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Abstract

Stimulating the brain to drive its adaptive plastic potential is promising to accelerate rehabilitative
outcomes in stroke. Ipsilesional Primary Motor Cortex (M1) is invariably facilitated. However,
evidence supporting its efficacy is divided, indicating we may have over-generalized its potential.
Since M1 and its corticospinal output are frequently damaged, in patients with serious lesions and
impairments, ipsilesional premotor areas (PMA) could be useful alternates instead. We base our
premise on their higher probability of survival, greater descending projections, and an adaptive
potential, which is causal for recovery across the seriously impaired. Using a conceptual model,
we describe how chronically stimulating PMA would strongly affect key mechanisms of stroke
motor recovery, such as facilitating plasticity of alternate descending output, restoring inter-
hemispheric balance, and establishing widespread connectivity. Although at this time it is difficult
to predict whether PMA would be ‘better’, it is important to at least investigate whether they are
reasonable substitutes for M1. Even if stimulation of M1 may benefit those with maximum
recovery potential, while that of PMA may only help the more disadvantaged, it may still be
reasonable to achieve some recovery across the majority rather than stimulate a single locus fated
to be inconsistently effective across all.
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Introduction

Stoke is the leading cause of serious long-term adult disability. More than 60% of survivors
experience chronic deficits of paretic upper limb/hand (Broeks and others 1999). Although
some motor abilities can return spontaneously, complete recovery is rare. Patients rate
dysfunction of the upper limb as one of the most serious impediments to their quality of life
(Ones and others 2005). While rehabilitation carries promise, gains are modest with standard
treatment (French and others 2007), and access to rehabilitation diminishes as
reimbursement becomes limited. Therefore, the impetus has been to maximize the
therapeutic potential of neuro-rehabilitation. One of the most popular methods involves
stimulating the brain.

The classical approach involves stimulating the Primary Motor Cortex (M1) (Adkins-Muir
and Jones 2003; Plautz and others 2003), which is known to be the “final common pathway’
of control of movement. Evidence that its adaptive plasticity is intimately associated with
the return of upper extremity skill makes it an even more attractive locus. Animal studies
show that with retraining of skill at the paretic distal forelimb, peri-infarct M1 reorganizes;
surviving representations of trained distal limb amplify and re-surface (figure 1) (Nudo and
others 1996). This evidence forms the foundation for the original approach to brain
stimulation; it is believed that the adaptive potential of peri-infarct M1 would serve as a
high-yielding substrate to target in stroke rehabilitation. Indeed, animal models show
augmented functional benefits when peri-infarct M1 is stimulated during rehabilitation.
Spared representations in peri-infarct cortex expand and re-emerge via increases in dendritic
density, synaptogenesis, and long-term potentiation (LTP)-like synaptic efficacy (Adkins-
Muir and Jones 2003; Plautz and others 2003). Clinical studies have similarly witnessed an
adjunctive advantage of stimulation, related to increased excitability of ipsilesional M1 and
its improved ability to counteract exaggerated inhibition exerted by its homologue
(Bolognini and others 2011; Edwards and others 2009). Table 1 lists early clinical studies
where the effect of adjunctive stimulation in rehabilitation was positive when compared to
rehabilitation delivered alone. For instance, phase | and 11 trials of epidural motor cortical
stimulation showed augmented rehabilitative outcomes, as did pilot studies employing
noninvasive stimulation via magnetically induced (transcranial magnetic stimulation, TMS)
or direct electrical currents (transcranial direct current stimulation, tDCS) (citations in Table
1).

The disconnect

Unfortunately, as later and larger clinical trials failed to replicate early promise of adjunctive
stimulation (see Table 1: studies discussing variable success), it became apparent that
adaptive potential of peri- and ipsi-lesional M1 could not be harnessed consistently across
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patients. Even though their restitution may represent the best basis for stroke motor recovery
(Cramer 2004; Lotze and others 2006), such an opportunity is more likely in animal than in
human models. In animal work, samples tend to be perfectly homogenous with regard to
mechanisms of injury, site and size of lesions, post-ictal duration, age of onset, pre-morbid
conditions, and pre- and post-stroke activities or training (Plow and others 2009). In
contrast, clinical studies suffer from confounding influence of all of these factors. The
heterogeneous etiology, infeasibility to stratify according to age, location and profile of
lesion, varying post-stroke duration, and varying premorbid as well as post-stroke lifestyle
and rehabilitation altogether create extremely inhomogeneous cohorts. Therefore, “‘variable’
success of stimulating M1 in clinical studies, versus in animal work, where the technique
originated, is a product of variation across its study samples (Plow and others 2009).
Nevertheless, the importance of current evidence is paramount because, for the first time,
plasticity of the brain could be directed via methodological advances, such as its stimulation,
to safely push therapeutic limits (Fregni and Pascual-Leone 2007; Hummel and Cohen
2006). Meanwhile, the question- what would be an ideal clinical target that is reliable and
effective across most patients- remains to be addressed.

Alternatives: A novel hypothesis

We hypothesize that ipsilesional premotor areas (PMA) could serve as useful alternatives.
For the purposes of this discussion, we use the term PMA to describe areas in frontal lobe
that are rostral to M1 as defined by Fulton (Wise 1985). However, in line with clarifications
by Morecraft (2002) and Dum and Strick (1991), we restrict the term to only include areas
that possess the unique ability to influence motor output at M1 and at the spinal cord. These
areas include supplementary motor area (SMA), cingulate motor areas (CMA), and the
premator cortex (PMC) with its dorsal (PMd) and ventral (PMv) components. Consult Fig. 3
(below) for a schematic illustrating the expanse of PMA. In ongoing investigation, it is still
unclear whether chronic stimulation of the PMA offers any potential advantage for clinical
stroke rehabilitation (Plow and others 2013). Nevertheless, here, we discuss why they would
likely be a suitable alternative to target in clinical stroke rehabilitation as opposed to the
traditional M1.

1. PMA have a higher probability of survival—One of the most critical advantages
that PMA have is their relatively high chance of survival in typical stroke. SMA residing in
the anterior cerebral artery territory is spared in >97% of first time stroke patients
(Bogousslavsky and Regli 1990). The high probability of survival of the PMA is linked to
their expanse, where neuronal labeling in primate models show that PMA altogether
constitute the majority (>60%) of frontal cortex projecting to the spinal cord (Dum and
Strick 1991). Probability of survival is critical when defining targets because it can explain
why targeting M1 generalized varyingly from animal to clinical models. As discussed
earlier, animal models tend to be homogenous with focal and stereotypical lesions, thus
majority of peri-infarct M1 is spared (Dancause and Nudo 2011). In humans, however,
lesions are diffuse, sparing M1 only partially and variably. Since M1 resides in the territory
supplied by branches of the middle cerebral artery, one that is most commonly affected in
stroke, it survives mainly in those with small, focal infarcts (Cramer and others 2000). We
have witnessed that patients with damaged M1 are more likely to be ‘poorly recovered’,
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while majority of those who exhibit subcortical strokes or cortical strokes sparing M1 are
‘well-recovered’ (Plow [nee (Bhatt)] and others 2007). Thus, M1’s potential to adapt in
recovery and serve as a consistent locus for stimulation is inevitably infrequent in humans
by nature of their lesions. As an alternative, higher probability of their survival could make
the PMA likely candidates to chronically stimulate for recovery.

Since, in humans, stroke has greater chances of subcortical extension as well, lesions are
more likely to damage M1’s output, which is the most important predictor of recovery i.e.
the corticospinal tracts (CST) and alternate descending motor tracts (Lindenberg and others
2010a; Lindenberg and others 2012a; Stinear and others 2007). In this case, CST from PMA
may act as alternate substrates. Although originally they were believed to contribute only to
reticulospinal tracts projecting to axial/proximal muscles (Freund and Hummelsheim 1985),
Dum and Strick (1991) showed via retrograde labeling in non-human primates that PMA on
the medial wall alone constitute ~40% of CST to the hand. Since this proportion matches or
exceeds that from M1 (He and others 1993), with greater probability of their survival in
middle cerebral artery stroke, PMA would offer useful alternative pathways for recovery of
the hand. Since it has become known that PMA form direct, parallel modules for control of
distal forelimb, independent of M1, our classical understanding of M1 as the “final common
pathway’ is questioned. M1 may simply be a part of parallel processing (Dum and Strick
1991), which means that in injury, other substrates, such as PMA, could offer useful cortical
and corticospinal alternatives.

2. PMA can undergo adaptive re-mapping in recovery—Can PMA substitute the
role of M1 in injury? As discussed earlier, re-mapping of peri-infarct M1 in post-injury
recovery was a finding of ‘paradigmatic’ proportions in neuro-rehabilitation (Nudo and
others 1996). Are PMA similarly able to re-map in animals, and in humans?

Neuronal labeling and physiologic mapping in animal models show that even when a
majority of hand representation of M1 is destroyed, PMv can re-map its representation by
almost 50% (Frost and others 2003). Functional neuroimaging supports evidence for such
re-mapping in humans. During movements of the paretic hand, patients exhibit task-related
functional MRI (fMRI) activation of ipsilesional PMA (Plow [nee (Bhatt)] and others 2007;
Seitz and others 1998; Ward and others 2007; Weiller and others 1992). Their activation
increases proportionally with damage to M1 and its CST (Ward and others 2007). We show
that with return-of-skill, they are activated linearly (Plow [nee (Bhatt)] and others 2007).
With long-term learning, intensity of only PMC reduces, but not that of M1, representing
improved efficiency (Carey and others 2007; Plow [nee (Bhatt)] and others 2007). We
ascribe their flexibility to re-map to their somatotopic organization. SMA possesses
integrated somatotopic representations similar to M1, while PMC differentiates distal and
proximal representations similar to the sensory cortex (Cunningham and others 2013b).
Their multi-layered structure containing abstract and discrete somatotopic organization may
allow them the flexibility to re-map and to be a substitute for primary sensorimotor cortical
damage.

Determining whether re-mapping is causal to recovery, and not simply epiphenomenal,
would attest to their adaptive potential. Lesion- or inactivation-approaches are great
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experimental tools to test such hypotheses. In non-human primates, Liu and Rouiller (1999)
demonstrated that following a complete lesion to the M1’s hand representation, the PMA’s
hand representations, rather than non-hand territories in peri-lesional M1, re-mapped. The
re-mapping of the PMA was critical because their subsequent inactivation (using GABA-
agonist muscimol) re-instated deficits. In rodents, similarly, Zeiler et al. (2013) confirmed
that reorganization of the medial PMA is essential using a double-lesion approach. Virtual
inactivation is possible in humans as well, where TMS can suppress cortical activity to link
a region to ongoing behavior (Pascual-Leone 2006). In patients with infarcts of M1, or its
CST, TMS applied to the ipsilesional PMd delays reaction time of moving the paretic finger
(Fridman and others 2004). Delays are even significant when contralesional PMd is
inactivated (Johansen-Berg and others 2002) and are particularly longer in those with greater
impairment (Takeuchi and others 2007). With inactivation, it is concluded that re-mapping
of the PMA is causal to recovery, particularly in those with large lesions to the M1. The
adaptive re-mapping of the PMA is believed to be a product of their anatomic substrates,
which includes alternate CST (Liu and Rouiller 1999), intra-cortical processes (Zeiler and
others 2013), and their flexible somatotopic organization (Cunningham and others 2013b).

The role of re-mapping of M1, on the other hand, is not unequivocal. Even when it survives,
its fMRI activation is inconsistent, particularly in the vicinity of the lesion (Cramer and
others 2000), and weakly related to recovery (Binkofski and Seitz 2004). We have shown
that patients regaining dexterity can show classical plasticity, where there is greater fMRI
activation in the ipsilesional as opposed to contralesional M1; however, patients improving
to a similar degree via another treatment fail to demonstrate this ‘characteristic’ plasticity
(Plow [nee (Bhatt)] and others 2007) (Fig. 2). In fact, we witness the opposite in a different
cohort, where, as patients regain function, a precipitous shift occurs in activation from the
ipsilesional to the contralesional M1 (Carey and others 2007).

Thus, while the relation between re-mapping of the M1 and functional recovery remains
variable (Carey and others 2007; Feydy and others 2002; Plow [nee (Bhatt)] and others
2007), the re-mapping of the PMA studied using neuronal labeling and physiologic mapping
with fMRI, and confirmed via lesion-induced or virtual inactivation, supports their causative
influence. Notably though, their re-mapping is more apparent in patients who have
incompletely recovered. Thus, while they may adaptively compensate for injured M1, their
potential may not be adequate. Nevertheless, the evidence that PMA could facilitate
recovery amongst the most impaired, for whom this prospect would otherwise be impossible
(Johansen-Berg and others 2002), creates opportunities for the majority of survivors.

3. PMA can affect processes of adaptive plasticity underlying stroke recovery
—\We believe that stimulation of the ipsilesional PMA could facilitate those mechanisms of
plasticity that are classically known to be associated with stroke recovery (Dancause and

Nudo 2011; Plow and Machado 2013). For this, we propose the following theoretical model

(Fig. 3).

CST pladticity: With recovery, CST and alternate output from surviving motor cortices
amplify (Lindenberg and others 2010a; Lindenberg and others 2012a; Stinear and others
2008), becoming more excitable, eliciting larger motor potentials in the paretic muscles, and
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involving output from additional, more extensive areas (Wittenberg and others 2003). Snce
their contribution to CST is extensive and independent of M1, we premise that stimulating
PMA would €elicit robust CST plasticity. Our premise is strengthened by evidence that with
precentral stroke in primates, the recovery of fine motor skills is supported by structural
plasticity of the CST from the SMA (McNeal and others 2010). In case of a failing M1, CST
from the PMC increase its responsiveness; for instance, following stimulation that inhibits
activity of M1, responses from PMC become heightened (Schmidt and others 2013).

Understandably, however, some would argue an important caveat. In healthy primates,
stimulation of PMA evokes spinal neural responses less frequently and spread across fewer
sets of upper limb muscles than M1 (Boudrias and others 2010; Zinger and others 2013).
Despite prevalent anatomic connections of their CST (Dum and Strick 1991; He and others
1993), Maier and others (2002) and Zinger and others (2013) discuss that their connections
to spinal neurons for distal muscles are less extensive than from M1 (Zinger and others
2013). Although in healthy primates, CST of PMA are unable to directly activate spinal
motor neurons dedicated to finger muscles, based on evidence in the injured (see above)
(Liu and Rouiller 1999; McNeal and others 2010; Zeiler and others 2013), we still believe
CST from PMA may modulate this primary mechanism of plasticity.

Inter-hemispheric balance between the ipsilesional and contralesional motor cortices can
return with recovery (Machado and others 2003; Taub and others 2003). Following stroke,
this balance is disrupted due to abnormalities of mutual transcallosal inhibition (Murase and
others 2004; Taub and others 2003). Inhibition exerted by ipsilesional upon contralesional
motor cortices reduces, which leads to unabated activity of the latter. Contralesional areas
instead intensify their inhibition upon the already weak ipsilesional, which explains post-
stroke dysfunction (Murase and others 2004). Using chronic stimulation, efforts have
always focused upon either facilitating ipsilesional M1 or inhibiting contralesional M1 to
rectify the imbalance (Table 1). However, since evidence supporting the utility of such
approaches is controversial [follow Table 1], mitigating inter-hemispheric imbalance via
M1-M1 route is questionable. Here, we argue that M1-M1 route would invariably be
challenging because M1 possesses the weakest, patchiest callossal connections with its
homologue (Fang and others 2008; Rouiller and others 1994). Instead, chronic stimulation
of PMA may be more effective at facilitating return of inter-hemispheric balance since they
contain the most abundant callossal connections. Tracer injections in SMA, PMd, and PMv
reveal extensive homotopic connections and hetereotopic connections (Boussaoud and
others 2005; Dancause and others 2007; Fang and others 2008; Rouiller and others 1994).
Extensive callossal connectivity of PMA may help them mediate abstract higher-order
movement planning for bilateral movements (Boussaoud and others 2005; Fang and others
2008), while ‘acallossal’ structure of M1 (cf. (Rouiller and others 1994)) may instead be
suitable for lateralized movements. Therefore, chronic stimulation of PMA, in contrast to
M1, may offer greater opportunities for coordinating and rebalancing inter-hemispheric
activity in stroke.

Vicariation and reversal of diaschisis: The initial deficit in stroke stems in part from
disconnected influence of higher-order attention systems such as superior parietal cortices
upon the motor network (Inman and others 2012). This phenomenon, known as diaschisis,
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explains neurologic deficits that cannot be explained from loss of function directly attributed
to infarcted area. With recovery, areas deafferented from lesion site can become
reintegrated, where functional connectivity between frontal-parietal cortices and ipsilesional
M1 can improve particularly in moderate-to-severely impaired (Machado and Baker 2012;
Park and others 2011), and alternate higher motor ipsilesional and contralesional cortices
can be vicariously recruited (Bestmann and others 2010; Dancause and others 2006; Frost
and others 2003; Johansen-Berg and others 2002; Lotze and others 2012; Plow [nee (Bhatt)]
and others 2007; Seitz and others 1998; Ward and others 2007; Weiller and others 1992).

We believe chronic stimulation of PMA would help restore such connectivity and reverse
diaschisis because they share extensive connections with ipsilesional posterior parietal, M1,
primary sensory cortices (SL), and contralesional homologous and heterologous cortices
(Dancause and others 2007). As an example, Dancause and others (2005) show rewiring
between ipsilesional PMv and S1 in primate models. Similarly, Hamadjida and others
(2012) illustrate structural callossal plasticity in primate models of stroke, while James and
others (2009) discuss functional connectivity between ipsilesional PMC and homologue
with behavioral recovery in primates and human models of stroke respectively.

Testing the hypothesis in clinical investigations

It remains unknown still whether chronic stimulation of PMA in stroke motor recovery is
effective at augmenting rehabilitative outcomes. While this is being investigated clinically
(Plow and others 2013), we discuss how one can test whether they indeed affect mechanisms
as we propose here (Fig. 3) to potentially serve as a reasonable and useful substitute across a
majority of survivors.

But, first, it is necessary to determine how PMA can be targeted. In the same vein as the
parent motor cortical technique, epidural stimulation is feasible with the advantage of
spatially specific targeting. Epidural stimulation targeting ventral and lateral PMC is found
to carry preliminary efficacy for rehabilitation in aphasia (Cherney and others 2012) and
focal dystonia (Lalli and others 2012). The site 2 cm anterior to the M1 hand knob area is
chosen (Lalli and others 2012) or is localized using task-related fMRI activation (Cherney
and others 2012). Before initiating trials involving epidural techniques, however,
noninvasive transcranial stimulation can be critical to create proof-of-principle and validate
or refute hypothesized mechanisms. As one of its forms, repetitive TMS (rTMS) can
generate electrical currents in the brain via electromagnetic induction to produce lasting
changes in cortical excitability. Frequencies < 1 Hz are considered inhibitory, while
frequencies = 5 Hz are considered facilitatory for underlying excitability (Fitzgerald and
others 2006). As an even simpler analogue, tDCS can apply low-level currents (0-2.5 mA)
via surface electrodes to scalp. Despite the use of low current levels, it can depolarize
membrane potentials to alter excitability. Although less focal than epidural, targeting PMA
with rTMS and tDCS is being tested for its efficacy in Parkinson’s disease (Shirota and
others 2013) and gait abnormalities in leukoaraiosis (Kaski and others 2013).
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Understanding probability of survival of PMA

Anatomic cortical landmarks of PMA are well outlined based on MRI in our own work and
that of others (Dassonville and others 2001; Plow [nee (Bhatt)] and others 2007). Now,
deciphering the probability of structural integrity of their CST involves a relatively new
application. CST from different regions, whether PMC, SMA, or M1, can be delineated
using Diffusion Tensor Imaging (DTI) (Cunningham and others 2013a; Ruber and others
2012; Schulz and others 2012); tracts can be compared with those from homologues in
contralesional hemisphere to understand which of the motor areas indeed has the most
surviving output.

Studying re-mapping of PMA

Task-related fMRI activation during movement of paretic hand is a useful method to explore
re-mapping of the PMA; as discussed earlier, patients with greater impairments recruit
ipsilesional and contralesional PMA over the course of recovery since output from lesioned
M1 may be inadequate.

However, to confirm what type of influence they exert in recovery, virtual inactivation using
TMS has become critical. During movement of paretic hand, it can be applied alone,
concurrently with fMRI, or with offline fMRI to study how transiently inactivating a locus
affects movement and the regional activation. For example, single pulse TMS targeting PMd
induces reaction time delays in the more impaired, indicating its facilitatory potential for
recovery. Using online fMRI, Bestmann et. al. (2010) confirm that such targeting is indeed
facilitatory because it improves activation in ipsilesional sensorimotor cortex. However,
online TMS-fMRI is technically challenging. Therefore, an offline method that we have
recently applied for parietal cortices can serve as a reasonable substitute (Plow and others
2014a). PMA activity could first be inhibited using 1 Hz rTMS, and then followed promptly
with fMRI during movement of paretic hand. If performance following rTMS suffers in
relation to sham, and fMRI activation of target and its synergists alters, then one can validate
the causative value of PMA in recovery.

PMA in affecting adaptive plasticity in recovery

To know whether their chronic stimulation invokes plasticity of their CST, one can examine
fast output responses from PMA using TMS. Such responses can be evoked at 22 mm to 53
mm anterior from the M1, and as such are considered separate from the M1 (Schmidt and
others 2013; Teitti and others 2008). To study these responses, evoked motor responses in
the paretic muscles are plotted as cortical maps. Maps describe regional excitability of the
CST devoted to the paretic hand. Changes in maps thus can be used to assess whether CST
from more anterior and antero-medially located PMC and SMA subtend recovery in stroke
(Byrnes and others 2001) and strength and dexterity in healthy (Neva and others 2014; Plow
and others 2014b).

These interpretations can be confounded, however, if due to current spread of TMS, CST
from M1 instead are excited. Computing electric field values can be confirmatory. When
mapping PMA, if remote electric field at M1 is lower than that required for evoking motor
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responses, then shifts in map towards PMA could be considered their independent plasticity
attributed to their own CST rather than those of the M1 (Schmidt and others 2013).

Restoration of inter-hemispheric balance can be captured with fMRI (Plow [nee (Bhatt)]
and others 2007; Rehme and others 2011; Ward and others 2003), and TMS can determine
whether callossal physiology is the basis of change. For instance, using bi-hemispheric
pulses between contralesional PMd and ipsilesional M1, Bestmann and others (2010)
concluded that contralesional PMd was less inhibitory in movements of paretic hand,
especially in more impaired.

Vicarious recruitment of alternate ipsilesional (Dancause and others 2006; Frost and others
2003; Plow [nee (Bhatt)] and others 2007; Seitz and others 1998; Ward and others 2007;
Weiller and others 1992) and contralesional (Bestmann and others 2010; Johansen-Berg and
others 2002; Lotze and others 2012) motor regions and changes in their connectivity with
ipsilesional PMA or with M1 can be studied with resting state fMRI. Based on correlated
cortical activity in resting state, resting state fMRI defines functional connectivity between
regions. However, if regional connectivity and its direction of influence are important, then
rTMS and tDCS are reasonable tools to pair with TMS. For instance, rTMS of PMA exerts
intensity- and frequency-specific effects (Baumer and others 2003; Rizzo and others 2004),
while tDCS of PMA exerts polarity-specific influence (Boros and others 2008). Such
regional influences reveal cortico-cortical connectivity between PMA and M1, but more
importantly they reveal the direction of influence (facilitation or inhibition). Knowing how
PMA and M1 affect each other would be critical to planning targets for stimulation.

Conclusions

After all is considered, although at this time it is difficult to predict whether PMA would be
‘better’ targets across patients, it behooves us to investigate whether they would at least be
reasonable substitutes to M1. Stimulation of M1 may be perfectly suited for some, but given
the variability of existing experimental data (Table 1), it is less realistic that it is the end-all-
be-all for stroke motor recovery. In this regard, PMA with better probability of survival,
greater projections to the spinal cord, causative functional potential, excitable alternate CST,
stronger callossal connections, and widespread connectivity could instead serve as feasible,
alternate targets to chronically stimulate in stroke motor rehabilitation.

A caveat, however, still remains. Since M1 may offer the best basis for recovery, patients
who may benefit maximally from stimulation of M1 may include ones with the strongest
residual potential, hence they may recover the most. Those who benefit from stimulation of
PMA instead may include more disadvantaged patients; hence they may not recover to a
similar degree. Nevertheless, it would be more reasonable to achieve at least some recovery
across a majority who are more disadvantaged than to stimulate a single locus fated to be
inconsistently effective across all.

We understand that choosing one target versus another is less meaningful if ultimately the
goal is to “tailor” interventions based on predictors of therapeutic response. Still, our present
hypothesis that makes a case for the PMA as alternate targets is a strategic step towards the
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futuristic goal of tailored stimulation. By identifying who responds and does not respond to
stimulation of M1 versus stimulation of PMA, such as in ongoing and recent clinical trials
(Nouri and Cramer 2011; Plow and others 2009; Plow and Machado 2013), we would finally
be able to stratify candidates for individualized treatments. Lastly, besides clinical
significance, chronically stimulating the PMA to drive stroke motor rehabilitation would
also serve as the ‘litmus test’ of our longstanding neuroscientific beliefs in their role in
human recovery.
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Fig. 1. Why Ipsilesional Primary Motor Cortex (M 1) wasfirst targeted with stimulation in
rehabilitation

Adapted from Nudo and others (1996). Ipsilesional M1 was first targeted with stimulation in
stroke rehabilitation because pioneering work in animal models had suggested that the
region shows adaptive plasticity with return of skill in recovery. Here, Nudo and others
(1996) illustrate how ipsilesional M1 reorganizes with rehabilitative training in a non-human
primate model of stroke. The infarct (dashed circle) has destroyed ~22% of the digit (red)
representations and 4% of the wrist-forearm (green) representations in the region of M1.
With rehabilitative training involving the distal forelimb, the animal exhibits reorganization
of representations within peri-infarct M1 (right). The spared digit representation expands by
~15% while the wrist-forearm representations increase by 58.5%. Nudo and others conclude
that with skill relearning, surviving representations of trained distal forelimb expand in the
peri-infarct territory, as well as occupy territory previously claimed by proximal segments
(indicated by white arrows denoting areas in blue). These pivotal findings emphasized two
important themes in stroke recovery: skill-based rehabilitative training invokes adaptive
plasticity in the stroke brain and peri-infarct M1 lies at the center of this process. Thus,
subsequent studies chose peri-infract M1 as a target for stimulation in rehabilitation.
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Fig. 2. Variablerelation of adaptive potential of ipsilesional M1in human recovery: Adapted
from Plow [nee (Bhatt) and other s 2007]

Unlike animals (as in Fig. 1), in humans with stroke, ipsilesional M1 shows a variable
relation with recovery. In a clinical study, we showed that patients recover with skill
relearning, but activity of ipsilesional M1 does not adapt in the same way as would be
expected based on previous work in animals (Fig. 1). Panel A shows pretest (top) and
posttest (bottom) for a patient with chronic stroke who underwent skill relearning. Skill task
involved visuomotor tracking where patients were required to follow sinusoidal target
waveform (black line) using spatially and temporally accurate movements of paretic fingers.
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Patients could view their response (orange line), which they were asked to align accurately
with the target. The patient shown here improves following a month of training; scores
improve from —25.79% (panel A, top) to 33.6% (panel A, bottom). Panel B shows
corresponding change in fMRI activation. The blue rectangle highlights ipsilesional M1.
Before training, patient shows stronger ipsilesional than contralesional activation during
tracking with paretic left hand. Even though patient recovers remarkably in tracking skill,
fMRI activation becomes less ipsilesional than contralesional at posttest. Therefore,
recovery occurred even though activation of ipsilesional versus contralesional M1
weakened, which is opposite of what is known classically in recovery, i.e. greater fMRI
activation of ipsilesional than contralesional M1. In fact, patients are also known to recover
when contralesional areas are more active as well. Thus, human mechanisms of recovery are
extremely variable, and re-mapping of ipsilesional M1 is not as coherent as once classically
believed.
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Ipsilesional Corticospinal Plasticity Inter-hemispheric Balance

Vicarious Recruitment of
Synergists

Fig. 3. Why would stimulation of ipsilesional PM A be able to affect most mechanisms of clinical
recovery in stroke?

Thefigure shows the anatomical region of primary motor cortex (M1) and the expanse of
PMA [red = Lateral Premotor Areas, purple = Medial Premotor as Supplementary Motor
Area, and Cingulate Motor Area, which cannot be shown in this view). PMA constitute
more than 60% of the frontal cortex that project to the spinal cord. Medial wall, such as
Supplementary Motor Area and medial premotor cortex, receive arterial supply from a
source that is different from the commonly infarcted middle cerebral artery that supplies
M1. Thus, PMA would have greater probability of survival than M1 and their constituent
regions could serve as effective substitutes for M1.

Based on evidence from three of our studies (Carey and others 2007; Cunningham and
others 2013b; Plow [nee (Bhatt)] and others 2007) and neuroanatomic, physiologic, and
functional evidence from that of several others, we present a hypothetical model of how and
why stimulation of ipsilesional PMA would be most effective in modulating majority of
mechanisms of human stroke recovery in rehabilitation. Clinical recovery of paretic hand
function is believed to occur via at least 3 adaptive processes- corticospinal plasticity (A)
return of balance between excitability of ipsilesional and contralesional motor regions (B)
and vicarious recruitment of widespread frontal and parietal synergistic regions (C).
Stimulating PMA would be able to facilitate (A) because they contribute CST, as
extensively as M1, forming direct, parallel output to spinal cord, independent of M1. In
stroke, their CST can exhibit plasticity via axonal sprouting and/or cortico-cortical
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facilitation of CST from M1. Stimulation of PMA would aid (B) because they possess
abundant callossal connections, both homotopic and heterotopic, which are far more
extensive than between M1 and its homologue. In fact, in stroke, their callossal connectivity
enhances i.e. undergoes adaptive plasticity, with restorative therapy. Their stimulation
would finally also facilitate (C) because they have extensive functional connectivity with
ipsilateral posterior parietal that enhances in recovery, structural connectivity with ipsilateral
sensory cortex that rewires following stroke affecting M1, and strong structural connectivity
with ipsilateral and contralateral motor areas (M1 and other PMA). With their stimulation,
they would be able to help recruit widespread synergists in motor function.
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