of loci but exponentially with family size. For multipoint analysis, the 

marker map is generally limited to 6–8 markers in the Elston–Stewart algorithm, whereas 

thousands of markers on any chromosome can be accommodated by the Lander–Green 

algorithm. However, the Lander–Green algorithm can only handle small- to medium-sized 

families, whereas the Elston–Stewart algorithm is applicable to very large pedigrees. Many 

programs have been developed that implement the Elston–Stewart algorithm (for example, 

LINKAGE44 and FASTLINK45) and the Lander–Green algorithm (for example, 

GeneHunter46 and MERLIN47). Although these programs were not developed for analysing 

WGS data, analysis of sequence data can easily be performed by converting Variant Cell 

Format (VCF) files into the linkage file format (also known as the PLINK48 file format). 

These conversions can readily be made with PLINK version 1.9, VCFtools49, Variant 

Association Tools (VAT)50 or SEQLinkage51. If the conversion is performed using either 

VCFtools or VAT, the user will have to create a file that contains parameter information. 

However, SEQLinkage will create both the pedigree and parameter files for direct use in 

linkage analysis. Additionally, SEQLinkage can be used to directly perform linkage analysis 

using VCF files. However, the analysis of individual rare variants can be poorly powered 
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when using SEQLinkage, so the software authors, motivated by rare-variant association 

tests, developed the collapsed haplotype pattern (CHP) method, which aggregates rare 

variants within regions (usually a gene) to create a ‘super locus’ (Ref. 51). The CHP method 

is more powerful than analysing rare variants individually, particularly in the presence of 

allelic heterogeneity.

There is no exact algorithm that can realistically accommodate large families and large 

numbers of loci, but computer-based methods have been developed to approximate linkage 

likelihoods for these situations. They are generally based on Markov-chain Monte Carlo 

(MCMC) methods52 and can allow for multiple disease loci, large family pedigrees and 

large numbers of marker loci. Two examples of linkage analysis programs that use MCMC 

approaches are Loki53 and SimWalk2 (Ref. 54).

Multipoint analysis is useful when analysing SNP genotyping arrays for which the 

genotypes for the causal variant are unavailable because analysing multiple markers is 

usually more informative than analysing an individual SNP marker locus. However, for 

sequence data, there is no advantage in performing multipoint analysis if genotype data are 

available for the causal variant because no additional linkage information will be obtained.

Parameter-free methods

So-called parameter-based (‘parametric’) methods require specification of an inheritance 

model for the trait locus, unlike allele sharing (parameter-free) methods, which do not 

require specification of a disease model. Parameter-free methods are sometimes referred to 

as ‘non-parametric’, but this term should be avoided because it means, in the statistics 

literature, that analysis is carried out on ranks rather than the original data, which is not the 

case for these methods. The simplest type of allele-sharing analysis is based on affected 

sibpairs (ASPs)55,56, but more-sophisticated approaches have been developed57,58. 

However, many of these methods do imply a specific Mendelian inheritance model. 

For example, analysis of identity-by-descent (IBD) sharing in affected siblings has been 

shown to be equivalent to an analysis under a fully penetrant recessive mode of 

inheritance59. Newer parameter-free approaches make use of large pedigrees and both 

affected and unaffected individuals58. Allele-sharing linkage methods are based on the 

principle that if two relatives with a similar phenotype (for example, both affected) inherit 

the same marker allele from a common ancestor more often than expected by chance, then 

this indicates that a disease locus is linked with the marker locus. Various sharing statistics 

have been developed57, but the subject of parameter-free linkage analysis is beyond the 

scope of this Review.

Extended approaches

Methods have also been developed to allow for two trait loci56,60,61, often referred to as 

digenic inheritance62, but it is not entirely clear what LOD score threshold for significance 

should be applied to such bivariate analyses63, and their power gain over single-locus 

analyses has been questioned64.
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For children who are affected with an autosomal recessive trait and whose parents are 

cousins or similarly close relations, marker loci linked with the trait locus tend to be 

homozygous65. These runs of homozygosity can be quickly detected for either SNP 

genotype array or WGS data using, for example, Homozygosity Mapper66. Linkage analysis 

can be used to obtain LOD scores for the variants within the region (or regions) of 

homozygosity through multipoint analysis (for SNP genotyping array data) or two-point 

linkage (for WGS data). It should be noted that in the very rare circumstance that the disease 

trait in a consanguineous pedigree is due to compound heterozygous variants67, 

homozygosity mapping will not lead to detection of the region harbouring the causal 

variants, although linkage analysis results will not be influenced by the variants being 

compound heterozygotes instead of being homozygous.

Steps for a successful linkage study

Phenotyping

Two classes of phenotypes can be distinguished: qualitative and quantitative traits. 

Qualitative traits consist of a discrete number of classes, such as ‘affected’ and ‘unaffected’, 

whereas quantitative traits occur with a continuous distribution. In this Review, we focus on 

qualitative (disease) traits.

For many traits there is little question as to who is affected and who is not. Even when 

disease definition might be ambiguious, there are usually medical rules to determine disease 

status — for example, the conditions that need to be satisfied for someone to be diagnosed 

as schizophrenic. Whether these rules are genetically relevant is generally unclear, and 

researchers sometimes choose to rely on ‘endophenotypes’; that is, phenotypes correlated 

with disease that might be closer to gene action than the overall disease definition. It can 

also be more powerful to analyse separate underlying quantitative phenotypes instead of an 

overall clinical phenotype (for example, hypertension) that might be based on several 

quantitative traits. For example, rather than applying the medical diagnosis of hypertension, 

researchers working with the Lyon hypertensive rat carried out linkage analysis with each of 

three components of blood pressure (systolic, diastolic and pulse pressure, with pulse 

pressure being the difference between systolic and diastolic blood pressure); they found 

significant results for two different loci that each control a different blood pressure 

component68. Such clear results might have been difficult to obtain if hypertension was 

considered as a single phenotype.

Various approaches can be taken to accommodate multiple phenotypes involved in a 

disease. For example, two different lipid levels have been analysed jointly in a bivariate 

analysis relating to diabetes69. Most often, however, multiple phenotypes are suitably 

combined as a weighted sum70–73, which is then used as a single quantitative trait in linkage 

analysis, or tests on single phenotypes are combined to show their joint effect74. It is best to 

avoid dichotomizing a quantitative trait because substantial linkage information can be lost. 

A number of programs, including FASTLINK and MERLIN, can perform quantitative trait 

linkage analysis.
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Selecting family members for sequencing

If only a fraction of all family members can be sequenced owing to reasons of cost, 

scientists are faced with the dilemma of which pedigree members to select for WGS. SNP 

genotyping data can aid selection, but such data are not always available. Some general 

guidelines are given below, but more advanced approaches rely on computer simulation, 

which emulates a linkage study by generating marker data and analysing it with the same 

parameter that will be used in the linkage study. For example, SLINK could be used to 

generate marker data, and MSIM could be used to perform the analysis. A sophisticated 

statistical framework for prioritizing individuals for sequencing has recently been developed 

and implemented in a computer program called GIGI-Pick42 (Table 1).

Consider an autosomal recessive trait that is carried by two unaffected parents, who are 

cousins, and by their two children, who are affected with the trait. At least one of the 

affected offspring should be sequenced because, in this family, this child can yield a LOD 

score of 1.20 when both the trait and the linked variant alleles are rare. If an additional 

individual is to be sequenced, should this be a parent or the other affected child? A parent 

with an unknown genotype is likely to be heterozygous for a rare variant, and the affected 

child will have one variant in common with the parent, so each additional affected child can 

produce an LOD score increment of 0.60. Thus, it is less important to sequence the parents 

than to sequence the affected siblings in this situation. However, sequencing parents is 

necessary for identifying compound heterozygotes and de novo events.

For dominant traits, it is generally best to sequence distantly related individuals, a principle 

established some 20 years ago75. The same rare allele occurring in two relatives is likely to 

represent two copies of an ancestral allele rather than two alleles independently acquired by 

the two individuals, which translates into an LOD score that increases with increasing 

distance of relationship. For rare variants for a disease without phenocopies, even only two 

distantly related individuals can yield sufficient linkage information. For example, consider 

two second cousins affected with an autosomal dominant trait for which the causal variant 

has a minor allele frequency of 0.0001; all other relatives are of unknown disease and 

marker status. The resulting LOD score is equal to 1.20, and more-distant relationships can 

yield even higher LOD scores.

For WGS studies, one or two unaffected individuals in a family should also be sequenced as 

controls, but in linkage analysis a negative LOD score is a sufficient indication that a given 

variant is not linked with the trait gene. For traits with reduced penetrance, unaffected 

pedigree members can be carriers of causal variants and therefore do not make ideal 

controls. Usually, there is no need to obtain variant frequencies in unaffected controls 

because this same information can readily be obtained from databases such as dbSNP76, 

Exome Variant Server77, ExAC and 1000 Genomes78. Variants that occur at higher 

frequencies in these databases — for example, >0.5% — are unlikely to be causal1. It should 

be noted that even fully penetrant disease variants may be present in variant databases for 

several reasons: these are not databases of disease-free individuals, and for autosomal 

recessive traits disease-free carriers may be included.
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SNPs from sequence data

After individuals in a family have been sequenced, variants are extracted from the sequence 

data79. If a given variant is not observed in available databases, it can be assumed to be rare 

and given a low allele frequency: for example, 0.0001. When performing linkage analysis, it 

is necessary to have VCF files that contain genotype information for every family member 

for which there is a variant site in at least one of the pedigree members. If this information is 

not available, it is impossible to distinguish between missing data and an individual who is a 

homozygous non-carrier. Additionally, if a sufficient number of family members are being 

subjected to WGS, a family-aware variant caller80, such as that implemented in the Genome 

Analysis Toolkit (GATK)81, should be used to increase the accuracy of the variant calls.

Quality control

For WGS data, quality control can be performed as previously described50; however, these 

procedures will not completely eliminate genotyping errors from WGS data. In contrast to 

association studies82, in families genotyping errors have traditionally been detected as 

Mendelian inconsistencies83–85. However, particularly in small families, and given the 

biallelic nature of most variants, all sequencing errors will not be detected as Mendelian 

inconsistencies, and the fraction of such undetected errors can be high. MERLIN (double 

recombination events over short distances) and GIGI-Check (MCMC approach) are able to 

detect Mendelian-consistent errors86.

Mendelian inconsistencies may be due to sequencing error or pedigree inconsistency 

(adoption, non-paternity87 or swapped samples). In the case of pedigree inconsistency, large 

numbers of variants are expected to exhibit inconsistencies. To identify a specific individual 

causing these errors, it is useful to estimate the proportion of alleles shared IBD 0, 1 and 2 

for pairs of individuals (implemented, for example, in the VAT or the PLINK programs). 

For example, for siblings, these proportions are expected to be 0.25, 0.5 and 0.25, 

respectively; if IBD proportions deviate from these values, then the two individuals are 

unlikely to be full siblings.

Computing LOD scores

To compute parameter-based LOD scores for linkage between a hypothesized disease locus 

and a given DNA variant, one needs to specify Mendelian model parameters such as allele 

frequencies and penetrances. Some handy rules are as follows. For example, consider a 

recessive trait so that the (homozygous) susceptibility genotype has frequency p2, where p is 

the disease allele frequency under Hardy–Weinberg equilibrium. Trait population frequency 

(K) is then predicted to be K = gp2 + f(1 – p2), where g and f are the respective penetrances 

for genetic cases and phenocopies. Fixing, for example, f = 0.01 and g = 0.90, allows the 

disease allele frequency to be determined as p = √[(K – f)/(g – f)]. In large families, 

penetrances may be estimated by maximum likelihood in suitable computer programs, but 

this is rarely done. Rather, one may determine the fraction of obligate disease-gene carriers 

who are unaffected, which should be approximately equal to 1 – g. For age-dependent 

penetrance, it is generally sufficient to find two time points, a1 and a2, where a1 is the 

youngest age at which anyone has been diagnosed with the disease and a2 is the oldest age at 

which the disease has manifested. Then, in a coordinate system with age as the x axis and 
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penetrance as the y axis, the age-of-onset curve is approximated by a straight line rising 

from a penetrance of 0 at a1 to the maximum penetrance at a2 (Ref. 7).

Heterogeneity

Two types of heterogeneity may be distinguished: locus heterogeneity and allelic 

heterogeneity. Allelic heterogeneity refers to different alleles at the same locus (gene) 

conferring disease risk on different families or individuals, whereas in locus heterogeneity, 

different genes, possibly on different chromosomes, are disease causing. In linkage analysis, 

in contrast to association analysis performed with SNP marker loci, allelic heterogeneity 

does not generally represent a problem because linkage refers to a relationship between loci, 

not alleles. With WGS data, variants at different sites in the same gene may lead to disease; 

when such rare variants are being analysed using rare-variant association methods, allelic 

heterogeneity does not present a problem because rare variants within a gene region are 

analysed in aggregate. When allelic heterogeneity is present within a causal gene and 

individual variants are analysed, there can be a great loss of power because different 

pedigrees will not be informative for the same variant for pedigrees in which disease 

aetiology is due to the same gene but not the same variant; therefore, when LOD scores are 

summed across pedigrees, most pedigrees will not be informative and the power to detect 

linkage will be low. However, this problem can be avoided by using the CHP method 

described above, which analyses rare variants within a gene region in aggregate.

When analysing SNP marker loci, locus heterogeneity generally leads to a mixture of 

families that do and do not exhibit linkage to a given variant. Thus, in addition to estimating 

the recombination fraction θ in families with linkage, at the same time one also estimates the 

proportion (α) of linked families. The likelihood is maximized over α and θ, and the 

resulting LOD scores are known as heterogeneity LOD scores (HLODs)88. When analysing 

rare variants, locus heterogeneity does not usually have a great impact because families that 

are not linked to the causal gene generally do not have an informative variant within the 

causal gene region; therefore, instead of producing negative LOD scores, they are 

uninformative for linkage.

Conclusion

Linkage analysis is again emerging as an extremely useful method in genomic analysis, 

particularly for the identification of rare variants associated with a complex trait with high 

penetrance. Linkage analysis has many advantages over filtering approaches in terms of 

limiting the number of genes that have to be analysed; namely, it takes account of 

phenocopies and reduced penetrance, which are often features of Mendelian traits, and in 

addition it provides statistical evidence of the involvement of a variant in disease aetiology. 

Many new disease susceptibility genes have been successfully identified using linkage 

analysis coupled with WGS, and this strategy has been successfully used to identify the 

association of rare variants to phenotypic traits such as hearing impairment10,89, familial 

goitres90 and familial hypertension91. In the future, with the reduction in cost of WGS, 

linkage analysis of WGS data will be widely used.
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Glossary

Genetic mapping The ordering of loci on a chromosome and the determination of the 

distances between two adjacent loci. For short distances, the 

recombination fraction can serve as a measure of genetic distance, 

with the unit of measurement being the centimorgan (cM); 1 cM = 

1% recombination fraction

Genetic linkage A phenomenon whereby two alleles, one each at two different loci, 

are transmitted together from parents to offspring more often than 

expected by chance. It leads to a recombination fraction smaller than 

0.5

Phenocopies Individuals that exhibit the phenotype of a Mendelian trait but that 

are not carriers of a susceptible genotype. Phenocopies were thought 

to result from non-genetic factors, but genes at locations other than 

those under current consideration can also lead to (genetic) 

phenocopies

Penetrance The conditional probability of being affected given one of the 

genotypes at the disease locus, ‘+ +’, ‘+d’ or ‘dd’, where ‘d’ is the 

disease allele and ‘+’ the non-disease (wild-type) allele. More 

generally, penetrance is the conditional probability of a phenotype 

given a genotype

Recombination Two alleles, one from each of two loci, can be inherited from one 

parent but originate from two different grandparents. If the two 
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marker loci are on the same chromosome, a recombination is the 

result of an odd number of crossovers between the markers

Crossing over A cytogenetic phenomenon that occurs during the formation of 

human gametes (egg or sperm cells). The salient feature of crossing 

over is that it occurs semi-randomly along chromosomes, with at 

least one crossover occurring on each chromosome in meiosis

Recombination 
fraction (θ)

The expected proportion of recombinant children divided by the total 

number of recombinant and non-recombinant children. For two loci 

in close proximity to each other, θ is small owing to the randomness 

of crossing over, but it increases to 0.5 for loci that are far apart

LOD score Z(x) = log10[L(x)/L(∞)] is the logarithm of the likelihood ratio, with 

the numerator being calculated under the assumption of linkage and 

the denominator under no linkage. A LOD score of 3.3 or higher has 

been shown to correspond to a genome-wide significance level of 

0.05

Mendelian 
inheritance 
model

The Mendelian laws of inheritance, when applied to variants, 

stipulate that an individual carries two copies (alleles) of a given 

nucleotide and passes one of them at random to each of their 

offspring. Disease may be the result of a single copy of the allele 

(dominant inheritance) or of two copies (recessive inheritance) in an 

individual
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Figure 1. Workflow for the whole-genome sequencing filtering approach in human family data
Usually, one, two or more affected individuals, or affected and unaffected individuals, in a 

family have their genomes or exomes sequenced. Variants that are not predicted to be 

nonsense, missense or splice-site variants are usually excluded from further analyses 

because it is unlikely that they are causal. When the mode of inheritance of a disease is 

known, this information can be used to aid the selection of variants. For example, for an 

autosomal dominant disease, the affected pedigree member's sequence data should display a 

heterozygous causal variant. Sequence data on additional pedigree members can help to 

reduce the number of variants that could potentially be disease causing. A final filtering step 

is performed in which those variants that are present in the databases dbSNP, 1000 

Genomes, ExAC and Exome Variant Server are excluded. Additionally, bioinformatic tools, 

such as Polyphen-2 (Ref. 102), and measures of conservation, for example, PhyloP103, are 

often used to predict whether a variant is deleterious and therefore likely to be disease 

causing. Even after filtering steps, there may be many variants that need to be followed up in 

the remaining family members to elucidate whether the variant (or variants) segregate with 

the disease phenotype. If the family is from a population that is not represented in databases, 

then ethnically matched controls need to be sequenced to evaluate the frequency of the 

variant (or variants).
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Figure 2. Linkage information for a first-cousin mating for an autosomal recessive trait and a 
phase-known autosomal dominant trait
The disease is fully penetrant without phenocopies and has a minor allele frequency of 

0.0001. Circles represent females and squares males. Individuals represented by solid black 

symbols are affected, and individuals represented by white symbols are unaffected. Shown 

below each individual in generation IV are the possible underlying disease genotypes. a| An 

autosomal recessive trait pedigree in which the affected children are offspring of first-cousin 

parents is shown. Consanguinity is indicated by the double horizontal line. The affected 

individuals are homozygous for a variant that is either causal or in perfect linkage 

disequilibrium with the causal variant. The unaffected sibling is homozygous wild type. The 

arrows show each informative meiosis and the contribution to the LOD score. For this 

pedigree configuration, the rare variant must have entered the pedigree through one of the 

great-grandparents. The meiosis events from the great-grandparents to their children do not 

contribute to the LOD score; however, the meiosis events from the affected children's 

grandparents to their parents and from the parents to the first affected child each contribute 

0.3 to the LOD score, yielding a total LOD score of 1.2. The second affected child only adds 

0.6 to the LOD score for the family because only the meioses from her parents yield new 

linkage information. Each additional unaffected child only yields an additional LOD score 

of 0.125 because for unaffected children it is not possible to elucidate whether they are 
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homozygous wild type or causal-variant carriers; each of these possibilities have a 

probability of 1/3 and 2/3, respectively. These two probabilities are incorporated into the 

calculation of the LOD score, and linkage information is therefore lost. b| A phase-known 

autosomal dominant pedigree with five children is shown. This pedigree with five offspring 

for which there are no recombination events will lead to a maximum LOD score of 1.5 at θ = 

0, where Z(θ) = log10[(1 – θ)5/(½)5]. However, if no genotype information is available for 

the grandparents (shown in generation I), making the pedigree phase-unknown, the pedigree 

will yield a maximum LOD score of 1.2 at θ = 0, where Z(θ) = log10[((1 – θ)5 + θ5)/((½)5 + 

(½)5)].

Ott et al. Page 19

Nat Rev Genet. Author manuscript; available in PMC 2015 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. LOD score curves for a phase-known autosomal dominant pedigree with ten children 
in the third generation
The LOD score curve is displayed for k recombination events (k = 0, 1 and 6) out of 10 

meioses. The disease phenotype segregating in this pedigree is fully penetrant and has no 

phenocopies. Phenotype and genotype information are available for all pedigree members. 

The marker locus that is analysed is fully informative. The maximum LOD scores are 3.0 at 

a recombination fraction of 0 (θ = 0), 1.6 at θ = 0.1 and 0 at θ = 0.5, respectively, for k = 0, 1 

and 6. When multiple pedigrees are analysed, the resulting LOD scores can be summed 

across families at either the same θ value or the same map position.
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