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Abstract

With the rise of high-throughput sequencing technology, traditional genotyping arrays are 

gradually being replaced by sequencing technology. Against this trend, Illumina has introduced an 

exome genotyping array that provides an alternative approach to sequencing, especially suited to 

large-scale genome-wide association studies (GWASs). the exome genotyping array targets the 

exome plus rare single-nucleotide polymorphisms (SNPs), a feature that makes it substantially 

more challenging to process than previous genotyping arrays that targeted common SNPs. 

Researchers have struggled to generate a reliable protocol for processing exome genotyping array 

data. The Vanderbilt epidemiology center, in cooperation with Vanderbilt Technologies for 

Advanced Genomics Analysis and Research Design (VANGARD), has developed a thorough 

exome chip–processing protocol. The protocol was developed during the processing of several 

large exome genotyping array-based studies, which included over 60,000 participants combined. 

The protocol described herein contains detailed clustering techniques and robust quality control 

procedures, and it can benefit future exome genotyping array–based GWASs.

Introduction

Background and application of the protocol

Exome sequencing refers to high-throughput sequencing technologies that specifically target 

the exome. Exome sequencing is an efficient way to screen for novel variation in the human 

exome; however, although the price of exome sequencing dropped substantially between 

2009 and 2012, it has remained relatively stable since 2012. At around $750 per sample, it is 

still expensive to conduct large-scale GWASs using exome sequencing. Thus, the exome 

genotyping array was introduced as an affordable alternative to exome sequencing. Two 
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major exome genotyping arrays are currently commercially available: the Illumina Infinium 

HumanExome BeadChip array and the Affymetrix Axiom exome array. Each approach 

offers slightly different marker selection variation and customizability. In the present 

protocol, we will focus on the Illumina Infinium HumanExome BeadChip array, hereafter 

referred to as exome chip.

At a cost of less than $50 per chip, exome chips have become cost-effective alternatives to 

exome sequencing for large GWASs. Furthermore, exome chip data require less hard drive 

space for storage and processing than exome sequencing data. For an exome chip 

genotyping project of 39,000 samples, ∼3.6 TB of storage is required to store and process 

the data. If the same size study were done by exome sequencing, ∼400 TB storage space 

could be required. However, exome sequencing enables researchers to identify novel SNPs 

across the whole exome region plus some intron and intergenic regions1,2, whereas the 

exome chip only enables researchers to test a predetermined set of variants, making it 

impossible to detect novel variants. Ideally, exome sequencing provides the highest 

probability for identifying novel disease-associated SNPs. However, at its current price, it is 

impractical to apply it to large-scale GWASs.

Several unique characteristics separate exome chips from other genotyping chips. As the 

name suggests, markers on exome chips are primarily exome SNPs. A detailed description 

of the Illumina exome chip can be found at its wiki site3. For example, in the exome chip 

12v1 (where 12 denotes the number of samples that can be run on a single exome chip and 

v1 denotes version 1), over 92% of the SNPs are in the exome, compared with 5% in the 

Illumina Omni 1 chip (Supplementary Table 1), which is representative of a traditional 

GWAS chip.

The selection criterion for the exome chip design is such that the SNPs must be detected in 

at least several sequencing data sets. Furthermore, the exome chip is designed to concentrate 

on rare variants (rare SNPs) rather than on common ones, a design choice that affords 

exciting new opportunities, such as identifying low-frequency variants associated with 

various diseases and gene-focused CNS analysis4. Many GWASs conducted recently have 

taken advantage of the properties of an exome chip focused on rare variants5–9. The majority 

of the present protocol can be applied to other Illumina genotyping arrays, although the steps 

that are specific to rare SNP calling are most applicable to the Illumina exome chip because 

of the exome chip's focus on rare SNPs.

Previously, the CHARGE (Cohorts for Heart and Aging Research in Genomic 

Epidemiology)10 consortium released strategies for calling SNPs using exome chips11. The 

strategies reported therein are rather descriptive with no step-by-step instructions to follow. 

The protocol presented here provides additional and detailed practical stepwise instructions 

for SNP calling. Detailed steps for quality control (QC) and all scripts used in the protocol 

are also provided. The protocol presented here is designed for Illumina exome chips. 

Although some of the concept described here may apply to Affymetrix Axiom Exome 

arrays, this protocol has not been tested with the Affymetrix Axiom Exome array. A portion 

of this protocol involves manual reclustering using GenomeStudio, which is subject to 
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human judgment. It is possible that two different persons might produce two slightly 

different results by following this protocol.

Development of the protocol

Although the use of the exome chip provides exciting new opportunities, it also introduces 

additional data-processing challenges. GenomeStudio, which is used to cluster all 

genotyping arrays from Illumina, is designed to identify common SNPs as opposed to rare 

SNPs. The algorithm that GenomeStudio uses for clustering, GenCall, was originally 

designed as part of BeadStudio for the Illumina 550K arrays many years before the 

introduction of exome chip in 2011. Multiple studies12,13 have shown that the GenCall 

algorithm is more suitable to the identification of common SNPs than to that of rare SNPs. 

The use of GenomeStudio to cluster exome chip genotyping data will result in many mis-

clustered SNPs. Two types of such incorrect clusters exist: (i) genotypes that were 

incorrectly clustered and therefore assigned the wrong genotype; and (ii) genotypes that 

were set to ‘missing’ as the GenCall algorithm failed to interpret a genotype call. Novel 

strategies are required to correct these mis-clustered rare SNPs.

Assigning the strand orientation of a SNP has always been challenging for genetics 

researchers. Differences in strand orientation can cause confusion when comparing results 

across multiple studies and platforms. Four strand-naming conventions are commonly 

implemented: probe-target, plus-minus, forward-reverse and top-bottom14. The top-bottom 

convention was developed by Illumina, and it is used in all Illumina genotyping arrays. The 

idea behind the top-bottom strand orientation system is to enable Illumina systems to 

consistently designate the same SNP orientation and allele call, even if the SNP database 

(dbSNP) or the human reference changes. Although this idea has its merits, it is not widely 

understood. The rules for determining top and bottom strands are as follows: a SNP is in the 

top strand if the first allele is A and the second allele is either C or G; a SNP is in the bottom 

strand if the first allele is T and the second allele is C or G. However, as for A/T and C/G 

SNPs the definition of strands is still ambiguous, Illumina introduced a ‘sequence walking’ 

technique to designate strand and allele orientation for A/T and C/G SNPs15. The sequence 

walking technique works as follows: let the ambiguous SNP's position be n, and the 

positions before and after n can be denoted as n − 1, n − 2, …, and n + 1, n + 2…, 

respectively. Two walkers will move away from n to the left and to the right one nucleotide 

at a time. Thus, a new pair of nucleotides is observed each time (the first would be (n − 1/n 

+ 1)). If an A or T is observed in the first unambiguous pair on the 5′ side of the SNP, then 

the SNP is defined to be in the top strand; if A or T is observed in the first unambiguous pair 

on the 3′ side of the SNP, then the SNP is defined to be in the bottom strand. However, even 

when Illumina put this new strand scheme into practice, numerous strand errors continued to 

be generated. When exporting SNP data from GenomeStudio, one option allows switching 

all SNPs' strand orientations to ‘forward’, defined by the forward strand recorded in the 

dbSNP. Some minor differences exist between the dbSNP ‘forward’ and HG19 ‘plus’ strand 

definitions. After converting to dbSNP-forward, 2,055 SNPs are not on the same strand as 

HG19-plus. The majority of these (except 35 SNPs; Supplementary Table 2) can be 

converted to the HG19-plus strand by using the method described in Steps 36 and 37 of the 

PROCEDURE.

Guo et al. Page 3

Nat Protoc. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GenomeStudio displays clusters in two formats: polar coordinates and Cartesian coordinates. 

The Cartesian coordinates display the cluster using the normalized intensity values A and B 

(denoting the two targeted alleles). Polar coordinates display the cluster using the 

normalized R and normalized θ values to denote the y and x axes, respectively. Normalized θ 

represents the angle of deviation from the pure A signal, where 0 denotes a pure A signal 

and 1.0 denotes a pure B signal. Normalized R represents the intensity of the B allele. 

Cartesian coordinates and polar coordinates represent the same clusters from different 

perspectives. For demonstration purposes, polar coordinates will be used throughout this 

manuscript. The color configuration for the clusters is defined as follows: red = AA, purple 

= AB and blue = BB.

Protocol overview

The protocol presented here was developed by the Vanderbilt Epidemiology Center in 

cooperation with VANGARD. This protocol has been used to process multiple large batches 

of exome chip data, and these data have been used in several genetic and cancer studies9,16.

This protocol can be organized into two major sections and 19 subsections.

GenomeStudio section

• Loading the data into GenomeStudio

• Performing automatic clustering

• QC on SNPs located in a haploid genome

• QC based on GenTrain score

• QC based on cluster separation

• QC based on Mendelian error and replication error

• QC based on other criteria

• Calling rare SNPs

• Final fltering

• Exporting from GenomeStudio

Post-GenomeStudio section

• Converting all SNPs to the forward strand

• Checking for gender mismatch

• Checking for race mismatch

• Checking for relatedness

• Checking for Hardy-Weinberg equilibrium (HWE) outliers

• Checking for heterozygosity outliers
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• Checking consistency between exome chip genotype and 1000 Genomes Project17 

or HapMap18 genotype

• Checking for minor allele frequency (MAF) consistency between exome chip and 

1000 Genomes Project genotypes

• Checking for batch effects

The first section of the protocol is carried out using GenomeStudio (Genotyping module 

v1.9.4), the software package that Illumina developed for various genomic analyses. 

GenomeStudio includes nearly a hundred QC parameters, with many holding crucial QC 

information. Because GenomeStudio is a commercial software package, however, many of 

its algorithms and parameter calculations are not transparent. To improve the cluster 

accuracy, a series of QC procedures can be carried out in sequential order. Screening 

through all of them would take months. On the basis of the recommendation of Illumina19 

and our own experience, the protocol given here describes the most meaningful QC 

parameters to check in GenomeStudio and the proper order in which they should be 

checked. As to the post-GenomeStudio section, the order in which its subsections are 

implemented is not important. If desired, parallelization can be applied, except for the 

subsection in which SNPs are converted to forward strands, a task that should be performed 

first after exporting data from GenomeStudio.

It is important to remember that, unlike other fixed and exact protocols, the protocol 

described here involves a large amount of manual reclustering, the result of which is heavily 

affected by personal perception. Additional details of the steps and examples of cluster 

figures of all scenarios are provided in the ANTICIPATED RESULTS to minimize the 

variation introduced by differing perceptions of different observers.

Rare SNP clustering strategies, which can substantially increase the accuracy of rare SNP 

calls, will also be discussed. Once SNP data are exported into PLINK format, a series of 

additional QC procedures primarily using PLINK are described. Exact command lines used 

for conducting these QC steps are given. All R and Perl scripts used for these QC steps are 

also provided at https://github.com/slzhao/ExonChipProcessing/. Throughout the description 

of this protocol, some strategies that can potentially expedite exome chip data processing 

will also be presented. The final result will be a very clean data set that researchers can use 

for genetic studies with high confidence.

Experimental design

Throughout the PROCEDURE and in the ANTICIPATED RESULTS, specific examples are 

provided to illustrate potential problems that can arise by implementing this protocol and 

their relevant solutions. The examples presented here involve the use of data from over 

39,000 participants from six study groups20. Genotyping of the study was performed by 

Vanderbilt Technologies for Advanced Genomics (VANTAGE) using the Illumina exome 

chip 12v1-1A. Rigorous QC measures were conducted during genotyping. Overall, 377 

HapMap18 trios (Supplementary Table 3) and 179 replicated pairs have been used in this 

example for QC purposes. Including HapMap trio samples and duplicating them as controls 
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in the genotyping plate has become common practice in GWASs. A few QC steps of our 

protocol are dependent on the presence of these control samples.

Materials

Equipment

Δ CRITICAL Because Illumina claims that GenomeStudio was not designed to analyze 

data from studies with large sample sizes, and because projects of big magnitude are more 

vulnerable to corruption, we recommend using a high-powered Windows workstation 

similar to the one described below for large projects so as to lower the chance of file 

corruption and machine crash, because workstations provide more stability than a regular 

personal computer. A proper backup scheme should be implemented to avoid data loss. In 

our case, we configured our drives in Raid 5. Upon failure of a single drive, data could be 

recovered. GenomeStudio also provides a functionality called ‘Save Project Copy As…’ 

under the ‘File’ drop-down menu, which can be used to back up the project. We recommend 

regular backups of the project using this functionality. Δ CRITICAL Except for zCall, all 

packages reported under Software are required to complete this protocol. Different versions 

of the software reported may also work, but they have not been tested. Δ CRITICAL All 

software reported in this section should be installed by following the standard instructions 

provided by the software designer. No special requirements apply.

Files

• Intensity files (.idat). These files are the raw data files from the exome chip. They 

should be provided by the facility that performed the genotyping

• Sample sheets. The sample sheets are CSV files that contain sample information, 

such as plate ID, cell ID, gender and so on. The sample sheets should be provided 

by the genotyping facility

Hardware

• Dell Precision T7600. Operating system: Windows 7 Professional (64 Bit), service 

pack 1. CPU: Intel Exon E5-2687 3.10 GHz, 16 cores, 2 processors. Memory: 192 

GB, DDR3. Storage: 8 TB, 7,200 RPM, RAID 5. Network: Intel 82579LM Gigabit 

network connection Δ CRITICAL The Windows operating system is not optional 

because GenomeStudio is developed for Windows only. GenomeStudio's 

functionality and efficiency is highly dependent on memory availability particularly 

when the memory-based storage option is used. For best time efficiency, we 

recommend at least 128 GB memory for large projects (containing more than 

10,000 samples). Extra CPU and memory allow multiple instances of 

GenomeStudio to be run simultaneously.

• Dell PowerEdge R720xd (225-2110). Operating system: CentOS release 6.5. CPU: 

Intel Xeon E5-2670 2.60 GHz, 32 cores, 4 processors. Memory: 256 GB, RDIMM. 

Storage: 24 TB, 7,200 RPM, RAID 5. Network: Intel Corporation Ethernet 

controller 10-Gigabit X540-AT2 (rev 01) Δ CRITICAL A Linux machine is also 
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needed, because one of the required software programs, EIGENSTRAT21, is 

Linux-specific, and two of the scripts are Linux shell scripts.

Software

• GenomeStudio v2011.1 with Genotyping module v1.9.4. GenomeStudio is 

commercial software developed by Illumina, and it is the only commercial software 

required for this protocol. It contains many analysis modules and is the only 

genotyping module required to process Illumina exome chip data. GenomeStudio 

and the Genotyping module can be downloaded and purchased from http://

www.illumina.com/informatics/sequencing-microarray-data-analysis/

genomestudio.ilmn

• PLINK22 v1.07. PLINK is a WGA analysis toolset with QC features that are useful 

for checking the integrity of the exome chip data. PLINK has been built for 

multiple operating systems; the Linux version is recommended. PLINK can be 

downloaded freely from http://pngu.mgh.harvard.edu/∼purcell/plink/

• EIGENSTRAT (EIGENSOFT v4.2)21. EIGENSTRAT is a software package that 

can detect population stratification on the basis of SNP data using principal 

component analysis (PCA). It is used during the QC step of checking reported race 

accuracy. The EIGENSOFT package can be downloaded freely from http://

www.hsph.harvard.edu/alkes-price/software/

• R v3.02 64bit. R is a statistical programming language with excellent ability to 

create figures. R scripts have been provided to draw QC figures. R is built for 

multiple operating systems; Windows or Mac versions are recommended for better 

navigation. R can be downloaded freely from http://www.r-project.org/

• Perl v5.10.1. Perl is a programming language best known for its ability to conduct 

text file processing. Perl scripts have been provided to conduct various QC checks. 

Perl is built for multiple operating systems; the Linux version is recommended 

because large data sets can more easily be processed in the Linux system than using 

Windows. Perl can be installed to Linux system directly by running the command 

‘curl -L http://xrl.us/installperlnix | bash’ in a Linux shell; administrator privileges 

might be required

• Python v2.7.4. Python is another scripting programming language. Python is built 

for multiple operating systems; the Linux version is recommended because large 

data sets can more easily be processed in the Linux system than using Windows. 

Python comes with all major Linux operating systems

• zCall (ref. 23) v3.3. (Optional) zCall is a variant caller that can be used in 

postprocessing SNPs on the basis of the GenomeStudio report. zCall is optional, 

and the reason for this is explained in ANTICIPATED RESULTS. zCall can be 

downloaded freely at https://github.com/jigold/zCall

• WinSCP 5.5.4. WinSCP is a secure file transfer tool. In this protocol, it can be used 

to transfer data between Window and Linux workstations. WinSCP 5.5.4 can be 

downloaded freely at http://winscp.net/eng/download.php
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• Other scripts and resources. 18 scripts and 8 resource files are necessary for the 

implementation of the present protocol. The detail of each script can be found in 

Supplementary Table 4, and the detail of each resource file can be found in 

Supplementary Table 5. The scripts are used to conduct QC and to generate figures, 

and the resource files are fixed input files used by these scripts. Because Illumina 

exome chip 12v1_A is used as the example chip in this protocol, all resource files 

provided are for version 12v1_A. For other versions of Illumina exome chip, the 

resource files can be downloaded from https://github.com/slzhao/

ExonChipProcessing/. Implementation of the present protocol does not require any 

programming skill, as all scripts and their future updates can be downloaded from 

https://github.com/slzhao/ExonChipProcessing/. The protocol also does not assume 

knowledge of a majority of the listed software because all command lines are 

given. The protocol only assumes some basic knowledge of the proper use of 

GenomeStudio; thus, we will not describe the basic GenomeStudio protocol here. 

For complete GenomeStudio protocols, please refer to the GenomeStudio 

documentation and manual, which can be found at Illumina's support website at 

http://bioinformatics.illumina.com/informatics/sequencing-microarray-data-

analysis/genomestudio.html

Procedure

Loading data into GenomeStudio • TIMING ∼8 h for 39,000 samples

1. Open GenomeStudio and load the intensity files (.idat) into GenomeStudio with the 

sample sheets. The .idat files are the raw data files from the exome chip. They should be 

provided by the facility that performed the genotyping. The sample sheets are .CSV files 

that contain sample information, such as plate ID, cell ID, gender and so on. The sample 

sheets should be provided by the genotyping facility. To decide how to perform the present 

task, please note that option A is suitable for smaller projects. For large projects, option A 

requires multiple manual loading steps because the .idat files and sample sheets are usually 

organized in batches. Option B is more suitable for large projects, where multiple batches 

are available. However, implementing option B requires breaking up the original .idat file 

storage structure. The original .idat file storage structure can be preserved if an extra copy of 

the .idat files storage directory is saved at the cost of extra hard drive storage space and time.

(A) Manual loading of data one sample sheet at a time

i. Follow the standard GenomeStudio protocol (see MATERIALS) to load the data 

one sample sheet at a time into GenomeStudio.

(B) Merging all sample sheets into one using supplement script 
‘MergeSampleSheet.pl’

i. Run MergeSampleSheet.pl with the following operating system-independent 

command:

> perl MergeSampleSheet.pl -d {sample.dir} -o {merged}.csv
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The parameter {sample.dir} is the directory in which all samples sheets are 

located, and {merged}.csv is the merged sample sheet. The use of merged 

sample sheets also requires all of the intensity files (.idat) to be in the same 

directory. The disadvantage of implementing the Step 1B is the loss of batch 

information. Batch information can be preserved by making an additional copy 

of the data at the cost of hard disk space or adding batch information into the 

sample sheet.

? TROUBLESHOOTING

Performing automatic clustering • TIMING ∼16 h

2. Follow the standard GenomeStudio protocol to perform automatic clustering. Automatic 

clustering will be prompted by GenomeStudio during the manual data loading step. Δ 
CRITICAL STEP To improve the overall performance of GenomeStudio, memory-based 

storage can be used. Under Tools → Options → Module → Genotyping, select ‘Use 

memory-based storage’. Using this option requires a large amount of memory. 

Approximately 40 GB of memory is used for an exome chip project that contains 39,000 

samples.

3. In the ‘Samples Table’ of GenomeStudio (located by default in the lower left), select the 

‘Call Rate’ column by clicking on the column header. Sort the Call Rate column in 

descending order by clicking on the ‘Sort column (Descending)’ button located at the top of 

the ‘Samples Table’.

4. Select all samples whose call rate is <95%, right-click to bring up the pop-up menu and 

Select ‘Exclude Selected Sample’ from the pop-up menu. After the mentioned samples are 

excluded, you will be prompted to update ‘sample’ heritability and reproducibility errors and 

to update ‘SNP statistics’. Select ‘Yes’ for both.

5. Remove the excluded SNPs from the cluster for clearer visualization: in the ‘SNP Graph’ 

(by default located at upper left), right-click to bring up the pop-up menu and unselect 

‘Show Excluded Samples’. Δ CRITICAL STEP For studies including large numbers of 

samples, the clustering might look very messy owing to problematic samples. Typically, we 

estimate that 1–3% of samples might fail (call rate <98%) for various reasons during 

genotyping. Data from these samples appear as random dots on the cluster plot, which 

makes the real clusters difficult to identify by eye. This step minimizes the effect of these 

bad samples. Furthermore, in the toolbar just above the ‘SNP Graph’, the third button ‘Plot 

Normalized Values’ (denoted by a ‘1’) enables the user to switch the ‘SNP Graph’ between 

normalized values and un-normalized values. For some ambiguous SNP calls, we 

recommend checking both the normalized and un-normalized ‘SNP Graph’.

6. (Optional) To improve the overall clustering, first exclude all samples whose call rate is 

<99%, and then re-cluster with all samples with a call rate >99%. The resulting clusters 

should be cleaner, albeit at the cost of extra work time.
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QC on SNPs located in a haploid genome • TIMING ∼4 h

7. In ‘Samples Table’, sort samples by ‘Gender’ and select all female samples.

8. Right-click on the selected samples and select ‘Configure Marks’; a ‘Configure Marks’ 

panel will pop up.

9. Click on ‘Add’ and a ‘Select Mark Name’ panel will pop up.

10. In the ‘Select Mark Name’ panel, type ‘female’ in the first text box, and select a color 

using the drop-down menu. Next, click ‘OK’ to close the ‘Select Mark Name’ panel and 

click ‘OK’ to close the ‘Configure Marks’ panel.

11. Repeat Steps 7–10 to identify male samples and select a different color for them.

12. Select ‘SNP Table’ by selecting the ‘SNP Table’ tab (located by default in the upper 

right).

13. In ‘SNP Table’ toolbar, click on ‘Import columns into the table’ (the fourth button); a 

pop-up menu named ‘Import’ will appear. By default, the ‘Column Import’ radio button 

should be selected. Click on ‘Browse…’ to open a file browsing window and select the 

‘PAR_SNPs.txt’ file (provided as a resource file). Click the ‘Open’ button to close the file 

browse window. Click ‘OK’ to import and close the ‘Import’ pop-up menu. A new column 

with the header name ‘PAR’ (pseudoautosomal region) should be added to the ‘SNP Table’. 

The possible values for this column can be either 1, which denotes that the SNP is in a PAR, 

or empty, which denotes that the SNP is not in a PAR.

14. In ‘SNP Table’, click on the ‘Filter rows’ button at the toolbar on top of the SNP Table 

to bring up the ‘Filter Table Rows’ pop-up menu. In the ‘Filter Table Rows’ pop-up menu, 

select ‘Chr’ in the ‘Columns’ section. In the ‘Filter Table Rows’ pop-up menu, select the ‘=’ 

operator from the ‘Expression’ drop-down menu and type ‘X’ in the ‘Value’ text box. Next, 

click on the ‘⇒’ button to add this logical expression into the ‘Filter Tree View’.

15. In the ‘Filter Table Rows’ pop-up menu, select ‘PAR’ in the ‘Columns’ section, and 

select the ‘!=’ operator from the ‘Operation’ drop-down menu and type ‘1’ in the ‘Value’ 

text box. Confirm that under the ‘Sub—Statement’ section the ‘Action’ drop-down menu is 

set to ‘AND’. Click the ‘⇒’ button to add this logical expression into the ‘Filter Tree View’. 

Now, the logical expression under ‘Filter Tree View’ should be ‘(‘Chr’ = X) and (‘PAR’ != 

1)’.

16. Click ‘OK’ to apply filters displayed in ‘Filter Tree View’ to ‘SNP Table’. The pop-up 

menu should disappear and the remaining SNPs should be only from the X chromosome and 

excluding SNPs in PAR.

17. In the ‘SNP Table’, select ‘AB Freq’ column by clicking on the column header. Sort this 

column in descending order by clicking on the ‘Sort column (Descending)’ button located at 

the top of the table.
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18. Manually check the SNPs in descending order, and look for AB clusters with large 

numbers of male subjects. Because males should not appear in the AB cluster on the X 

chromosome, this manual check identifies mis-clustered X chromosome SNPs. Zero these 

SNPs, which is done by right-clicking on a SNP (a row) in the ‘SNP Table’, and by selecting 

‘Zero Selected SNP’. The number of SNPs to be manually checked in this step is arbitrary, 

but we recommend checking at least the first 100 SNPs.

19. Sort the SNPs in the ‘SNP Table’ by call rate in descending order on the Y chromosome. 

The call rate for females on the Y chromosome should be at or near 0%. Zero the SNPs with 

large numbers of females called on the Y chromosome.

20. Sort the SNPs in ‘SNP Table’ by AB cluster frequency in descending order for mtDNA 

SNPs. mtDNA is diploid and therefore should show only AA and BB clusters, although the 

presence of some AB clusters may be due to heteroplasmy. Zero mtDNA SNPs with high 

AB cluster frequency.

21. Manually fix AB clusters for which the NormR position caused the cluster to carry some 

low-intensity samples into the cluster. To do this, move the AB cluster oval up on the y axis. 

Zero any SNPs that cannot be fixed in this way. Three cluster ovals are present in the polar 

coordinate ‘SNP Graph’, denoting the center areas of AA, AB and BB clusters, respectively. 

They can be moved and stretched.

22. Filter out SNPs that have already been manually examined: in the ‘SNP Table’. Use the 

filter rows functionality (described in Steps 14 and 15) to apply the following filters: Chr != 

X, Chr != XY, Chr != Y, Chr != MT, Call Freq = 0 and Edited = 0. Δ CRITICAL STEP To 

avoid redundant work, before advancing to the next step, always filter out previously 

checked and zeroed SNPs. For example, before performing Step 23, apply a filter to exclude 

SNPs on chromosomes X, XY, Y, as well as those in mtDNA, those with a call rate equal to 

zero and those that have been previously edited.

QC based on the Gentrain score • TIMING ∼4 h

23. Examine the GenTrain score in the ‘SNP Table’. In general, SNPs with GenTrain scores 

of >0.7 are clustered correctly.

24. For the clusters with low GenTrain scores (GenTrain score <0.7) that appear fixable, 

manually move the cluster ovals into more proper positions. A cluster oval might not be 

placed in the most ideal position by the GenCall algorithm; an incorrect placement of a 

cluster oval often results in a low GenTrain score. A user can spot these badly placed cluster 

ovals by examining the ‘SNP Graph’. If two or three clusters are clearly identifiable by eye, 

but are not identified by the GenCall algorithm, move the cluster oval to the center of these 

clusters, respectively (left: AA, middle: AB and right: BB).

25. In some cases, a low GenTrain score when there are three clusters visible results from a 

narrow angle of the AA or BB cluster. There is no way to call this SNP completely 

correctly. To resolve these cases partially, sacrifice the BB cluster by moving the BB cluster 

oval to the right. Repeat Step 22.
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QC based on cluster separation • TIMING ∼4 h

26. Sort the SNPs in the ‘SNP Table’ by cluster separation scores in ascending order and 

examine clusters with low cluster separation scores. These low scores usually indicate 

overlapping clusters, very close clusters or SNPs with more than three possible clusters.

27. Manually move the cluster ovals to more appropriate positions to correct these SNPs 

with low cluster separation scores. Repeat Step 22.

QC based on Mendelian error and replication error • TIMING ∼4 h

28. Sort the parent-child (P-C) errors, parent-parent-child (P-P-C) errors and replicate (Rep) 

errors in descending order. Large error numbers (>10) indicate mis-clustering, a bad sample 

or bad genotyping.

29. Manually correct the positioning of the cluster ovals to resolve SNPs with large P-P-C 

and P-C errors.

30. Manually correct the positioning of the cluster ovals to resolve SNPs with large Rep 

errors. Repeat Step 22.

QC based on other criteria • TIMING ∼4 h

31. Sort by the additional parameters described in Table 1 and examine the SNPs at both 

ends of the spectrum of these parameters for errors. The number of SNPs to be examined is 

arbitrary. We recommend examining at least 100 SNPs from each end. Repeat Step 22 after 

examining each parameter.

Final data filtering • TIMING ∼20 min

32. Filter by sample call rate (98% for the Illumina exome chip).

33. Filter by SNP call frequency (95% for the Illumina exome chip).

Calling rare SNPs • TIMING ∼24 h

34. Call rare SNPs either with the variant caller zCall23 (option A) or manually (option B). 

Please consult the relevant section of the ANTICIPATED RESULTS to decide whether to 

implement option A or option B at this juncture of the PROCEDURE. Δ CRITICAL STEP 
This step is crucial for improving rare SNP calling accuracy. Owing to the design choice of 

the exome chip, which attempts to represent exome sequencing and thus concentrates on 

rare variants, GenomeStudio mis-clusters a large portion of the rare SNPs. As these rare 

SNPs are often a major reason for using an exome chip, it is important to recover the rare 

SNPs that can thus get lost.

(A) Calling rare SNPs in zcall

i. Create a GenomeStudio standard report by following the instructions provided by 

the zCall authors (https://github.com/jigold/zCall/blob/master/zCallTips.pptx)

ii. Run zCall using the following command in a Linux shell:
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> runZcall.py --zcall-dir {zcall_dir} --output-dir 

{dir_name} --use-weighted-lr --z-score 6 

{GenomeStudioReport} > zCall.log

The parameter ‘ --z-score 6’ was determined to be the most effective 

threshold for our example data set. Previous studies11,12,23 have also used 7 and 

8 for --z-score threshold. The authors of zCall suggested that the optimal --

z-score value can be determined by recalling common SNPs using various 

values and then computing the consistency with a reference, such as the 1000 

Genomes Project data. The --z-score producing the highest consistency should 

be used. The ‘zCall.log’ is a log file on how zCall is run, which can be stored for 

future reference.

(B) Calling rare SNPs manually

i. In the ‘SNP Table’, select SNPs with MAF <0.01 and call frequency <0.9999 using 

the filter functionality. Filtering by MAF <0.01 ensures the selection of SNPs with 

very low MAF. The filter ‘Call Frequency <0.9999’ ensures the selection of SNPs 

with a small number of samples that are not called. When combining these two 

filters, the researcher obtains a list of SNPs with small or zero MAFs. This list 

contains the most likely rare SNPs mis-called by the GenCall algorithm.

ii. Manually cluster the resulting SNPs (per our experience, about one out of every 

four SNPs of a total of ∼20,000–40,000).

Exporting the data • TIMING ∼4 h

35. Export the data from GenomeStudio in either the standard GenomeStudio format (option 

A) or the PLINK format (option B). GenomeStudio format is a text file format, and it can be 

used as input in other programs such as zCall. The PLINK format is also a text format and 

can be compressed into binary format, which substantially saves storage space. The PLINK 

format has become the standard accepted format for storing SNP data. Thus, we recommend 

exporting data into PLINK format, unless the user has a special circumstance that requires 

the GenomeStudio format. The remaining protocol Steps 36–57 are based on the PLINK 

format export.

(A) Exporting the data in the standard GenomeStudio format

i. Follow GenomeStudio's standard protocol to create a GenomeStudio standard 

report.

(B) Export the data in PLINK format

i. Download the PLINK format by exporting the plug-in from Illumina's website: 

http://support.illumina.com/array/array_software/genomestudio/downloads.html.

ii. In GenomeStudio, go to Analysis → Reports → Report Wizard.

iii. Select ‘Custom Report’, which by default should be PLINK.
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iv. In ‘Report Input Parameters’, select the parameter ‘UseForwardStrand’ as false. 

Click ‘Next’.

v. Choose ‘remove them from the report’. The other two options available at this 

point enable the user to export subset of samples. Click ‘Next’.

vi. In the ‘Zeroed SNPs’ section, choose ‘Include zeroed SNPs in the report’. In the 

‘Visible SNPs in the SNP Table’ section, choose ‘Include all SNPs in the report, 

regardless of whether or not they are visible’. The ‘Visible SNPs in the SNP Table’ 

section appears only when the current ‘SNP Table’ does not display all SNPs. Click 

‘Next’.

vii. Browse to the desired output directory in the ‘Output Path’ text box and input a 

report name in the ‘Report Name’ text box. Click ‘Finish’. A new folder named 

‘PLINK_today's date’ will be created, which will contain .ped and .map files.

viii. Transfer .ped, .map and phenotype files from the Windows workstation to Linux 

workstation using a secure FTP, such as WinSCP 5.5.4. When transferring text files 

from Windows to Linux systems using FTP, confirm that the files are transferred in 

ASCII mode.

ix. In the Linux operating system, convert .ped and .map files to .bed, .fam and .bim 

files to save hard disk space by using the following command:

> plink --noweb --file {exome} --make-bed --out {exome}

The parameter ‘ --noweb’ is required if the web-based version is not being used 

and the local version is installed.

Converting all SNPs to the HG19 plus strand • TIMING ∼1 h

36. Download the .bim file created by the Wellcome Trust Centre for Human Genetics to 

transfer all Illumina genotyping arrays to the forward strand: http://www.well.ox.ac.uk/

∼wrayner/strand/.

37. Download update_build.sh and follow the instruction provided in http://

www.well.ox.ac.uk/∼wrayner/strand/ to convert all SNPs to HG19 plus strand.

Checking for gender mismatch • TIMING ∼2 h

38. To check for gender mismatch, the PLINK file must contain gender information. Gender 

information is automatically exported into the PLINK file, provided that it is available in the 

sample sheet at Step 1. In PLINK, type the following command:

> plink --noweb --bfile {exome} --maf 0.1 --check-sex --out 

{outfile}

The input exome is the GenomeStudio-outputted PLINK .bed file from Step 35B. The 

parameter ‘ --maf 0.1’ tells PLINK to only use SNPs with MAF >0.1, ‘ --check-sex’ 

tells PLINK to perform a gender check between reported and genotype-based gender and 

‘ {outfile}’ specifies that the output file is named ‘ {outfile}.sexcheck’.
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? TROUBLESHOOTING

39. Run the following command to perform gender check on the PLINK results:

> Rscript Gender.R {outfile}.sexcheck {gender}.jpeg

The input ‘ {outfile}.sexcheck’ is the output of the previous step, and 

‘ {gender}.jpeg’ is the name of the figure generated.

Checking for race mismatch • TIMING ∼2 h

40. Extract ancestry-informative markers (AIMs) from the PLINK file exported from 

GenomeStudio with the following command:

> plink --noweb --bfile {exome} --extract AIMs.txt --out AIMs.txt

AIMs.txt is a text that contains all AIMs markers on this exome chip. It is provided as a 

resource file.

41. Run the following command to convert the PLINK file to EIGENSTRAT format:

i. > convertf -p Parameter.PED.EIGENSTRAT > eigen.log

ii. ‘ Parameter.PED.EIGENSTRAT’ is a parameter file that looks like the following:

genotypename: {AIMs}.ped

SNPname: {AIMs}.map

indivname: {AIMs}.ped

outputformat: EIGENSTRAT

genotypeoutname: {filename}.geno

SNPoutname: {filename}.SNP

indivoutname: {filename}.ind

familynames: NO

The parameters ‘ {AIMs}.ped’ and ‘ {AIMs}.map’ are output from Step 40. The 

‘eigen.log’ is a log file recording how EIGENSTRAT is run; it can be stored for future 

reference.

? TROUBLESHOOTING

42. Use the three files produced in the previous step, ‘ {filename}.geno’, 

‘ {filename}.SNP’ and ‘ {filename}.ind’, to run the command:

> perl smartpca.perl -i {filename}.geno -a {filename}.SNP -b 

{filename}.ind -o {out}.pca -p -m 0

The parameter ‘ -m 0’ turns off outlier removal, and ‘ {out}.pca’ is the output. Both 

convertf and smartpca. perl are scripts that come with the EIGENSTRAT package.
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43. Draw a PCA plot in EIGENSTRAT using the following command:

i. > Rscript PCAPlot.R {out}.pca {racefile}

The input ‘ {out}.pca’ is the output of the script in Step 42, and the resulting figure is 

saved as ‘ {out.pca.jpeg}’. To produce a racefile, please see Step 55. The racefile needs 

to have the samples in the same order as they are in the ‘ {out}.pca’ file.

Checking for relatedness • TIMING ∼4 h

44. In PLINK, exclude SNPs not present in the autosome and independent SNPs with MAF 

>0.1 using the following command:

> plink --noweb --bfile {exome} --maf 0.1 --exclude chr23_26.txt 

--indep-pairwise 50 5 0.2 --out {indepSNP}

‘ chr23_26.txt’ is a text file that contains a list of SNPs from chromosomes X, Y, XY 

and from the mitochondria. The command ‘ --indep-pairwise’ is used for linkage 

disequilibrium-based SNP pruning. Its parameters ‘50 5 0.2’ stand for the window size, the 

number of SNPs to shift the window at each step and the multiple correlation coefficient for 

a SNP being regressed on all other SNPs simultaneously.

45. Check the relatedness of the SNPs not pruned in Step 44 using the following command:

> plink --noweb --bfile {exome} --extract {indepSNP.prune.in} --

genome --out {outfile}

Checking for HWE outliers • TIMING ∼2 h

46. (Optional) If the PLINK files are not organized by race, split the PLINK files by race 

using the following command:

> plink --noweb --bfile {exome} --keep {Caucasian_list} --make- 

bed --out {Caucasian}

‘ Caucasian_list’ is a text file that contains two columns: the Family ID and Individual 

ID. This command will plotted using the followingproduce a new set of PLINK files for 

white participants. If other races are available in the data set, repeat this command using a 

race-specific list file such as ‘ Caucasian_list’ to get PLINK files for other races.

47. Perform the HWE test to identify SNPs that deviate from HWE using the following 

command:

> plink --noweb --bfile {Caucasian} --maf 0.05 --hardy --out 

{outfile}

This command generates a ‘ {outfile}.hwe’ file. The parameter ‘ --maf 0.05’ ensures 

that the HWE test is performed only on SNPs with MAF >0.05, because the HWE test is not 

appropriate for rare variants. As the assumptions of HWE (in particular random mating) may 

be violated in populations containing more than one race, if the data set contains multiple 

races repeat Step 46 using a race-specific list file, such as ‘ Caucasian_list’, to extract 
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PLINK files for each race. Next, repeat the present step to compute the HWE test on that 

racial subset.

48. Examine the P values in the last column of ‘ {outfile}.hwe’. They can be plotted 

using the following command:

> Rscript PlotHWE.R {outfile}.hwe

This plot will draw histograms of HWE P values for all races under the same directory. 

Alternatively, SNPs that deviate severely from HWE can be identified by opening the .hwe 

file in excel and sorting the P value column (last column) from small to large.

Δ CRITICAL STEP Because PLINK does not perform multiple test correction, a large 

portion of the significant SNPs are false positives. Perform a conservative multiple 

correction test such as the Bonferroni correction24 or choose a much more conservative P 

value threshold25.

Checking for heterozygosity and inbreeding outliers • TIMING ∼2 h

49. Compute the inbreeding coefficient using the following command:

> plink --noweb --bfile {exome} --extract {indepSNP}.prune.in --

het --out {outfile}

The file ‘ {indepSNP}.prune.in’ was produced during Step 44. This command produces 

an ‘ {outfile}.het’ file. The sixth column is the inbreeding coefficient F.

50. Compute heterozygosity and draw histograms of heterozygosity and inbreeding 

coefficient F using the following command:

> Rscript PlotHeterozygosity.R {outfile}.het

This command will produce two figures: ‘ {outfile}.heterozygosity.jpg’ and 

‘{outfile}.F.jpg’.

Checking for genotype consistency • TIMING ∼2 h

51. Compute the genotype consistency between duplicated SNPs using supplement file 

‘ ConsistencyDupSNP.sh’ and the following command:

> file= “{exome}” output=“{outfile}.result” sh 

ConsistencyDupSNP.sh

‘ {exome}’ is the PLINK format GenomeStudio output from Step 35B and the consistency 

results will be stored in ‘ {outfile}.result’.

52. If the study contains 1000 Genomes Project samples, check for consistency with the 

1000 Genomes Project data using supplement file ‘Consistency1000G.sh’ and the following 

command:

> file=“{exome}” output=“{outfile}” sh Consistency1000G.sh

? TROUBLESHOOTING
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Checking allele frequency consistency with 1000 Genomes project data by race • TIMING 
∼2 h

53. Get allele frequency information by race by running the following shell script:

> G1kRace=“{race},.., {race}” sh AlleleFreq1000G.sh

The possible parameters for race are the population codes defined by the 1000 Genomes 

Project, and they are ‘CEU’, ‘ASW, ‘GBR’, ‘IBS’, ‘TSI’, ‘LWK’, ‘YRI’, ‘CLM’, ‘MXL’, 

‘PUR’ and ‘FIN’. For detailed population code explanations, please see the 1000 Genomes 

Project population README file at http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

README.populations. The results are stored in a file named ‘ {race}_af_1kg’.

54. Generate the input racefile. A racefile has three columns: Family ID, Individual 

ID and Race. Family ID and Individual ID are taken from PLINK file directly. The possible 

choices for Race are ‘W’, ‘B’ and ‘H’ for white, black and Hispanic, respectively.

55. Compute the allele frequency of exome chip data by running the following shell script:

> exome_dir=“{exomePath}” exomeRace=“{racefile}” sh 

AlleleFreqExome.sh

The input ‘ {exomePath}’ is the location of the exome chip binary PLINK files (e.g., .bim 

and .bed). There may be multiple PLINK files in this path to represent batches. The exome 

chip allele frequency will be stored in a file named ‘ final_{race}_g1k_exm’. If the 

racefile contains more than one race, more than one ‘ final_{race}_g1k_exm’ file will 

be produced.

56. Draw a figure to compare allele frequency using the following command:

> Rscript 1000GAlleleFreqPlot.R final_{race}_g1k_exm {out}.jpeg

Checking allele frequency consistency across batches • TIMING ∼2 h

57. Draw a figure using the supplement script ‘ BatchAlleleFreqMatrix.R’ and the 

following command:

i. > Rscript BatchAlleleFreqMatrix.R final_exm_${race} {out}.jpeg

The input ‘ final_exm_${race}’ is the output of Step 56.

? TROUBLESHOOTING

Troubleshooting advice can be found in Table 2.

• Timing

The time it takes to implement this QC protocol is highly variable based on three different 

factors: sample size, computer power and user experience. The timing information provided 

here is based on a project involving 39,000 samples and the equipment listed in the 

Equipment section. The protocols were carried out by experienced individuals. For less 

experienced individuals, the overall time might be doubled.
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Step 1, loading data into GenomeStudio: ∼8 h for 39,000 samples

Steps 2–6, performing automatic clustering: ∼16 h

Steps 7–22, QC on SNPs located in a haploid genome: ∼4 h

Steps 23–25, QC based on the GenTrain score: ∼4 h

Steps 26 and 27, QC based on cluster separation: ∼4 h

Steps 28–30, QC based on Mendelian error and replication error (scale with the number 

of trios and duplicated samples used in the study): ∼4 h

Step 31, QC based on other criteria: ∼4 h

Steps 32 and 33, final data filtering: ∼20 min

Step 34, calling rare SNPs: ∼24 h

Step 35, exporting the data, scale with sample size: ∼4 h

Steps 36 and 37, converting all SNPs to the HG19 plus strand (scale with sample size): 

∼1 h

Steps 38 and 39, checking for gender mismatch (scale with sample size): ∼2 h

Steps 40–43, checking for race mismatch (scale with sample size): ∼2 h

Steps 44 and 45, checking for relatedness (scale with sample size): ∼4 h

Steps 46–48, checking for HWE outliers: ∼2 h

Steps 49 and 50, checking for heterozygosity and inbreeding outliers: ∼2 h

Steps 51 and 52, checking for genotype consistency: ∼2 h

Steps 53–56, checking allele frequency consistency with 1000 Genomes Project data by 

race: ∼2 h

Step 57, checking allele frequency consistency across batches (scale with the number of 

batches): ∼2 h

Anticipated Results

In this section, we discuss a few representative examples of the results to be expected by 

implementing this protocol using real data for a few of the steps.

Step 1

Loading data into GenomeStudio can be a tedious process for large projects because many 

sample sheets can be generated, and GenomeStudio only allows one sample sheet to be 

loaded at a time. The sample sheet identifies each sample with a unique sample ID. The 

nonoptional fields in the sample sheet include Sample_Plate ID and Chip ID, which can be 

used to compute for batch effects. Batch effect in a genotyping study means a difference in 

probe intensity observed between sample batches. The batch can be defined by plate, chip, 

genotyping date, genotyping facility and so on. A Kruskal-Wallis26 test or Fligner-Killeen 

test of homogeneity of variances27 can be used to test for batch effects28. The optional 
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phenotype variables include gender, pedigree information and replicate information. Many 

of these phenotype variables can be valuable parameters for QC at later processing steps.

For large projects, multiple sample sheets will usually be created, and for each sample sheet 

a folder that contains many subfolders is created to hold all of the intensity files (.idat). Each 

subfolder contains .idat files for 12 samples. The parent folder name is numerical and 

represents the BeadChip ID. The idat files are named according to the following convention: 

‘{parent folder name}_{row number}_{column number}_{color}.idat’. For each sample, 

there are two .idat files by default, one for green and one for red.

Steps 2–6

GenomeStudio can perform automatic SNP clustering based on the loaded data, or it can fit 

loaded data on the basis of an existing cluster file. Performing automatic clustering will take 

substantially longer. For exome chip genotyping data from 39,000 samples, 24–48 h are 

usually required for automatic clustering, depending on computing power.

Steps 7–22

GenomeStudio has difficulty clustering on the X and Y chromosomes and mtDNA, because 

they are not diploid. Human males are heterogametic, having both X and Y chromosomes, 

and females are homogametic, having two X chromosomes. mtDNA is solely inherited 

maternally and thus is also a haploid genome. The cluster algorithm of GenomeStudio does 

not take haploid genetics into consideration, resulting in a large portion of mis-clustered 

SNPs in the X and Y chromosomes and mtDNA. There are many PAR variants on the 

exome chip, and they should be excluded owing to the high number of males within the AB 

cluster during examination of the X chromosome. Usually, the PAR variants are labeled as 

the XY chromosome. However, when using the Illumina-provided beadpool manifest, only 

two variants are present on the XY chromosome. Many PAR variants are annotated only to 

the X chromosome. Thus, these PAR variants need to be removed manually when 

examining the X chromosome.

Cases of mis-clustering are easily identified if distinct colors are used to denote data from 

male and female study participants. In Figure 1 are reported examples of misidentified 

clusters for haploid genomes. In Figure 1a is an example of a low-quality chromosome X 

cluster, in which data from male participants should not appear in the AB cluster. A PAR 

variant on the X chromosome might also look similar to the data reported in Figure 1a. 

Figure 1b is an example of a low-quality chromosome Y cluster, in which data from female 

participants should not be called. In Figure 1c is an example of heteroplasmy in the 

mitochondria, in which normally only AA and BB clusters should be called. In Figure 1d is 

an example of a low-quality cluster caused by the vertical position of the AB cluster oval. 

The AB cluster oval is too low, which caused some samples to be called as the AB 

genotype. This cluster can be fixed by manually moving the AB cluster oval slightly up on 

the y axis so that it can exclude the samples called as AB genotype.
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Steps 23–25

After dealing with chromosomes X, Y and mtDNA, the focus shifts to SNPs in the 

autosomal chromosomes. Several QC parameters can be used to identify problematic 

autosomal SNPs. One of the most important parameters is the GenTrain score. The 

GenTrain score is a number between 0 and 1, whereby higher values indicate better 

clustering. Even though it is designed to mimic evaluations made by a human expert's visual 

and cognitive systems, many of the SNPs with low GenTrain scores can be easily ‘fixed’ by 

manual clustering. Figure 2 reports example clusters with a low GenTrain score. Figure 2a is 

an example of a low GenTrain score caused by bad clustering by GenomeStudio, in which 

the AA and AB cluster ovals overlap. Figure 2b shows a SNP obtained after correction of 

the data reported in Figure 2a. This SNP is corrected by manually adjusting the cluster 

ovals’ positions. Figure 2c shows an example of low GenTrain score caused by the position 

of the AB and BB clusters being too close to each other. Data in Figure 2d show that by 

moving the BB cluster oval to the right, the AA and AB clusters are successfully called but 

the BB cluster is sacrificed. According to the criteria recommended by Illumina and the 

CHARGE consortium, both SNPs should be excluded from subsequent analysis, as they are 

very likely to fail further QC tests. In our example study, we flagged these two SNPs as to 

be treated with caution, so future association studies may exclude them at their discretion. 

Figure 3a reports the expected distribution of GenTrain scores after QC.

Steps 26 and 27

Another useful parameter to identify problematic SNPs is the cluster separation score, which 

ranges between 0 and 1. The lower the score, the smaller the space between clusters. Figure 

3b shows the expected distribution of cluster separation after QC. Sorting cluster separation 

scores in ascending order can help identify SNPs characterized by low cluster separation for 

further manual review and correction. In Figure 4a is reported an example of mis-clustered 

SNPs by GenomeStudio. The AA and AB cluster ovals are overlapping, which results in a 

very low cluster separation score. Figure 4b shows the SNP obtained after correction of the 

data reported in Figure 4a. Figure 4c shows an example of low cluster separation caused by 

two clusters in close proximity. In Figure 4d is an example of low cluster separation caused 

by having more than three clusters. The SNPs in Figure 4c,d are not recoverable.

Steps 28–30

The next QC parameters to be examined are the Rep and Mendelian errors. Rep error occurs 

when the genotypes of two replicate samples are different from each other. Mendelian error, 

which is described as P-P-C error in GenomeStudio, denotes apparent de novo mutations in 

the child. P-C error only records error between the child and one of the parents. These 

parameters provide additional QC checks beyond the GenTrain and the cluster separation 

scores. Although de novo mutations are of course possible, a high number of them is 

indicative of a problem in the data. The majority of SNPs should not contain Mendelian 

errors; however, occasionally, a particularly error-rich trio of samples (from child and the 

two parents) can contribute to high numbers of Mendelian errors. These low-quality samples 

can be filtered out by checking genotyping consistency with the 1000 Genomes Project. 

SNPs with excessive Mendelian errors (>10) are candidates for removal. Figure 5a shows an 
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example SNP with good GenTrain and cluster separation scores. However, a few P-P-C 

errors are introduced owing to the lower BB cluster tail being called as AB. Figure 5b shows 

the manually corrected SNP from Figure 5a. In Figure 5c is reported another example of 

inaccurate clustering by GenomeStudio, which can be detected by checking for P-P-C error. 

Figure 5d reports the corrected cluster of the SNP from Figure 5c.

Step 34

zCall can be used to correct mis-clustered rare SNPs. zCall is a variant caller that can be 

used to identify mis-called rare SNPs generated by GenomeStudio. The input of zCall is the 

standard report format of GenomeStudio. Unfortunately, even though zCall recovers a 

portion of the mis-called rare SNPs, it also introduces a large number of false positives. The 

most common type of false positive is inclusion of the wrong samples in the AB cluster, and 

some of the recovered rare SNPs by zCall are not complete (missing samples in the AB 

cluster). A recently published evaluation study29 also showed no significant improvement in 

rare variant clustering by using zCall. Furthermore, the zCall approach requires 

programming skills for interpretation and implementation; thus, it is an optional step and 

recommended for advanced users.

A better alternative approach to zCall is clustering by brute force, which in this case means 

manually clustering large numbers of SNPs. There are over 240,000 SNPs on the exome 

chip, and each manual cluster might take 10–30 s to perform. Manual clustering of 240,000 

SNPs would take roughly 660–2,000 man-hours. The time required is strongly dependent on 

computer power and sample size. Thus, it is important to systematically select only the rare 

SNP candidates that might need manual re-clustering. The brute force method is still very 

time consuming, even after narrowing down the subset of SNPs; however, to achieve 

premium quality calling on rare SNPs, brute force manual clustering is the best approach.

Figure 6a reports an example of mis-clustering by zCall. zCall called two samples (on the 

very right of the AB cluster) as AB genotype. Figure 6b shows another example of mis-

clustering by zCall. zCall is able to capture partially the AB cluster of this SNP, while still 

missing half the samples that should be in AB. The Cartesian plot of these two SNPs can be 

viewed in Supplementary Figure 1.

Step 35B

When exporting the SNP data to PLINK format, users should keep in mind that there are 

duplicated and tri-allelic SNPs on the exome chip. The duplicated SNPs are assigned 

different SNP ‘Names’. Each tri-allelic SNP is presented with two SNP ‘Names’ as well. 

Thus, for any given SNP ‘Name’, there can be only two alleles. When conducting 

association tests using exome SNP data, we recommend using the SNP with higher call 

frequency for duplicated SNPs. A user can choose to extract the tri-allelic SNPs to a 

separate PLINK file because different association tests can be applied to tri-allelic SNPs30.

Steps 38 and 39

Clinical information, such as gender and race, is subject to self-reporting and data input 

errors. Checking reported and genotyped gender consistency provides crucial information on 
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data integrity. PLINK uses SNPs on chromosome X to estimate gender on the basis of the 

heterozygosity rate. For common SNP arrays, SNPs with MAF >0.2 are usually used. 

However, as the number of X chromosome SNPs present on the exome chip is limited, MAF 

>0.1 is used instead as the threshold value in the present protocol. The output of this 

command is a text file that contains six columns. Column 5 is ‘Status’, which can be 

PROBLEM or OK. PROBLEM indicates a problem with gender. Column 6 is the F value, 

which denotes the X chromosome inbreeding estimate. A PROBLEM is assigned if the self-

reported and genotype-based genders do not match, or if the SNP data or pedigree data are 

ambiguous with regard to sex. A male call is made if F > 0.8; a female call is made if F < 

0.2. The PLINK recommended threshold is rather strict for exome chip. For example, in a 

batch from our example study, which contained 6,000 samples, 141 samples had a gender 

‘PROBLEM’ according to PLINK20. However, when drawing the inbreeding estimate 

distribution for males and females, the actual number of samples with gender problems was 

lower. For males, a majority of the samples had F values between 0.95 and 1, whereas only 

a few samples showed extremely low F values. Similarly, for females, the samples with 

outlier F values were clearly visible after drawing the distribution of inbreeding estimates. 

The actual number of samples with outlier F values was 25 compared with 141 identified by 

PLINK.

The possible causes of gender mismatch are data entry error, blood transfusions, sample 

mislabeling and cross-contamination. Except for cross-contamination, all of these scenarios 

can be checked if medical records are available. If any of the gender mismatch causes just 

described are recognized to be present, re-genotyping the samples with gender issues is 

recommended. Data in Figure 7a show the expected distribution of chromosome X 

inbreeding estimate for males. Inbreeding estimates should be close to 1 for males; some 

outliers are visible near 0. Data in Figure 7b show the expected distribution of chromosome 

X inbreeding estimate for females. In this case, inbreeding estimates should be in the range 

of −0.4 to 0.4; some outliers are visible near 1.

Steps 40–43

The exome chip design contains over 3,000 AIMs distributed approximately one per 

megabase across the autosomes and chromosome X (Supplementary Table 6). These 

markers were selected because they have demonstrated strong differentiation power between 

African and European ancestry samples sequenced in the 1000 Genomes Project. By using 

EIGENSTRAT21, PCA on these AIM SNPs can be performed. EIGENSTRAT also has the 

functionality to draw PCA figures based on first and second principal components. 

However, a figure with reported race denoted would be more useful. An example of a PCA 

plot can be viewed in Figure 8. Figure 8a shows the first and second principal component 

plots from the 1000 Genomes Project. Figure 8b shows an example of a PCA plot from an 

exome chip study. Notice that in the example exome chip study a subset of interracial 

population between European Americans and African Americans is observable (Figure 8b). 

PCA can help estimate race distribution and check for discrepancies between estimated and 

reported ethnicities. For downstream association analysis, the PCA results from 

EIGENSTRAT can be used as covariates to control for population admixture within the 

models31.
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Steps 44 and 45

A relatedness check can potentially help identify contaminated samples. The command ‘ --

genome’ in PLINK computes identity by state (IBS) distance between pair-wise samples 

using estimates of pair-wise identity by descent (IBD). It outputs a file named 

‘{outfile}.genome’ that contains several useful columns. One contains the parameter 

PI_HAT, which is computed as P(IBD = 2) + 0.5 × P(IBD = 1), where P denotes 

probablility. PI_HAT ranges between 0 and 1, where 0 indicates no relationship, and the 

higher the value the closer the relatedness. For two unrelated individuals, PI_HAT should be 

close to 0. Any value of >0.25 indicates relatedness or cross-contamination. In theory, for 

large a GWAS, there is always a chance of including related people in the study by chance, 

which can affect the results of association tests. If two samples with high PI_HAT value are 

observed, it is recommended to remove the one with the lower call rate, unless the study 

design is family-based. Because PI_HAT is computed between all possible pairs of samples, 

the number of test calculations performed is usually very large, so drawing a histogram will 

not help visualize the samples with high PI_HAT values. Rather, visualizing the data in 

Excel and using its filtering or sorting functionality to display the potential related samples 

is much more effective.

Steps 46–48

The HWE is a principle stating that the genetic variation in a population will remain 

constant from one generation to the next in the absence of disturbing factors. Departure from 

this equilibrium can be an indicator of potential genotyping errors, population stratification 

or even actual association with the trait under study25. Testing for deviation from HWE has 

been commonly used for QC purposes on large GWASs and is one of the few ways to 

identify systematic genotyping errors in unrelated individuals32,33. Because HWE is specific 

to a population, the HWE test should be applied to data from participants of each race 

separately. The last column of the output file contains the HWE test P value. For example, 

in one of the batches of the example exome chip study, 6,901 SNPs had P values of <0.05. 

Because PLINK does not perform multiple test correction, a large portion of the significant 

SNPs are actually false positives. One should perform a conservative multiple correction test 

such as the Bonferroni correction24, or choose a much more conservative P value 

threshold25. If the threshold used is P < 1 × 10−5, the number of SNPs out of HWE reduces 

to 842. Figure 9a shows the expected distribution of the HWE test P values.

Steps 49 and 50

Given the large number of SNPs on the exome chip and a homogeneous sample, calculating 

the heterozygosity rate may also help identify problematic SNPs. Low heterozygosity may 

indicate inbreeding, which can lead to reduced fitness of a population with many 

homozygous genotypes, and high heterozygosity may indicate contamination. Similarly to 

the HWE test, the heterozygosity test should be performed separately on data from 

participants of each race. By using one of the batches in the example exome chip study20, a 

histogram of heterozygosity shows that the majority of the samples have a heterozygosity 

rate of 0.35–0.45. SNPs with heterozygosity that severely deviates from this range could 

indicate a problem. In Figure 9b is reported the expected distribution of heterozygosity rate.
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Steps 51 and 52

Three types of genotyping consistencies exist that can be computed for the exome chip: (i) 

consistency with the 1000 Genomes Project, (ii) consistency between duplicated samples 

and (iii) consistency between duplicated SNPs. Consistency between duplicated samples can 

be checked in GenomeStudio. To check consistency with the 1000 Genomes Project–

released data, several requirements must be met. First, the study must contain 1000 

Genomes Project samples. The use of 1000 Genomes Project samples for QC has been a 

common practice for GWASs. However, only a select number of HapMap samples are 

included in the 1000 Genomes Project. In addition, only ∼60% of the SNPs on the 

HumanExome-12v1_A chip can be found within the 1000 Genomes Project, with the 

number varying slightly depending on the version of 1000 Genomes Project–released data 

used. Thus, the consistency computation is limited to the number of overlapped SNPs 

between the exome chip and the 1000 Genomes Project. There are 754 duplicated SNPs and 

45 triallelic SNPs on the v1.1 exome chip (Supplementary Table 7); these SNPs provide 

additional opportunity for QC.

The 1000 Genomes Project Variant Call Format (VCF) files can be downloaded from http://

www.1000genomes.org/data. However, the files are huge in size (∼1.2 TB), which makes 

the downloading problematic in some instances. We have made a smaller version that 

contains only the overlapping SNPs, and it is supplied as a supplementary file (G1000.vcf). 

This file can also be downloaded from https://github.com/slzhao/ExonChipProcessing/. The 

consistency computed by ‘Consistency1000G.sh’ is the heterozygous genotype consistency, 

and it is defined as the number of heterozygous genotypes consistent between the exome 

chip and the 1000 Genomes Project data, divided by the number of heterozygous genotypes 

identified by the exome chip. Computing heterozygous genotype consistency instead of the 

overall genotype consistency will yield more informative results, because exome chip 

targets rare SNPs, and the majority of the genotype of a sample genotyped on exome chip 

will be homozygous. Homozygous genotypes tend to be the same as the 1000 Genomes 

Project reference homozygous genotype, as all strands were already converted to the plus 

strand in Steps 36 and 37. Thus, the overall genotype consistency is inflated toward higher 

values2. Reasonable heterozygous consistency is usually >97%. Illumina exome chip 

genotyping also contains ∼800 duplicate markers. Computing genotype consistency 

between the duplicate markers provides additional insights into the integrity of the data. The 

expected consistency between the duplicated SNPs is 99%.

Steps 53–56

Another test for genotype quality can be performed by comparing the allele frequency 

generated by implementing the protocol with the allele frequency from a public database. 

Currently, two large public databases exist that are suitable for this purpose: the 1000 

Genomes Project (n = 1,092) and the US National Heart, Lung and Blood Institute (NHLBI) 

Exome Sequencing Project (n = 6,500). Both projects include data on individuals from 

diverse racial backgrounds, and they are suitable for conducting allele frequency consistency 

analysis. An example allele frequency correlation plot can be seen in Figure 10. Notice that 

in this figure a few SNPs show no allele frequency in the example exome chip project but 

high allele frequency in the 1000 Genomes Project. The initial reaction may be that these 
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SNPs must be mis-clustered by GenomeStudio and not caught in the QC process. However, 

after further investigation, we found that the clusters for these SNPs were rather clean (Y.G. 

and H.W., unpublished observations). For example, for SNP exm-rs8181166, the cluster can 

be seen in Figure 11a. Clearly, only the homozygous BB cluster was present. However, in 

the 1000 Genomes Project, the MAF for white participants for this SNP is 0.48. Further 

investigation was conducted into this SNP by examining the probe sequence provided by 

Illumina, and no evidence of error was found (Y.G., unpublished observations). It is possible 

that Illumina provided a corrected probe sequence in the documentation but used the wrong 

sequence on the actual chip. It is also possible that such phenomena are caused by the effect 

of neighboring SNPs, strand orientation problems or an error in the 1000 Genomes Project. 

Another example is SNP exm2216256, which is located in the mtDNA. In Figure 11b, 

clearly, the AA and BB clusters are presented and a few samples are in the AB cluster owing 

to heteroplasmy. In the 1000 Genomes Project, only one allele is reported for this SNP. 

Without clearly identifying the reason for such discordant SNPs between the exome chip 

project and the 1000 Genomes Project, SNPs with large MAF discrepancies should be 

excluded from further use. In addition, there are 339 SNPs with alleles not matching the 

alleles in the 1000 Genomes Projects (Supplementary Table 8); when dealing with these 

SNPs extra caution is required.

Step 57

Batch effects can affect the genotype quality in GWASs34. For GWASs, batches can be 

defined as the 96 samples on a plate. For much larger studies, batches can be defined as each 

cohort of subjects. Many statistical tests can be performed to check for batch effects, such as 

the Kruskal-Wallis test26 and the Fligner-Killeen test of homogeneity of variances27. 

However, for a large study, these tests can be too sensitive, because large sample sizes 

enable the detection of minor differences. For a genotyping study containing thousands of 

samples, minor variation in probe intensity will result in statistically significant P values 

(<0.05). A better way to visually detect batch effects is to draw a scatter or box plot of allele 

frequency and call rate between cohorts and to compute the Pearson correlation between 

batches (Fig. 12). As in HWE and heterozygosity tests, owing to racial differences, allele 

frequencies should be computed separately by race. Figure 12a shows an example 

correlation matrix of allele frequency consistency between batches for subjects with 

European ancestry. Figure 12b shows an example correlation matrix of allele frequency 

consistency between batches for subjects with African ancestry. High correlation values 

indicate a low batch effect. If the correlation is <70%, we recommend checking the 

GenTrain score distribution by batches. If a batch has substantially lower GenTrain scores 

than the other batches in the same study, we recommend that the user re-perform QC on that 

batch by manually checking more SNPs. Afterward, if batch effects still exist, we 

recommend re-genotyping or removing this batch.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Examples of low-quality clusters for the haploid genomes described in Steps 7–22. The x 

axis denotes normalized θ, which represents the angle of deviation from the pure A signal, 

where 0 denotes a pure A signal and 1.0 denotes a pure B signal. The y axis denotes 

normalized R representing the intensity of the B allele. The color configuration for the 

clusters is defined as follows: red = AA, purple = AB, blue = BB and black = no call. The 

number reported above the x axis denotes the number of participants included in the 

corresponding cluster. Male SNPs are denoted in yellow; all non-yellow dots denote female 

SNPs. (a) An example of a low-quality chromosome X cluster, in which male SNPs should 

not appear in the AB cluster. (b) An example of a low-quality chromosome Y cluster, in 

which female SNPs should not be called. (c) An example of heteroplasmy in mitochondria, 

where normally only AA and BB clusters should be called. (d) An example of a low-quality 

cluster caused by the vertical position of the AB cluster oval. The AB cluster oval is too low, 

which caused some samples to be called as the AB genotype.
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Figure 2. 
Example clusters relevant to Steps 23–25. The x and y axes are denoted as in Figure 1. (a) 

GenomeStudio cannot make a correct call on this SNP, as the AA and AB cluster oval 

overlap results in a very low GenTrain score. (b) This SNP can be correctly called by 

manually adjusting the cluster ovals’ positions. (c) The AB and BB clusters are too close to 

each other, causing this SNP to be a no call. (d) By moving the BB cluster oval to the right, 

the AA and AB clusters are successfully called, but the BB cluster is sacrificed.
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Figure 3. 
General distribution of the basic quality control (QC) parameters. (a) Distribution of 

GenTrain score after QC. (b) Distribution of cluster separation after QC.
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Figure 4. 
Example clusters relevant to Steps 26 and 27. The x and y axes are denoted as in Figure 1. 

(a) Three clusters are obviously identifiable; however, GenomeStudio is not able to make a 

correct call. AA and AB cluster overlap, which results in a very small cluster separation. (b) 

The situation in A can be easily fixed by manually re-positioning the cluster ovals. (c) Low 

cluster separation score caused by two very closely located clusters. (d) Low cluster 

separation score caused by four clusters being present rather than three.
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Figure 5. 
Example clusters relevant to Steps 28–30. The x and y axes are denoted as in Figure 1. (a) 

The small ‘x’ indicates P-P-C error (also marked with red line by us for clear viewing). This 

SNP has good GenTrain and cluster separation scores. However, a few P-P-C errors are 

introduced owing to the lower BB cluster tail being called as AB. (b) The problem 

highlighted in a can be fixed by moving the AB cluster oval up. (c) Another example of P-P-

C errors introduced by inaccurate clustering of the AB cluster. (d) The P-P-C errors 

highlighted in c are fixed by narrowing the AB cluster oval.
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Figure 6. 
Example clusters relevant to Step 34A. The x and y axes are denoted as in Figure 1. (a) This 

SNP is recalled by zCall. zCall called two samples (on the very right of the AB cluster) as 

AB genotype. These two samples should be left as no call or BB cluster. (b) zCall is able to 

capture partially the AB cluster of this SNP, while still missing half the samples that should 

be in AB.
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Figure 7. 
Example clusters relevant to Steps 38 and 39 of the PROCEDURE. Chr denotes 

chromosome. (a) Distribution of chromosome X inbreeding estimate for males. Inbreeding 

estimates should be close to 1 for males; some outliers are visible near 0 in a. (b) 

Distribution of chromosome X inbreeding estimate for females. Inbreeding estimates should 

be in the range of −0.4 to 0.4; some outliers are visible near 1.
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Figure 8. 
Example clusters relevant to Steps 40–43. The x axis denotes the first component of the 

PCA and the y axis denotes the second component of the PCA. (a) Scatter plot of first and 

second principal components for 1000 Genomes Project data. ASN, EUR, AFR and AMR 

denote East Asian, European, African and admixed American ancestry, respectively. (b) 

Example scatter plot of the first and second principal components using the example exome 

chip data batch 2.
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Figure 9. 
Distribution of HWE and heterozygosity rates relevant to Steps 46–50. (a) HWE test P value 

distribution. Note that the majority of the SNPs have P values near 1, and a minority of the 

SNPs have very low P values. There are P values spread out between 0 and 1, but they are 

not easily visible owing to their small numbers on the histogram. (b) Heterozygosity rate 

distribution of example data batch 2. The majority of the samples should be in the range of 

0.35–0.45.
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Figure 10. 
Example clusters relevant to the PLINK-related Steps 53–56. The x axis denotes the allele 

frequencies computed from example exome chip SNP data, and the y axis denotes the allele 

frequencies of the same alleles computed from the 1000 Genomes Project SNP data. (a) 

Scatter plot of allele frequency between the 1000 Genomes Project data and the example 

exome chip data for individuals of European ancestry. (b) Scatter plot of the allele frequency 

between the 1000 Genomes Project data and the example exome chip data for individuals of 

African ancestry. The outliers (defined as abs(x–y) >50%) should be checked.
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Figure 11. 
Example clusters relevant to the PLINK-related Steps 53–56. The x and y axes are denoted 

as in Figure 1. (a) This SNP showed zero MAF in the exome chip but the same SNP showed 

high MAF in the 1000 Genomes Project data. Although the exact reason for this discrepancy 

is not known, we recommend removing this SNP for cautionary purposes. (b) Mitochondrial 

SNP at position 3010, which is a known heteroplasmy site. Both AA and BB clusters should 

be presented. However, in the 1000 Genomes Project data, only one genotype is presented. 

In this case, it is more likely that the 1000 Genomes Project made an incorrect call.
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Figure 12. 
Example clusters relevant to the PLINK-related Step 57. (a) Correlation matrix of allele 

frequency consistency between batches for individuals with European ancestry. (b) 

Correlation matrix of allele frequency consistency between batches for individuals with 

African ancestry. A higher correlation indicates a lower batch effect.
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Table 1

GenomeStudio quality control parameters.

Name Type Minimum Maximum Sort

GenTrain Float 0 1 Ascending

Cluster separation Float 0 1 Ascending

P-P-C Error Integer 0 >100 Descending

Rep Error Integer 1 >100 Descending

AB Freq Float 0 1 Descending

Call Freq Float 0 1 Ascending

AA T Mean Float 0 1 Both

AA T Dev Float 0 1 Descending

AB T Mean Float 0 1 Both

AB T Dev Float 0 1 Descending

BB T Mean Float 0 1 Both

BB T Dev Float 0 1 Descending

AA R Mean Float 0 1 Both

AA R Dev Float 0 1 Descending

AB R Dev Float 0 1 Descending

BB R Mean Float 0 1 Both

BB R Dev Float 0 1 Descending
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Table 2

Troubleshooting table.

Step Problem Possible reason Solution

1 GenomeStudio fails to 
locate intensity data

Incorrect directory is provided Usually, the intensity files (.idat) are stored in folders with 
names consisting of just numbers that refer to the beadchip 
ID. Typically, intensity files for 12 samples are stored within 
one folder. The directory provided to GenomeStudio needs 
to be the folder that contains the subfolders that store the 
actual .idat files

GenomeStudio fails to load 
certain samples

Bad genotyping samples These failures do not affect the loading of other samples, and 
there is no need to restart the loading process

38 PLINK will not input 
the .bed file

The PLINK command for inputting 
a .bed file should not specify a file 
extension

Use the command ‘exome’ instead of ‘exome.bed’

41 ‘convertf’ command will 
not run

The .fam file cannot have missing 
values of ‘−9’ for the sixth column

Use the following command in Linux:
‘> awk ‘{$6=1;print}’ {original.ped} > modified.ped’ to 
change all ‘–9’ to ‘1’ columns of the .fam file to 1

52 Two SNPs on the exome 
chip have the same genomic 
position

These SNPs represent different alleles 
at the same position

These SNPs are not duplicated SNPs and should be treated 
as independent of each other
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