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ABSTRACT

Motivation: The human leukocyte antigen (HLA) gene cluster plays

a crucial role in adaptive immunity and is thus relevant in many bio-

medical applications. While next-generation sequencing data are often

available for a patient, deducing the HLA genotype is difficult because

of substantial sequence similarity within the cluster and exceptionally

high variability of the loci. Established approaches, therefore, rely

on specific HLA enrichment and sequencing techniques, coming at

an additional cost and extra turnaround time.

Result: We present OptiType, a novel HLA genotyping algorithm

based on integer linear programming, capable of producing accurate

predictions from NGS data not specifically enriched for the HLA clus-

ter. We also present a comprehensive benchmark dataset consisting

of RNA, exome and whole-genome sequencing data. OptiType signifi-

cantly outperformed previously published in silico approaches with

an overall accuracy of 97% enabling its use in a broad range of

applications.
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1 INTRODUCTION

The human leukocyte antigen (HLA) cluster located on chromo-

some 6 is one of the most polymorphic regions of the human

genome and encodes for several genes involved in functions of

the immune system, including HLA classes I and II. Both HLA

classes comprise three major loci (HLA-I: A, B, C; HLA-II: DP,

DQ, DR), which are co-dominantly expressed. HLA-I/II mol-

ecules present intracellular and extracellular peptides, respect-

ively, and interact with other immune cells to induce an

adaptive immune response. Thus, HLA-I/II molecules play an

important role in many medical areas, such as vaccinology

(Haralambieva et al., 2013; Ovsyannikova and Poland, 2011),

regenerative and transplantation medicine (Bradley, 1991;

Opelz et al., 1999) and autoimmune diseases (Thorsby and Lie,

2005; Undlien et al., 2001).

Over 7300 different HLA-I and 2200 HLA-II alleles are

known to date [IMGT/HLA Release 3.14.0, July 2013

(Robinson et al., 2013)]. In addition to this vast allelic variation,

HLA alleles display a high degree of sequence similarity even

across different loci, which drastically increases the complexity

of uniquely identifying a genotype using short-read sequencing

techniques. Established HLA typing approaches make use of

labor-intensive and time-consuming probing techniques, such

as sequence-specific oligonucleotide probe hybridization, PCR

amplification with sequence specific primers or serotyping tech-

niques, which often lead to ambiguous genotyping results (Liu

et al., 2013). HLA typing can be done with different degrees of

resolution, with two-digit and four-digit types distinguishing

HLA allele families and distinct HLA protein sequences, respect-

ively. In 2009, Gabriel et al. (2009) and Bentley et al. (2009)

demonstrated the use of targeted next-generation sequencing

(NGS) for HLA typing to overcome the problems mentioned

above. Several new protocols have recently been established

based on NGS technologies (Lank et al., 2010, 2012;

Moonsamy et al., 2013; Shiina et al., 2012). These methods are

still accompanied by labor-intensive preparations and remain

time consuming. More recently, Danzer et al. (2013) published

an automated protocol based on GS 454 Junior sequencing

allowing a high-resolution typing with a turnaround time of

2 days. To reduce time and cost expense even further, in silico

approaches have been developed. In 2011, Erlich et al. published

an approach based on posterior probability of allele pairs and

integrated it into a 454 GS FLX Titanium sequencing pipeline

(Erlich et al., 2011).
Common to the above approaches is the dedicated generation

of NGS data for the sole purpose of HLA typing. Routine

sequencing of patient exomes or whole genomes has been estab-

lished in many larger clinical centers, and it should be possible

to determine the HLA type from these data through purely com-

putational means. Using existing data can save both money and

time; however, because of the high variability of the HLA loci,

the typical read mapping and variant calling-based analysis of

NGS data is not suitable to determine the HLA genotype.

Warren et al. (2012) proposed an algorithm (HLAminer) based

on allele-specific scoring for whole genome, exome and
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transcriptome sequencing to solve this problem. It assembles
reads de novo and aligns the resulting contigs against an HLA
reference database. A score for each HLA allele is then calcu-

lated based on properties of the aligned contigs, and the highest
scoring alleles for each locus are selected. In 2013, Boegel et al.
suggested a greedy algorithm (seq2HLA) based on read count

maximization for RNA-Seq data (Boegel et al., 2013). After read
mapping, in an initial round, the algorithm determines the allele
with the highest number of mapped reads for each locus indi-

vidually. After discarding the selected alleles and already as-
signed reads, second alleles are selected accordingly.
ATHLATES, published by Liu et al. (2013), uses an HLA ref-

erence database to filter for relevant reads, which are used for
contig construction. The reference HLA sequences are decom-
posed into exons, and the best mapping contig for each exon is

determined. For one HLA locus at a time, each allele is scored
based on its overall Hamming distance to all aligned exons. A
candidate allele list is generated by applying different filtering
criteria. Using this candidate list, the most probable HLA

allele pairs per locus are determined based on the minimal
Hamming distance to the variable positions of each exon. One
of the most recent approaches, published by Kim et al., uses a

tree-based top-down greedy algorithm (HLAforest) to predict
the HLA genotypes based on RNA-Seq data (Kim and
Pourmand, 2013). The algorithm generates an HLA alignment

tree for each read based on the mapping results against an HLA
reference database whose leaf nodes indicate four-digit alleles
and inner nodes represent allele families to which the read

could be mapped. Then, alignment probabilities and node
weights are distributed in the trees. Based on the sum of weights
of all trees, the highest scoring allele family is selected. After

reweighting the nodes based on the selected allele family, the
four-digit HLA allele is selected similarly. A different approach
by Major et al. (2013) applies various filtering criteria and

optimizes coverage depth and base coverage. The first filter
criterion enforces certain sequence coverage of exons 2 and 3
of the HLA alleles, as these exons are the most polymorphic

regions that also encode for the binding core of the HLA mol-
ecule. Additionally, reads are filtered based on mismatches and
alignment orientation of the paired reads. Subsequently, alleles

are sorted and filtered based on their coverage depth and
sequence coverage of their alignment. Finally, allele pairs are
selected such that coverage depth and sequence coverage are

optimized.
Yet, these methods do not yield sufficiently accurate predic-

tions, especially in terms of clinical usability. Boegel et al.’s ap-

proach is capable of only two-digit genotyping; Kim et al. and
Warren et al. could achieve only 85–90% correctly predicted
four-digit HLA genotypes on RNA-Seq data, and for short-

read RNA-Seq and whole-genome sequencing (WGS) data, the
accuracy was even lower. Major et al. could accomplish an
accuracy of 94% on exome sequencing samples that fulfilled

all their filtering criteria, but out of the 217 samples they have
considered, only 161 could be fully typed.
A possible cause for low typing accuracy in the

aforementioned approaches might be the independent consider-
ation of each locus. Sequence homology between loci can lead
to ambiguous read alignments where reads map to alleles

of multiple loci equally well. Another reason for suboptimal

performance could be explained by disregarding intronic infor-

mation in exome or WGS data. However, including intronic re-

gions is not trivial, as the intron sequences of the majority of

HLA alleles are unknown. In fact, 94.6% of HLA sequences

contained in the IMGT database lack parts of their exonic or

intronic sequences.
To tackle these issues, we developed a new method named

OptiType, which considers all major and minor HLA-I loci sim-

ultaneously. OptiType works on the premise that the correct

genotype explains the source of more reads than any other geno-

type, where an allele is said to explain a read if the read is aligned

to it with no more mismatches than to any other allele. Hence,

the method finds an allele combination, which maximizes the

number of reads they explain. The method consists of three

key steps (Fig. 1). First, reads are mapped against a carefully

constructed HLA allele reference (Fig. 1A). Because only exon 2

and 3 subsequences are available for all alleles, these regions are

considered during read mapping so that no allele is disadvan-

taged because of incomplete sequence information. Additionally,

for exome and genome sequencing data, we included flanking

intronic regions and developed a method to impute missing

sequence data based on phylogenetic information. Second,

from the initial read mapping results, a binary matrix is gener-

ated indicating which alleles a specific read could be aligned to

with the least number of mismatches (Fig. 1B). Finally, based on

this matrix, a special case of the set cover problem (Karp, 1972)

is formulated as an integer linear program (ILP) that selects

up to two alleles for each locus simultaneously, maximizing

the number of mapped reads that can be explained by the

predicted genotype (Fig. 1C). Besides the major HLA-I alleles

A, B and C, minor alleles G, H and J are considered during

optimization, as long subsequences of these minor loci show

high similarity with major loci, occasionally causing ambiguous

read alignments.

Furthermore, we present a comparison of OptiType against

previously published methods on RNA sequencing, exome

sequencing and WGS datasets, and evaluate its performance in

a clinical setting on in-house lymphoblastic leukemia patient

data. Additionally, we investigate the influence of coverage

depth on prediction performance using a sample specifically en-

riched for the HLA region and simulated sequencing data.

Finally, we summarize and discuss the results, and give an out-

look on the possible applications of OptiType.

2 METHODS

2.1 Reference construction from phylogenetic information

HLA nucleotide coding DNA sequences (CDS), genomic nucleotide

sequences and feature annotation for all HLA-I alleles have been

obtained from the IMGT/HLA database [Release 3.14.0, July 2013

(Robinson et al., 2013)] for read mapping reference sequence

construction.

Reference sequences for RNA-Seq data were built by concatenating

exon 2 and 3 coding sequences, which were available for all alleles in the

database. Mapping DNA sequencing data, however, required taking the

intron sequences flanking exons 2 and 3 into consideration as well, des-

pite the fact that they were not available for the majority of HLA alleles.

To this end, OptiType uses reconstructed intron sequences for partially

sequenced alleles. We impute the missing sequence data by replacing it
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with its closest neighbor with respect to sequence similarity from among

the complete allele sequences. The procedure, therefore, attempts to

reconstruct partial allele sequences based on their closest phylogenetic

relatives with known intron sequences, using the fact that intronic vari-

ability in HLA is characterized by highly systematic mutations reflecting

the ancestral lineage of the alleles (Blasczyk et al., 1997).

Sequence similarity values were obtained from full distance matrices

computed with Clustal Omega 1.2.0 (Sievers et al., 2011). Partial alleles

were partitioned into sets according to their exons with known sequences

to ensure sequence similarity calculation using maximal sequence infor-

mation available. All complete alleles were added to every set, followed

by computing distance matrices between set members’ concatenated exon

sequences. Partial alleles have shown to have 1.66 (� 1.04) nearest neigh-

bors with unique intron sequences on average. Sequences of partial alleles

with multiple nearest neighbors were reconstructed with each of the near-

est neighbors, resulting in 10 779 reconstructed sequences for 6489 partial

alleles.

The quality of sequence reconstruction was validated in a leave-one-

out fashion. Introns 1, 2 and 3 for each of the fully sequenced alleles were

discarded and reconstructed using the remaining alleles, considering only

exon 2 and 3 sequences for nearest neighbor identification. The recon-

structed intron sequences were compared with their original counterparts

and showed a sequence similarity of 99.89% (� 0.43%), corresponding to

an average 1.2 edit distance error on the three introns combined. For

comparison, sequence similarity between introns of the same loci was

found to be 97.36% (� 2.15%), corresponding to 29 nt differences on

average. The used reference sequences can be found in the supplementary

material (S12).

2.2 Read mapping

Read mapping was performed by RazerS3 3.1, which is part of the open

source C++ library project SeqAn (D€oring et al., 2008; Weese et al.,

2012). RNA-Seq data were mapped against the nucleotide CDS reference

library; exome sequencing and WGS data were mapped against the gen-

omic nucleotide reference library. All best alignments for every read with

a sequence identity of at least 97% were taken into account (--percent-

identity 97 --distance-range 0). The maximum number of reported best

matches (--max-hits) was set to infinity. All read matches fulfilling those

criteria were reported in SAM file format.

2.3 Hit matrix construction

A binary hit matrix CR�L was constructed for all reads r 2 R mapping to

at least one allele a 2 L of the reference with Cr;a=1 if read r mapped to

allele a; otherwise, Cr;a=0. Columns of rare alleles whose four-digit sub-

types were not reported in allelefrequencies.net (Gonzalez-Galarza et al.,

2011) or dbMHC (NCBI Resource Coordinators, 2013) at all were

removed from the matrix. To reduce the size of the matrix, reads with

the same mapping profile (i.e. identical rows) were combined and re-

flected in a row weight vector or. Columns corresponding to alleles that

were covered by other alleles were also dropped, where allele b covering a

is defined as ðCT
:;aC:b=jC:;ajÞ ^ ðjC:;aj5jC:;bjÞ with a; b 2 L and reflects

that all reads mapping to a also map to b, with b having additional

mapping reads. The remaining rows and columns were used for model

construction.

For paired-end read data, the full hit matrices were constructed for

both read pairs individually. Rows corresponding to matching pairs of

reads were combined with a point-wise AND operation, and all reads

without mapping mate reads were discarded.

2.4 Optimization problem

We base our approach on the assumption that the correct HLA genotype

explains the highest number of mapped reads. Therefore, we are search-

ing for the best HLA allele combination of up to six major and six minor

HLA-I alleles, which maximizes the number of reads potentially originat-

ing from this selection, under the biological constraints that at least one

and at most two alleles are selected per locus [constraints (1) and (2)]. This

type of problem can be conveniently formulated as an ILP. In contrast to

sufficiently complex probabilistic models capturing uncertanties in the

data, the conditional joint distribution of alleles and further consider-

ations, an ILP formulation can guarantee an optimal solution at the

expense of modeling uncertainty. Solving an ILP finds an optimal solu-

tion to a linear objective function subject to linear constraints and inte-

grality requirements on the variables (Schrijver, 1998). In the following,

we state the problem of finding the best HLA allele combination as

an ILP.

For each allele a 2 L, a binary variable xa was introduced with xa=1,

indicating that a is an element of the solution set S � L. Additionally,

another binary variable yr for each read r 2 R was assigned to represent if

read r is explained by one of the selected alleles a 2 S. For this effect, the

binary hit matrix CR�L was used to construct constraints forcing yr to
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Fig. 1. OptiType’s four-digit HLA typing pipeline. Reference libraries for genomic and CDS are generated by extracting exons 2 and 3 from each known

HLA-I allele. For genomic sequences, flanking intronic regions are also extracted. If some of these regions are missing, phylogenetic information is used

to reconstruct the missing segments from the closest relative HLA-I allele. NGS reads are mapped against the so-constructed HLA allele reference (A).

From the mapping result a binary hit matrix CR�A is constructed for all reads r 2 R mapping to at least one allele a 2 A of the reference with Cr;a=1 if

read r could be mapped to allele a; otherwise, Cr;a=0 (B). Based on this hit matrix, an ILP is formulated that optimizes the number of explainable reads

by selecting up to two alleles (columns of the hit matrix) for each HLA-I locus (C). The selected alleles represent the most probable genotype
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take on yr=1 if read r could be explained by the current solution set

[constraint (3)]. The resulting ILP, maximizing the number of explained

reads, could then be defined as follows:

with or being the number of previously collapsed rows with the same

mapping profile, and A;B, C, G, H and J the sets of alleles for the major

loci HLA-A, B, C and the minor loci HLA-G, H, J. �max and �min rep-

resent the maximum (�max=2Þ and minimum (�min=1Þ number of se-

lected alleles per locus reflecting the diploid nature of the human

genome and allowing homozygosity in the genotype.

As this formulation favors heterozygous allele combinations

because of spurious hits (e.g. from sequencing errors), the objective func-

tion was extended with a regularization term accounting for homozygosity

g rð Þ=

P
a2L

xa � nloci; yr=1

0; otherwise

;

8<
:

where nloci describes the number of loci (here nloci=6Þ. The regularization

term is weighted by a constant � representing the proportion of reads that

have to be additionally explained by an allele combination to choose a

heterozygous solution over a homozygous one. The regularization term

can be directly translated into an ILP formulation, for which an add-

itional integer variable gr for each read r 2 R and constraints (4) to (6)

had to be introduced. Additionally, a small penalization term � was

added to prioritize alleles with full sequence information over recon-

structed alleles contributing to equally good solutions. The ILP is thus

defined as:

where LR � L is the set of reconstructed alleles, and � a small constant

factor penalizing the use of reconstructed alleles (�=0:01Þ.

Evaluation of different values for � was carried out by performing a

nested 5-fold cross-validation stratified for evenly distributed heterozy-

gous and homozygous cases on 253 runs of the 1000 Genomes Project.

Accuracy has been analyzed in terms of percentage of correctly typed

alleles. Different values in the range from 0.000 to 0.050 with a step size of

0.001 have been tested for �, showing best performance with �=0.009.

2.5 NGS datasets

To permit comparison with previously published approaches, the same

publicly available NGS datasets have been used, for which PCR-verified

HLA genotypes were available.

Sixteen samples of a colorectal cancer RNA-Seq study [SRP010181

(Warren et al., 2012)] and 20 samples of low-coverage WGS data of

the HapMap Project (The International HapMap Consortium, 2005)

used by Warren et al. and Kim et al. have been obtained from the

NCBI Sequence Read Archive (NCBI Resource Coordinators, 2013).

Both datasets contained 2� 100 to 2� 102bp long reads produced by

Illumina HiSeq 2000.

For comparison with Boegel et al. and Kim et al., 37 nt long paired-

end RNA-Seq reads generated by Illumina Genome Analyzer II originat-

ing from 50 lymphoblastic cell line samples of CEU HapMap individuals

[ERA002336 (Montgomery et al., 2010)] have been obtained from the

European Nucleotide Archive (Leinonen et al., 2011).

Furthermore, OptiType was validated on two datasets, which have

been used by Major et al. They benchmarked their method on a

HapMap WGS dataset consisting of 41 runs, partly overlapping with

those used by Warren et al., and an exome sequencing dataset consisting

of 182 runs of 1000 Genomes Project samples. Only samples for which

Major et al. predicted full genotypes were considered, resulting in 12

HapMap WGS and 161 1000 Genomes Project datasets. We expanded

this benchmark set by including additional data from the 1000 Genomes

Project (The 1000 Genomes Project Consortium, 2012) consisting of all

253 Illumina HiSeq 2000 and Genome Analyzer II exome sequencing

runs.

To compare OptiType with ATHLATES, we used the publicly avail-

able subset of their benchmark dataset consisting of 11 samples from the

1000 Genomes Project (Liu et al., 2013). To assess the method on clinical

samples, we included an in-house generated dataset, which cannot be

made publicly available because of privacy concerns. The dataset con-

sisted of 10 exome sequenced acute lymphoblastic leukemia (ALL) pa-

tients with experimentally determined HLA types. Exome enrichment of

the samples was performed using the SureSelect Human All Exon V2 kit

(Agilent Technologies; B €oblingen, Germany) or the SeqCap EZ Human

Exome Library V2 kit. The resulting libraries were sequenced on an

Illumina Genome Analyzer IIx using paired-end mode with 76bp per

read. On average, 94 million reads were produced per sample, resulting

in an average coverage of 90� on the whole exome. Furthermore, two

samples of a single patient were used, one of them enriched with a

SureSelectXT Human All Exon V5 kit (Agilent Technologies;

B €oblingen, Germany), and the other with a custom SureSelect HLA

kit provided by Michael Wittig (Institute of Clinical Molecular

Biology, Christian-Albrechts-University of Kiel, Germany) and Agilent

Technologies to enrich the HLA loci. Both samples were sequenced with

an Illumina HiSeq 2500 sequencer with 101 bp long reads.

Detailed sample and run identifiers are listed in Supplementary Table

S11. The binary hit matrices of the iVacALL samples can be found in

Supplementary Material S13.

2.6 Coverage depth simulation

To investigate the influence of coverage depth on prediction accuracy,

artificial data were generated from all 1000 Genomes Project exome
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sequencing benchmark samples using randomized subsets of decreasing

size drawn from the original reads to simulate different coverage depth

conditions, until the number of remaining reads amounted to as little as

�0.2� fold coverage on HLA-I loci.

2.7 Performance measure

We based our comparison on the percentage of correctly predicted HLA

alleles (two-digit and four-digit) per sample. This measure was used by

Boegel et al. and is similar to the definition of sensitivity used by Warren

et al. and accuracy by Kim et al. Correctness of zygosity prediction was

used as a second, independent performance measure, where the zygosity

of a locus was considered to be correct if the predicted zygosity matched

the experimentally determined zygosity without considering the correct-

ness of the typed alleles.

2.8 Implementation and availability

The NGS analysis pipeline was implemented in Python 2.7 using the

Pandas 0.12 (pandas.pydata.org) module with HDF5 1.8.11 (www.

hdfgroup.org/HDF5) data persistence support. Read mapping was

performed using RazerS 3.1 (Weese et al., 2012) and Bowtie 2

(Langmead and Salzberg, 2012).

The ILP was formulated with the Python package Pyomo, which is

part of Coopr 3.3 (software.sandia.gov/trac/coopr), and solved with

ILOG CPLEX 12.5 (www.ilog.com). CPLEX is free of charge for aca-

demic use, but open-source ILP solvers like GLPK can be used as well,

with a single configuration option. Statistical analysis was conducted with

R 3.0.2. Bootstrapping with 100 000 repetitions was used to calculate

95% confidence intervals. OptiType is available under a BSD open-

source license. The complete source code can be downloaded from

github.com/FRED-2/OptiType.

3 RESULTS

HLA typing with four-digit-level accuracy is essential for clinical

applications like the development of individualized patient-

specific vaccines and transplantation. Therefore, OptiType has

been optimized to yield correct HLA typing results on four-digit

resolution (i.e. on the protein-coding level) for distinct read

lengths and different types of sequencing technologies.

Performance of OptiType has been evaluated on exome sequen-

cing, WGS and RNA-Seq data.

3.1 Overall performance

OptiType was benchmarked on all datasets that were used by

other in silico methods, including HLAminer by Warren et al.,

ATHLATES by Liu et al., seq2HLA by Boegel et al., HLAforest

by Kim et al. and the most recent HLA typing method by Major

et al. On the 361 benchmark samples, OptiType achieved an

accuracy of 97.1% (CI95: 96.1–97.80%) on four-digit level and

99.3% (CI95: 98.7–99.7%) on two-digit level, correctly predicting

939 of 950 heterozygous loci and 127 of 133 homozygous

loci (Supplementary Table S10). Because two-digit typing has

little relevance to clinical applications, we present only four-

digit performance in the comparison.

OptiType outperforms comparable methods on all datasets by

4 to 15% accuracy, corresponding to a 65 to 83% lower rate of

incorrect allele predictions (Fig. 2, Supplementary Table S1).

Statistical significance was confirmed in each case by a sign

test at an �-level of 0.05. Only ATHLATES showed comparable

performance on their benchmark dataset consisting of 11

samples.

Applying OptiType on all 253 paired-end Illumina exome

sequencing runs of the 1000 Genomes Project yielded an average

accuracy of 97.6% (CI95: 96.7–98.4%). Detailed prediction

information can be found in Supplementary Table S2.

Heterozygosity was correctly predicted for 667 of 676 (98.7%),

and homozygosity for 80 of 83 loci (96.4%).
Performance of OptiType has also been benchmarked on an

in-house exome sequencing dataset of 10 ALL patient samples,

which have been gathered as part of the iVacALL project

(Kyzirakos et al., 2013), yielding an accuracy of 96.7% (CI95:

91.7–100%). All heterozygous and homozygous cases were

detected correctly. Detailed prediction results can be found in

Supplementary Tables S1 to S10.

3.2 Influence of intronic reconstruction

To analyze the influence of intron sequence reconstruction for

DNA sequencing data, a modified version of OptiType was

tested on the 1000 Genomes Project dataset using only exon 2

and 3 sequences as reference. Reads were mapped with Bowtie

2’s local alignment (soft clipping) setting to avoid losing reads at

the exon boundaries. Mismatch tolerance was similar to that of

the RazerS3 mapping settings.
As exons 2 and 3 are �270bp long each, a significant amount

of paired reads could be mapped with just one mate, effectively

turning them into single-ended hits. Therefore, we evaluated

prediction performance with two different hit matrix

construction rules: once with allowing mapping pairs only and

once with including mapped reads without mapped mates as

well.
OptiType yielded an accuracy of 93.5% (CI95: 91.8–95.1%)

with the strict mapping pair approach and 90.6% (CI95: 89.0–

92.3%) with the hybrid approach allowing single-end hits as well,

showing a 2.7- to 3.9-fold increase in error compared with the

97.6% accuracy of the default OptiType pipeline using intronic

sequences.

3.3 Influence of HLA enrichment and coverage depth

To determine the effects of specific HLA enrichment on predic-

tion accuracy, we investigated a sample with an average coverage

Fig. 2. Performance comparison of HLA typing algorithms. OptiType’s

average prediction accuracy for major HLA-I loci was compared with

four other published HLA typing methods capable of four-digit typing on

publicly available datasets previously used to evaluate these methods
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depth of �4100� on HLA-I loci, from which a decreasing

number of reads were randomly extracted, simulating decreasing

coverage depth. Based on the extracted subsets of reads, the

HLA genotype was predicted and compared against the experi-

mentally derived genotype to determine accuracy. A fully correct

genotype prediction could be consistently achieved using as little

as �0.3% of the total amount of reads (�12� coverage), corres-

ponding to �15% of reads of the non-HLA specific exome-

enriched sample of the same subject.

To investigate the dependence of prediction accuracy on

coverage depth on a broader set of samples, a simulation experi-

ment was carried out using all 1000 Genomes Project exome

sequencing samples by similarly resampling runs with restricted

number of reads to examine different coverage depth conditions.

A total of 253 individual samples were resampled44000 times.

An accuracy of 95% was shown to be achievable at 10� average

coverage depth on HLA-I loci (Fig. 3).

To assess the influence of read length on performance, reads

were trimmed to 2� 37bp and evaluated similarly. No detrimen-

tal effects have been observed, suggesting that the method is just

as reliable with short reads as with longer reads.

4 CONCLUSION

The presented in silico HLA typing pipeline OptiType performs

fully automated HLA typing with four-digit resolution on NGS

data from RNA-Seq, exome sequencing and WGS technologies.

Performance of OptiType was benchmarked on datasets of the

above sequencing technologies with read lengths ranging from

2� 37bp to 2� 101bp and showed an accuracy of 99.3%

(CI95: 98.7–99.7%) on two-digit-level and of 97.1% (CI95:

96.1–97.80%) on four-digit-level typing. In terms of zygosity

prediction, OptiType achieved an accuracy of 98.4% (CI95:

97.5–99.1%) on 361 benchmarked runs, correctly predicting

939 of 950 heterozygous loci and 127 of 133 homozygous loci.

OptiType is applicable to NGS data of different sources and

outperforms previously published in silico HLA typing

approaches on both two- and four-digit resolution. The latter

is especially important in clinical applications like individualized

vaccine design, prevention of graft-versus-host disease and treat-

ment of autoimmune diseases. Additionally, OptiType, as an

in silico approach, provides the benefits of great cost reduction

and a decrease of turnaround time in comparison with state-

of-the-art experimental HLA typing methods. Runtimes are

typically on the order of minutes per sample (including read

mapping) and thus permit an efficient integration into existing

NGS analysis pipelines.
In general, coverage depth, as seen in the enrichment and

simulation studies, does not play a major role above a cer-

tain level. As previously observed by Major et al., the number

of covered bases has a stronger influence on the prediction out-

come than coverage depth. Short reads, while increasing the

complexity of the problem because of higher mapping

ambiguities, did not have a negative effect on our method’s

performance.
Incorrect predictions were mostly found to be caused by

three distinct issues. First, sequence stretches not covered by

any reads can make it impossible to resolve the ambiguity

between the correct allele and alleles differing only on the un-

covered segments.
Second, zygosity detection occasionally fails in cases where

alleles with high sequence similarity constitute a heterozygous

locus. In such cases including both alleles in the solution has

little impact on the total number of explained reads compared

with including just one of them; therefore, OptiType favors the

homozygous solution. This problem is normally encountered if

the two alleles’ distiguishing segments have considerably lower

coverage than the rest of their sequence. Third, while typing

minor loci generally helps with finding the actual source of

reads mapping to both minor and major loci, it is not able to

resolve all ambiguities for every genotype. Additionally, experi-

mental typings of the benchmark datasets were sometimes found

to be inaccurate, as also observed for the 1000 Genomes Project

samples (Erlich et al., 2011). This limits the accuracy that can be

achieved on these datasets.
It is important to ensure an equal a priori chance for every

allele to be identified by minimizing the disadvantage of alleles

with only partial sequence information. Therefore, only exons 2

and 3 and their flanking intron sequences were used as reference,

reconstructing unknown intron sequences with a phylogeny-

based approach for incomplete alleles. Including intron se-

quences not only helped retain more read pairs, but information

from intronic hits was found to be beneficial to

performance. Furthermore, with an increasing number of

completely sequenced HLA alleles, the used reference sequences

could be extended beyond regions surrounding exons 2 and 3,

reducing ambiguities and increasing prediction accuracy of

OptiType.
To summarize, OptiType is a fast and accurate HLA typing

method based on NGS data, which provides an alternative ap-

proach to common HLA genotyping methods. It can be easily

adapted to predict genotypes for loci other than HLA-I such as

HLA-II and transporter associated with antigen processing.

Nevertheless, the predictions are restricted to the used reference

and, therefore, can predict only known alleles.

Fig. 3. Coverage and read length dependence of prediction accuracy.

To determine the influence of coverage depth on HLA typing accuracy,

reads of 253 exome sequencing runs of the 1000 Genomes Project were

subsampled44000 times to simulate different coverage depth conditions.

To investigate the impact of read length on performance, original reads

were trimmed to 37bp and evaluated with the same subsampling proced-

ure. Read length alone shows little effect on prediction accuracy, and an

average coverage depth greater than 10� over the HLA-I loci was already

found to yield maximal accuracy
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