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SUMMARY

Causal mediation analysis uses a potential outcomes framework to estimate the direct effect of an exposure
on an outcome and its indirect effect through an intermediate variable (or mediator). Causal interpreta-
tions of these effects typically rely on sequential ignorability. Because this assumption is not empirically
testable, it is important to conduct sensitivity analyses. Sensitivity analyses so far offered for this situation
have either focused on the case where the outcome follows a linear model or involve nonparametric or
semiparametric models. We propose alternative approaches that are suitable for responses following gen-
eralized linear models. The first approach uses a Gaussian copula model involving latent versions of the
mediator and the final outcome. The second approach uses a so-called hybrid causal-observational model
that extends the association model for the final outcome, providing a novel sensitivity parameter. These
models, while still assuming a randomized exposure, allow for unobserved (as well as observed) mediator-
outcome confounders that are not affected by exposure. The methods are applied to data from a study of
the effect of mother education on dental caries in adolescence.

Keywords: Causal inference; Copula; Interaction; Mediation analysis; Mediation formula; Potential outcome;
Structural equations model.

1. INTRODUCTION

Mediation analysis has become popular as an approach for studying the mechanisms through which a
treatment or exposure affects an outcome. In practice, mediation analysis utilizes one or more measured
intermediate variables (or mediators) hypothesized to lie on the causal pathway between the exposure and
the outcome. Typically, the analysis involves the decomposition of the overall exposure effect into a direct
effect and an indirect (mediation) effect occurring through one or more intermediate variables.
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A classical approach to mediation analysis involves the fit of linear regression models for the out-
come and mediator (Baron and Kenny, 1986). Recently, causal model (potential outcomes) approaches
have been developed that provide causally interpretable mediation effects under flexible situations, includ-
ing generalized linear models and models with interactions (Robins and Greenland, 1992; Albert, 2008;
Imai and others, 2010b).

One very general approach to causal mediation analysis is based on the mediation formula
(Imai and others, 2010b; Albert and Nelson, 2011; Pearl, 2012). Although a nonparametric version of this
method is possible (Imai and others, 2010b), a very general and practical use of the mediation formula is
via parametric models. Particular applications of the parametric mediation formula are in several recent
papers (Wang and Albert, 2012; Wang and others, 2013).

The mediation formula, which provides a key tool for the methods to be presented in this paper, is based
on the potential outcomes framework. Some basic definitions and notation for this framework are as fol-
lows. We let Yi (x) denote the potential outcome for (response variable) Y if causal factor X were set to level
x for individual i . Note that we will sometimes drop the subscript i when not needed for clarity. The central
problem of causal inference is that a response, Y , for any given individual, is observed (at a given time)
for only one level of the exposure (X). Potential outcomes for exposure levels not actually observed are
referred to as counterfactuals. To define mediation effects, we use nested potential outcomes. For example,
Y (x, M(x ′)) denotes the potential outcome for Y if exposure, X , were set to x , but the mediator, M , set
to its potential outcome if X were set to x ′. We let E{(Y (x, M(x ′))} denote the average of this potential
outcome over a specified population. Then we define the direct and indirect effects, respectively, as

D(x) = E{Y (1, M(x))} − E{Y (0, M(x))}, I (x) = E{Y (x, M(1))} − E{Y (x, M(0))}. (1.1)

Note that D(x) and I (x) represent “natural” direct and indirect effects whereby the mediator, M , is set
to the value (potential outcome) that would “naturally” be observed under the specified exposure level.
These estimands are in contrast to those of “controlled” direct and indirect effects whereby M is fixed
at a particular common value. The total effect, T = E{Y (1, M(1))} − E{Y (0, M(0))}, can be written as
T = D(0) + I (1) = D(1) + I (0), demonstrating that the natural direct and indirect effects represent an
exact decomposition of the total exposure effect.

A key assumption in the identification of the natural direct and indirect effects (as used, e.g., by
Imai and others, 2010b) is sequential ignorability. This assumption (discussed in detail in Section 2 below)
comprises two conditions loosely stated as follows: (i) there are no unobserved confounders of the X–M or
X–Y relationships and (ii) there are no unobserved (baseline or post-exposure) M–Y confounders. Unfor-
tunately, these assumptions are not testable, although the first condition can sometimes be justified by the
design, namely, when the exposure or treatment is randomly assigned or a sufficient set of prognostic base-
line variables measured. The second part of the assumption, however, is generally difficult to make with
confidence due to the possibility of unobserved M–Y confounders. For this reason, a number of schol-
ars (including Imai and others, 2010b) emphasize the importance of conducting a sensitivity analysis to
accompany mediation effect estimates.

Approaches to sensitivity analysis offered in the past (Imai and others, 2010b) have often relied on lin-
ear or linearizable (e.g., probit) models. In these cases, sequential ignorability amounts to assuming a zero
correlation between the error terms for the Y and M models. Imai and others (2010b) proposed a sensi-
tivity analysis that examines the impact of varying this correlation, and Imai and others (2010a) extended
this approach to a binary outcome using a probit regression model. VanderWeele (2010) presented a gen-
eral nonparametric methodology that considered an unobserved confounder between the final outcome and
mediator. Although simple bias formulae are provided under simplifying assumptions, more generally, this
approach may require complex specifications of quantities involving the distribution of (or distributions
that condition on) one or more confounders. Hafeman (2011) simplified the required specifications but
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limited the sensitivity analysis to the case of binary variables (exposure, mediator, and outcome). Recent
contributions include Tchetgen Tchetgen and Shpitser (2012) who proposed a double robust semipara-
metric approach, and VanderWeele and Chiba (2014) who provided a nonparametric approach allowing
for unobserved M–Y confounders affected by X . A limitation of the latter two methods is that the number
of sensitivity parameters increases with the dimensionality of M , making these approaches difficult when
M is not binary.

In the present paper, we propose two new approaches to sensitivity analysis designed to accommodate
different types of variables, each assumed to follow a generalized linear model. The first approach uses
a Gaussian copula model for the joint distribution of potential outcomes for M and Y . Wang and others
(2013) used a similar idea but made stronger assumptions than those of the present approach, resulting in
a different derived model. The second approach considers a “hybrid” model that extends the association
model for Y by incorporating causal as well as observational effects. The new approaches represent novel
alternatives to the predominant approach that specifies effects of unobserved confounders, an approach
that goes back to Cornfield and others (1959); see also Rosenbaum (2002).

Following some background in Section 2, we present the new methods in Section 3. In Section 4, we
jointly apply the two new methods to data from a study of parental factors in the development of dental
caries among adolescents. A concluding discussion, including advantages and limitations of each method,
is provided in Section 5.

2. BACKGROUND

To demonstrate identifiability of natural direct and indirect effects, Imai and others (2010b) assumed the
following, with L denoting a vector of baseline covariates (unaffected by X ):

{Yi (x ′, m), Mi (x)} � Xi | Li = li (2.1a)

Yi (x ′, m) � Mi (x) | Xi = x, Li = li . (2.1b)

Assumption (2.1a) implies that the exposure (X) is random (or that exposure groups are exchangeable)
conditional on L , while Assumption (2.1b) requires that there are no unobserved confounders (whether
baseline or post exposure) of the M–Y relationship conditioning on X and L . The two assumptions together
are referred to as “sequential ignorability”.

Imai and others (2010b) showed that under sequential ignorability (along with a standard consistency
assumption),

E{Y (x ′, M(x))} =
∫

l

∫
m

E(Y | M = m, X = x ′, L = l) dFM |X=x,L=l(m) dFL(l). (2.2)

The right hand side of (2.2) contains only association parameters and is thus estimable under appropriate
association models for Y and M . Rather than integrate over an assumed distribution for L as indicated in
(2.2), a convenient alternative approach is to sum over the empirical distribution of L for the sample or
other chosen reference group (e.g., subsample of exposed subjects). Equation (2.2), along with (1.1), yields
estimable expressions for the natural direct and indirect effects. These expressions have been referred by
Pearl (2012) as the mediation formula, although we tend to refer to Equation (2.2) itself as such.

The assumption (2.1b) can be relaxed slightly for natural direct and indirect effects defined (as in (1.1))
in terms of expected potential outcomes (2.2). In particular, it suffices to assume an “independence in
expectation” version of (2.1b). In the present paper, we consider an alternative assumption which also
allows identification of the natural direct and indirect effects in combination with randomization of X
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(2.1a). This assumption, which we refer to as “mediator comparability”, is written as,

E{Y (x ′, m) | M(1) = m, X = 1, L = l} = E{(Y (x ′, m) | M(0) = m, X = 0, L = l}, (2.3)

for all x ′, m, l. This assumption says that the mean potential outcome of Y for a given exposure level x ′

and mediator value m is the same for subgroups of the two observed exposure groups (X = 0, 1) that are
observed at a common level m of the mediator (and covariate values, l), this holding for each m, l. As with
sequential ignorability, the mediator comparability assumption is not testable from the data. Identifiability
of natural direct and indirect effects using the mediator comparability assumption is shown in Appendix A
of supplementary material available at Biostatistics online.

In a parametric approach to causal mediation analysis, the above potential outcome assumptions are
used in conjunction with parametric association models for the outcome variables. For example, we will
consider the following generalized structural equations model (GSEM),

h2{E(Y | X, M, L)} = β0 + β1 X + β2 M + β3L , (2.4a)

h1{E(M | X, L)} = γ0 + γ1 X + γ2L , (2.4b)

where h1, h2 are invertible link functions, and the β ′s and γ ′s are unknown regression parameters, with
β3, γ2 representing parameter vectors compatible with L . In our approach to estimation, which is based
on maximum likelihood, we need to further specify conditional distributions for each response variable
(Y, M). We may also need to estimate non-regression parameters, for example, variances for normally
distributed outcomes. In the present paper, we will assume response variables to follow exponential family
distributions.

3. NEW SENSITIVITY ANALYSIS METHODS

Our proposed methods, like that of Imai and others (2010b), assume randomization (or conditional
exchangeability) of X . The methods thus focus on the departure from the second sequential ignorabil-
ity condition (i.e., (2.1b) or (2.3)), which is, roughly speaking, the assumption of no unobserved M–Y
confounders. Further, also like Imai and others (2010b), these approaches assume that any M–Y con-
founders are not affected by exposure. Note that such an effect would imply a causal model with a three-
link path, thus departing from the present (two-link) mediation set-up. The former situation is considered
by Imai and Yamamoto (2013) focusing on the linear model case; see also Albert and Nelson (2011) and
Lange and others (2014).

In addition, we note that while our focus is on the estimands D(1) and I (0), the approaches for D(0)

and I (1) are completely analogous. The alternative versions of the direct and indirect effects are generally
equal only in the case of a linear (identity link) model for Y , and in the absence of an X × M interaction.
For other generalized linear models, they will tend to be very close (as in the case of our data example)
when there is no interaction.

3.1 Copula model approach

The first approach uses a Gaussian copula model for the joint distribution of potential outcomes of Y and
M . Specifically, we suppose the existence of continuous latent variables, Y ∗(x ′, m) and M∗(x), corre-
sponding to the (partially) observable potential outcomes, Y (x ′, m) and M(x), respectively, for each x ′,
x , and m. We assume that Y ∗(x ′, m) and M∗(x) are bivariate normally distributed with correlation ρx ′x
(assumed constant over m) conditional on X and L .

We make the standard consistency assumption that Mi (x) = Mi if Xi = x , and Yi (x, m) = Yi if Xi = x
and Mi = Mi (x) = m, where Xi is the observed level of exposure (X) for individual i (similarly, for Mi ,
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Yi ). For discrete M (taking values 0, 1, . . . , K ), we further say that M∗(x) = m∗ is “compatible” with
M(x) = m if P(M(x) � m − 1) < FM∗(x)(m∗) � P(M(x) � m), P(M(x) � −1) ≡ 0, where FM∗(x)(·) is
the cumulative distribution function of M∗(x). From here on in, using the same symbol, one with an
asterisk (the latent version), one without (the discrete, observed version), such as m∗ and m, will imply
that the two values are compatible.

Given the assumed bivariate normal distribution for Y ∗ and M∗, we have the regression relationship,

E{Y ∗(x ′, m) | M∗(x) = m∗} = E{Y ∗(x ′, m)} + σY ∗(x ′,m)

σM∗(x)

ρx ′x [m∗ − E{M∗(x)}], (3.1)

where σ 2
Y ∗(x ′,m), σ 2

M∗(x) denote the variances of Y ∗(x ′, m) and M∗(x), respectively, all expectations (vari-
ances, and so on) in (3.1) being conditional on L = l. From here on in, we will tend to leave conditioning on
X and L out of the notation unless needed for clarity; note that X can be dropped anyway due to the assump-
tion of randomized X (2.1a). We will assume that σ 2

Y ∗(x ′,m) is constant over m and write σ 2
Y ∗

x ′ ≡ σ 2
Y ∗(x ′,m).

We also write ρ0 ≡ ρ00 and ρ ≡ ρ01 for brevity.
Our goal is the estimation of E{Y (x ′, M(x))} for all x ′, x ∈ {0, 1}, which will allow estimation of the

natural direct and indirect effects defined earlier. The case of x ′ |= x requires particular attention, and in fact
is where the sequential ignorability assumption (i.e., (2.1b) or (2.3)) is ordinarily needed. For concreteness,
and applicability to our data example, we focus on the estimand E{Y (0, M(1))}, needed for D(1) and I (0).
The approach for the estimand E{Y (1, M(0))}, which is involved in the expressions for D(0) and I (1), is
derived in a parallel manner by simply switching the values for x ′ and x . We indicate maximum likelihood
estimates (i.e., obtained under (2.4)) using the standard hat notation.

When Y and M are continuous and assumed to be bivariate normally distributed then (3.1) holds for
Y , M in place of Y ∗, M∗, and m in place of m∗. In the special case where Y and M follow additive lin-
ear models (i.e., (2.4a,b) with identity link functions), it can then be shown that D(1) = β1 + ηoγ1 and
I (0) = (β2 − ηo)γ1 where η0 = ρ0(σY0/σM(0)). Under homogeneous variance assumptions, allowing esti-
mation of σY0 and σM(0), the correlation parameter, ρ0, may be used as the sensitivity parameter. The above
and more general expressions for D(1) and I (0) in the continuous Y case are derived in Appendix B of
supplementary material available at Biostatistics online.

For discrete Y , we assume the regression relationship (3.1) for the latent final response variable Y ∗ and
mediator M∗ (also latent if M is discrete). In this case, constraining the marginal distribution of Y ∗(x ′, m)

to be standard normal, the right side of (3.1) can be reduced to give,

E{Y ∗(x ′, m) | M∗(x) = m∗} = ρx ′x m∗
sx , (3.2)

where m∗
sx ≡ [m∗ − E{M∗(x)}]/σM∗(x). Given our assumptions, we have Y ∗(x ′, m) | M∗(x) = m∗ ∼

N (ρx ′x m∗
sx , 1 − ρx ′x

2).
We can then estimate E{Y (0, M(1))} for given ρ0 and ρ using Monte Carlo simulation. Here we present

the algorithm for the case where M is continuous (and assumed normally distributed), in which case we
use M in place of M∗ (and m in place of m∗) in the above expressions. Further details, including the case
where M is discrete, are given in Appendix C of supplementary material available at Biostatistics online.
The algorithm is implemented for selected values for ρ0 and ρ. For each person (i) in the chosen reference
group, do the following for replications r = 1, . . . , R,

(1) Draw ms1ir from N (0, 1). Let ms0ir = [ms1ir σ̂M(1) + Ê{Mi (1)} − Ê{Mi (0)}]/σ̂M(0).
(2) Supposing the response for a given i is Yi ∈ {0, 1, . . . , J }, let yir = ∑J

j=1 j (P̂ir j − P̂ir, j−1), where

P̂ir j = �{[(1 − ρ2
0)

1/2�−1(P̂0ir j ) + (ρ0ms0ir − ρms1ir )]/(1 − ρ2)1/2}, P̂0ir j = P̂(Yi (0, mir ) � j |
Mi (0) = mir , Li = li ) = P̂(Yi � j | Xi = 0, Mi = mir , Li = li ), and mir = ms1ir σ̂M(1) + Ê{Mi (1)}.
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Then, compute Ê{Yi (0, M(1)) | Li = li } = (1/R)
∑R

r=1 yir and Ê{Y (0, M(1))} = (1/n)
∑n

i=1 Ê{Yi (0,

M(1))}. Note that P̂ir j (in the second step above) represents the estimated conditional (cumulative) prob-
ability of Yi (0, m) � j given Mi (1) = mir , and yir represents the estimated conditional expected value of
Yi (0, m) given Mi (1) = mir , both conditional on Li = li .

The natural direct and indirect effects, using the above estimated expected value, may be recomputed
for varying values for ρ0 and ρ thus providing a sensitivity analysis. Confidence intervals for mediation
effects for given ρ0 and ρ can be computed using the percentile bootstrap resampling method.

3.2 Hybrid model approach

In our second approach, we consider a hybrid causal-observational model for Y ,

E{(Y (x ′, m) | M(x) = m, X = x, L = l} = g(x ′, x, m, l), (3.3)

where the right-hand side represents some specified parametric model. A key feature of this model is that
it distinguishes different roles of the exposure, namely (i) a causal factor directly affecting Y (denoted as
X ′ = x ′) and (ii) the observed exposure group or cohort (X = x) representing selection bias. It is possible
to further generalize this model by distinguishing the exposure term in M(x), but this will not be pursued
here.

For our application, we consider the following additive hybrid model

E{Y (x ′, m) | M(x) = m, X = x, L = l} = h−1
2 {β0 + β1cx ′ + β1bx + β2m + β3l}, (3.4)

where β1c and β1b represent causal and cohort (selection bias) effects, respectively. Mediator comparability
is obtained when the coefficients of all terms involving x in the hybrid model (e.g., β1b in (3.4)) are equal
to 0. Note that the hybrid model (3.4) is distinct from previous causal models that may bear a resemblance
to it, for example, Vansteelandt and others (2012) and Lange and others (2012). In the causal models in
the latter papers, the dual exposure indicators both have a causal interpretation, as needed to define natural
direct and indirect effects, whereas, in the hybrid model, they refer to different roles, i.e., causal versus
observational, for the exposure variable.

We also consider the following useful reparameterization of the hybrid model (3.4):

E{Y (x ′, m) | M(x) = m, X = x, L = l} = h−1
2 {β0 + β1(φx + (1 − φ)x ′) + β2m + β3l}, (3.5)

where β1 ≡ β1c + β1b and φ ≡ β1b/(β1c + β1b). As in model (2.4a), β1 in (3.5) represents an association
parameter, namely the effect of X on Y , conditional on M and L , on the scale corresponding to the link
function, h2. The sensitivity parameter, φ, represents the (nonidentifiable) proportion of the association
effect due to the cohort effect, and, consequently, (1 − φ) is the proportion of the association effect due to
the causal effect of exposure. As the causal and cohort effects, β1c and β1b in (3.4), need not be in the same
direction, it is possible for the “proportion”, φ, to be negative or >1. Note that this reparameterization is
only possible in the case of β1 ≡ β1b + β1c |= 0 (i.e., a non-zero observed effect of exposure).

The case of φ = 0 in model (3.5) implies that Y (x ′, m) is (mean) independent of X given M and L , and
thus implies mediator comparability (2.3). In contrast, φ |= 0 represents a departure from mediator com-
parability, and thus from sequential ignorability. Note that, as seen in (3.5), φ does not affect E{Y (x ′, m)}
(nor, consequently, E{Y (x ′, M(x))}) when x ′ = x . This is as expected because then, under consistency,
E{Y (x ′, M(x))} = E{Y (x ′)}, which is estimable under randomization of X (2.1a), that is, without having
to assume (2.1b) or (2.3). In Appendix D of supplementary material available at Biostatistics online, we
provide a demonstration of the identifiability of the natural direct and indirect effects under the hybrid
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Fig. 1. Mediation model for dental data (confounding variables not shown).

model with specified φ. The effect of departures from sequential ignorability on estimates (and percentile
bootstrap confidence intervals) of the natural direct and indirect effects can thus be studied by varying φ.

Some comments are in order on the specification of φ. The direct specification of φ may be difficult
as φ represents a measure of “collider-stratification bias” (see, e.g., Greenland, 2003) whose magnitude,
and even direction, may be non-intuitive to many researchers. Fortunately, this bias, or an approximation,
may be derived as a function of the effects of (possibly multiple) unobserved M–Y confounders on M
and Y . Detailed guidelines for the elicitation of plausible values for φ are provided in Appendix E of
supplementary material available at Biostatistics online.

4. APPLICATION TO DENTAL DATA

We apply the two proposed sensitivity analysis methods to data from a dental caries study
(Nelson and others, 2010). The study examined a cohort of very low birth weight (VLBW, with and without
bronchopulmonary dysplasia, BPD) and a matched group of normal birth weight (NBW) children followed
from birth through adolescence in an earlier study (Singer and others, 1997). This earlier study recorded
parent information, including education, knowledge, and stress factors, from questionnaires given at the
child’s birth, ages 3 and 8. The children who continued on to the dental study underwent a dental clinical
exam at around age 14. This exam provided, among other information, the number of decayed, missing,
and filled teeth (DMFT) and the oral hygiene index score (OHI), an indicator of effective oral hygiene
behavior.

Previous research considered the effect of mother education on child’s dental outcomes at adolescence
(Nelson and others, 2010). Nelson and others (2012) found that adolescents whose mothers had less than
a high school education when the child was age 3 (compared with those whose mother had at least a high
school education) had a higher mean DMFT. In the present paper, we seek to assess the extent to which
this effect is mediated through OHI.

Our specific model variables included a binary exposure variable, “MomEd” (X = 1 for mother’s educa-
tion at or below high school level, “low”, 0 otherwise, “high”), a binary final outcome, “DMFTD” (Y = 1
if the child had DMFT >0 at the age 14 exam, 0, otherwise), and a roughly continuous mediator, OHI
(ranging from 0 to 3, where higher is worse). We assumed that the model variables are causally related as
indicated in the graph in Figure 1. In an initial mediation analysis, we assumed sequential ignorability con-
trolling for the (child) variables: sex, race (African American versus other), and birth status (two indicator
variables for the three categories: VLBW plus BPD, VLBW alone, and NBW).

To describe the links in the mediation model, we assumed a special case of the GSEM (2.4a,b)) com-
prised of a logistic regression model for the binary outcome variable and a linear regression model for the
continuous mediator as follows:

logit{P(Y = 1 | X, M, L)} = β0 + β1 X + β2 M + β3L (4.1a)

M = γ0 + γ1 X + γ2L + εM , (4.1b)

where εM | X, L ∼ N (0, σM
2) and σM

2 is an unknown variance parameter. As an alternative, we consid-
ered the above set of models but where (4.1a) is extended by adding an exposure by mediator (X × M)
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Table 1. Parameter estimates(standard errors) from M L fit of
model (4.1) of DM FT D (without and with Mom Ed x O H I

interaction) and O H I outcomes from dental data

DMFTD

Covariates Additive Interaction OHI

Intercept −1.04 (0.45) −1.24 (0.52) 0.83 (0.15)
MomEd 0.53 (0.33) 0.92 (0.61) 0.29 (0.12)
OHI 0.66 (0.22) 0.86 (0.35) –
MomEd × OHI – −0.35 (0.44) –
VLBW vs NBW 0.21 (0.42) 0.20 (0.43) −0.093 (0.15)
BPD vs NBW −0.46 (0.39) −0.49 (0.39) 0.19 (0.14)
Race 0.57 (0.33) 0.55 (0.33) 0.29 (0.12)
Sex −0.23 (0.33) −0.24 (0.34) 0.04 (0.12)

interaction term. The component models ((4.1a), without and with interaction, and (4.2b)) may be fit sep-
arately using standard likelihood methods. The estimated regression parameters for both the additive and
interaction GSEM (the model for M is the same in both cases) are given in Table 1.

For each GSEM, we then estimated the natural direct effect, D(1), and the natural indirect effect, I (0),
using the mediation formula (2.2) plugging in parameter estimates obtained under model (4.1a,b) and using
the VLBW subsample as the reference group. We present results from the additive model; results from the
interaction model (not shown) are nearly the same, indicating that our mediation effect inferences are not
changed substantially by inclusion of a MomEd by OHI (X × M) interaction effect in the DMFTD (Y )
model.

Using the mediation formula under the assumption of sequential ignorability, we obtained an estimated
natural direct effect (bootstrap 95% confidence interval) of D̂(1) = 0.12 (−0.04, 0.27), indicating that the
probability of a DMFT would increase by an estimated 0.12 if MomEd (X ) were changed from “high” to
“low” but the OHI (M) fixed as if the mother had “low” education. The estimated natural indirect effect
was Î (0) = 0.04 (0.01, 0.09), indicating that the probability of a DMFT would increase by an estimated
0.04 if MomEd was changed from “high” to “low” in a way that naturally affected OHI without affecting
DMFTD through any other path. We also note that the estimated total effect (95% confidence interval)
was T̂ = 0.16 (0.003, 0.31) and the indirect effect (mediation) proportion an estimated 0.26. As indicated
by the above confidence intervals, the indirect as well as the total (but not the direct) effect is statistically
significant at the nominal 0.05 α-level.

The above estimates and confidence intervals rely on the assumption of sequential ignorability (or (2.1a)
and mediator comparability (2.3)). In the context of the dental data, mediator comparability implies that
if set to a common exposure and mediator level, subgroups of the two observed exposure groups (with
high versus low mother education) that are observed at a common observed mediator (oral hygiene index)
level (and the same baseline control variable values) would have the same probability of dental caries.
This assumption is unlikely for the dental data because there are apt to be unobserved confounders of the
relationship between the oral hygiene index and dental caries. It is of interest to examine how the estimates
of the natural direct and indirect effects would change under violations of the mediator comparability
assumption.

We conducted sensitivity analyses for the dental data using the two new approaches described in
Section 3. The results of these analyses, including estimated (natural) direct and indirect effects and 95%
confidence intervals, are presented in Figure 2. Scientific considerations may allow us to narrow the range
of plausible values for the sensitivity parameters, and thus obtain sharper conclusions about mediation
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Fig. 2. Sensitivity analysis for dental data. Maximum likelihood estimates of direct (top) and indirect (bottom) effects
versus sensitivity parameters from copula model (left) and hybrid model (right). Solid line = estimates, dotted lines =
95% confidence interval bounds. For copula method, the upper bounds are for ρ0 = 0.9 (direct), ρ0 = −0.9 (indirect);
the lower bounds are for ρ0 = −0.9 (direct), ρ0 = 0.9 (indirect).

effects. The elicitation of plausible sensitivity parameter values for the present data example is described
in Appendix E of supplementary material available at Biostatistics online.

In the context of our data example, the hybrid model sensitivity parameter, φ, is interpreted as the
proportion of the association parameter, β1, that is due to selection bias, the remaining proportion being
due to a true causal effect of MomEd. In the hybrid model (3.5), as in the corresponding association model
(4.1a), β1 is interpreted as the log DMFTD odds ratio for low versus high MomEd groups conditional on
OHI and the included baseline covariates.

For the dental data, β1 was estimated to be 0.53, providing an estimated odds ratio for low versus high
MomEd of exp(0.53) = 1.69. Our elicitation suggested a range of plausible values for φ of −1 to 0, and
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a best (pessimistic) guess value of −0.4. The value of φ = −0.4 implies that the selection bias portion
of the association effect is −0.4(0.53) 	 −0.21, while the portion due to the causal effect of MomEd on
DMFTD is (1 − (−0.4))(0.53) 	 0.74. Note that this decomposition can be expressed on the odds ratio
scale: exp(0.53) 	 exp(−0.21) exp(0.74) or 1.69 	 (0.81) (2.09). For the copula model, our elicitation
(Appendix E of supplementary material available at Biostatistics online) provided plausible (pessimistic)
values of ρ0 = 0.5 and ρ = 0.55, and a plausible range for ρ0 of [0.1, 0.7] and for ρ of [0.1, 0.75].

As indicated in the hybrid model curves in Figure 2, the elicited value of φ = −0.4 provides an estimate
(95% CI) for D(1) of 0.16 (−0.04, 0.36) and an estimate (95% CI) for I (0) of −0.004(−0.07, 0.07). The
plausible range for φ of [−1, 0] provides a range for the estimate of D(1) of 0.12 to 0.23 and for the
estimate of I (0) of −0.07 to 0.04. Figure 2 further shows that the 95% confidence intervals for I (0) fail
to exclude 0 for values of φ < 0; also, for φ < −0.4, the estimate for I (0) is no longer positive. For D(1),
neither the sign nor lack of statistical significance changes over the plausible range for φ.

From the copula model, the pessimistic scenario of ρ0 = 0.5, ρ = 0.55 results in an estimate (95% CI)
for D(1) of 0.2 (0.05, 0.37) and for I (0) of −0.04(−0.09, 0). As noted in Appendix E of supplementary
material available at Biostatistics online, this scenario may be viewed as more pessimistic than the corre-
sponding values obtained for the hybrid model. For the (lower bound) plausible values of ρ0 = ρ = 0.1, we
obtain an estimate (95% CI) for D(1) of 0.13 (−0.023, 0.28) and for I (0) of 0.028 (−0.03, 0.069). From
these results, and as indicated in Figure 2, the estimate of I (0) is no longer statistically significant (and goes
from positive to negative) as ρ0 and ρ increase over their plausible ranges. Estimates for D(1) increase as
the ρ’s increase and are statistically significant in part of the plausible range (as seen for the “pessimistic”
scenario discussed above). These results are similar (apart from some differences in confidence interval
coverage) to those obtained from the hybrid model approach.

In regard to other features of the graphs, we note that the degenerate confidence interval at φ = 1 in the
hybrid model approach is due to the fact that this value implies no natural direct effect of X on Y . Another
difference between the two methods is that the confidence intervals from the copula model are generally
more symmetric, reflecting the assumption of an underlying bivariate normal distribution for M and Y .

5. DISCUSSION

We have presented two new approaches to sensitivity analysis for estimation of natural direct and indirect
effects via the parametric mediation formula. Both approaches are flexible in allowing different variable
types (i.e., discrete or continuous) for the outcome and mediator, each response variable following a gener-
alized linear model. The approaches involve models (the copula and hybrid, respectively) providing partic-
ular departures from sequential ignorability, specifically (2.1b) or the mediator comparability assumption
(2.3). Although our focus was on natural direct and indirect effects on a difference scale (as in (1.1)),
because both sensitivity analysis methods provide estimates of expected potential outcomes, it would be
straightforward to extend the method to inference on mediation effects defined on alternative scales, for
example, relative risk or odds ratio for a binary Y . Of course, the relationship between the sensitivity anal-
ysis parameters presented here and the mediation effects may be different depending on the scale used for
the latter.

The two new sensitivity analysis methods have been encoded in SAS macros, which are available
for downloading from http://epbiwww.case.edu/index.php/people/faculty/53-albert. These macros include
alternative model and distributional options then those discussed in this paper. Additional examples,
assuming normal and negative binomial distributions for Y , are given in Appendix G of supplementary
material available at Biostatistics online.

A difficulty of previous sensitivity analysis models that involve a hypothetical unobserved confounder is
that the resulting model is generally incompatible with the model without the confounder (Lin and others,

http://epbiwww.case.edu/index.php/people/faculty/53-albert
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1998). This problem is avoided in the proposed approaches as the corresponding sensitivity analysis models
do not directly involve an unobserved confounder. Rather, in each of the new approaches the sensitivity
analysis and association models are compatible by construction; for example, in the hybrid model the
latter is obtained from the former when x ′ = x . However, unobserved confounders can be considered, and
play a useful role, in the elicitation of plausible sensitivity parameter values for the proposed methods as
described in Appendix E of supplementary material available at Biostatistics online.

Between our two proposed methods, the copula model approach has an advantage of involving bounded
(correlation) parameters. In addition, due to its underlying bivariate normal assumption and consequent
linear structure, it appears to have more favorable inference properties, in particular, relatively narrow
and symmetric confidence intervals across the range of sensitivity parameter values. The hybrid model
approach, on the other hand, has the advantage of greater computational simplicity and a single sensitivity
parameter (though more complex hybrid models, for example, involving an X–M interaction, may be
possible).

One way to reduce the sensitivity parameter dimensionality, and allow a simpler graphical presentation,
for the copula model is to assume ρ = ρ0 (analogously, ρ10 = ρ1 for the estimation of D(0) and I (1)). A
more flexible approach would be to assume a functional relationship between the two correlation param-
eters, for example, logit(ρ) = logit(ρ0) + c, where c is a specified constant.

As elaborated in Appendix E of supplementary material available at Biostatistics online, carrying out
both methods has the advantage that each can be used to calibrate and check the other. Although more
work is needed in systematic approaches to combining sensitivity analyses, the present paper suggests the
great potential for multiple models to provide a more refined and complete sensitivity analysis.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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