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Abstract

Stroke is one of the leading causes of long-term disability today; therefore, many research efforts 

are focused on designing maximally effective and efficient treatment methods. In particular, 

robotic stroke rehabilitation has received significant attention for upper-limb therapy due to its 

ability to provide high-intensity repetitive movement therapy with less effort than would be 

required for traditional methods. Recent research has focused on increasing patient engagement in 

therapy, which has been shown to be important for inducing neural plasticity to facilitate recovery. 

Robotic therapy devices enable unique methods for promoting patient engagement by providing 

assistance only as needed and by detecting patient movement intent to drive to the device. Use of 

these methods has demonstrated improvements in functional outcomes, but careful comparisons 

between methods remain to be done. Future work should include controlled clinical trials and 

comparisons of effectiveness of different methods for patients with different abilities and needs in 

order to inform future development of patient-specific therapeutic protocols.
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Introduction

Stroke is one of the leading causes of long-term disability today, currently affecting 6.8 

million people in the United States alone, and this count is expected to rise to over 10 

million people by the year 2030. As of 2010, estimated costs for treatment and care for 

stroke survivors totaled over $20 billion [1]. To restore stroke survivors’ independence and 

reduce the cost of therapy and care, recent research in stroke rehabilitation has emphasized 

the need for more effective therapy than the current standard of care. In particular, more 

effective rehabilitation of arm function is crucial because of the limitations stroke survivors 

experience in performing activities of daily living [2].

There is evidence that intensive motion training including many repetitions can improve 

therapeutic outcomes both during the acute phase immediately after the stroke and in the 

longer term [3, 4]. Because such intensive training can be costly and require significant 

effort, robotic rehabilitation systems have been proposed to aid the therapist in providing 

consistent, repeatable training with less effort [5–9]. Many of these systems have shown 

therapy outcomes comparable to equivalent intensive training without robotic aid [10, 11] or 

an equal number of unassisted movements [12, 13], suggesting that one of the primary 

benefits of robotic training is its ability to provide intensive therapy at lower cost and effort 

[14, 15].

There is also evidence that passive movements are insufficient to alter motor recovery [16], 

and that patients must be actively engaged and attempting to move [17, 18] in order to 

acquire the beneficial effects of robotic rehabilitation. Indeed, a patient-responsive protocol 

that progressively adapts robotic training and assistance based on measures of movement 

coordination to continually challenge patients has been shown to provide substantially better 

outcomes than previously reported for robotic therapy [19, 20]. This need for active 

engagement in robotic therapy is consistent with evidence that active engagement induces 

neural plasticity in motor learning [21], suggesting that robotic therapy systems could be 

used to monitor patient intent and further promote active patient participation during 

therapy. Recent research has focused on promoting patient engagement by providing 

adaptive robotic training protocols [22•, 23•, 24•, 25] and detecting and responding to 

patient movement intent [19, 26, 27, 28••] to promote neural plasticity and optimize the 

effect of the therapy, thereby improving patient outcomes and reducing the cost of therapy. 

In this article, we will discuss these emerging trends in promoting patient engagement in 

therapy and directions for the future of the field.

Development of Robotic Devices for Upper-Limb Stroke Rehabilitation: A 

Historical Perspective

Assistive robotics to aid people with disabilities include a wide variety of systems, ranging 

from purely assistive devices such as robotic wheelchairs and robotic arms designed to assist 

users during activities of daily living to therapeutic devices designed to improve a user’s 

ability to function independently [29]. In the area of therapeutic devices, robotic delivery of 

stroke therapy has been a topic of research for over two decades [30–32]. In upper-limb 

rehabilitation, the early systems used robotic manipulators to guide patient’s hand and arm 
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to the desired positions in a horizontal plane [33, 34]. These devices focused on 

rehabilitation of elbow and shoulder movement, typically immobilizing the patient’s wrist to 

ensure that the desired motions arm were produced. Controller designs emphasized the 

safety of the robotic devices, using control methods specifically designed to ensure safe 

interaction forces between the user and the device [33]. The early clinical trials showed that 

robotic rehabilitation devices for the upper-limb were safe for human use and provided 

treatment benefits when used in addition to standard therapy [33, 35, 36].

Later devices aimed to expand the capabilities of robotic therapeutic devices by targeting the 

more distal segments of the upper-limb, with wrist and hand modules to attach to previously 

developed arm devices [9, 37–39], standalone wrist and/or hand devices [6, 40–43], or 

whole limb devices that target the shoulder, elbow, and wrist joints simultaneously [44–46]. 

Many of these are exoskeleton type devices, which aim to isolate the motion of individual 

joints. These devices tend to have higher complexity and reduced range of motion as 

compared to endpoint manipulators, but they more effectively target the desired joint(s) by 

eliminating compensatory behaviors, and they enable more precise data collection about the 

motion of the patient’s limb.

In parallel with the development of more capable robotic devices, clinical trials focused on 

identifying potential advantages of robotic therapy for upper-limb rehabilitation, including 

the benefits of active patient participation in therapy. Whereas early studies used robotic 

training as an added treatment in conjunction with standard therapy, later studies conducted 

more careful comparisons in which treatment groups with and without robotic assistance 

received equal amounts of movement therapy in an attempt to determine which specific 

aspects of robotic therapy resulted in functional improvements. In a clinical trial with 127 

subjects, Lo et al. [47] compared functional outcomes for groups receiving three different 

therapy types: robotic therapy (n = 49); intensive therapy with the same movement intensity 

as the robotic therapy (n = 50); and standard therapy, which includes fewer repetitions than 

the intensive therapy (n = 28). In this study, robotic therapy provided similar functional 

outcomes to the intensive therapy, which consisted of the same amount of training, but 

without a robot. Both the robotic therapy and the intensive training provided improved 

functional outcomes when compared to the standard therapy. These results suggest that the 

primary advantages of current devices lie in the reduced cost and effort to provide the same 

training, especially because the intensive training regimen used in this study was not 

practical for a therapist to use as standard care [15]. Currently, the costs of these devices are 

comparable to the cost of intensive therapy [15], but future devices may become cheaper and 

more portable.

Another significant research focus has been the importance of patient engagement in 

therapy. In a randomized controlled trial with 32 stroke patients, Lynch et al. [16] found that 

continuous passive movement did not lead to improvements in motor function, indicating 

that although this type of therapy has shown possible benefits in neural recovery, it is not 

sufficient to produce measurable functional benefits. However, continuous passive 

movement coupled with active movement can contribute to motor recovery, as shown by 

numerous studies with robotic therapy devices [17–20, 48]. Other studies have found 

evidence that movement frequency and patient engagement are primary factors in improving 
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functional outcomes, rather than the use of the robot itself [12, 49]. These results agree with 

evidence that motor rehabilitation is a form of learning [21, 50, 51], so engaging the correct 

areas of the brain through active patient participation should improve learning [21]. Thus, 

these studies point to a need to explore strategies for optimizing therapy protocols by 

promoting patient engagement in therapy.

Toward Increased Patient Engagement in Therapy

Since the importance of patient engagement has been demonstrated in many studies of 

robot-assisted stroke therapy [12, 17–20, 48, 49], recent work has focused on methods to 

engage patients more actively in their therapy. In the field of robot-assisted stroke therapy, 

there have been three main approaches to promoting patient engagement: (1) assist-as-

needed algorithms to provide the minimal robotic assistance necessary for the patient to 

complete a motion, (2) detection of patient intent to move, and (3) virtual reality games for a 

more immersive experience. This review will focus on the first two approaches, which are 

more closely related to robotic systems. Both of these methods require effort from the 

patient to complete movements, but the nature of the effort and the timing is different, 

making these two schemes appropriate for different scenarios, depending on the needs of the 

patient. The virtual reality literature has been extensively reviewed elsewhere [52].

Assist-as-Needed Control Algorithms

Assist-as-needed algorithms focus on providing the minimal amount of robotic assistance 

necessary for a patient to complete a movement, thus requiring significant effort from the 

patient. Many methods have been proposed to determine the necessary amount of assistance 

(see Table 1). The simplest controllers of this type are impedance controllers designed to 

keep the patient’s hand on a particular path during reaching motion. A simple impedance 

controller compares the position and velocity of the robot to a desired reference trajectory 

and applies a force proportional to a weighted sum of the position and velocity errors [66]. 

In the case of robotic stroke therapy, if the patient’s hand deviates from the path, then these 

controllers provide a restoring force proportional to the perpendicular distance from the path 

[55, 56]. Thus, if the patient is able to complete the prescribed movement successfully, then 

the robot does not apply any forces. Other controllers specify both a desired path and a 

desired completion time, adding assistance in moving along the path toward the target. A 

desired trajectory is defined—typically a minimum jerk trajectory (a specific trajectory type 

with a smooth, bell-shaped velocity profile that minimizes the change in acceleration during 

the movement [67]) or an average trajectory pre-recorded from healthy subjects. Then, the 

robot provides an assistive force proportional to the distance the subject’s arm lags behind 

the desired trajectory [19, 54]. Although most of these controllers prescribe a specific 

trajectory between the starting point and the target point, there is also an alternate strategy of 

allowing subjects to choose their own trajectory, while still assisting movement toward the 

target [53]. Feasibility of these systems has been confirmed [53, 54], and trials with stroke 

patients have demonstrated that these algorithms result in a reduction in muscle tone [19], 

significant functional improvements [68], and better functional improvements than robotic 

therapy designed to mimic the intensity of traditional therapy [17].
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Although these controllers showed promise in clinical trials, there is still a tendency (often 

termed “slacking”) for users to rely heavily on the assistive force [69]. To compensate for 

this tendency, many implementations include a forgetting term in the controller, which 

decreases the amount of assistance after each successful trial, encouraging more active 

participation by the subject [22•, 23•, 24•, 25, 57, 58•, 59–63, 70–72]. Many of these 

controllers explicitly model and estimate the inertia and damping of the robotic system and 

the patient’s arm, and they typically compensate fully for forces due to these properties [25, 

57, 58•, 59, 70, 71, 73]. Many of them also model the patient’s effort contribution at various 

points in the workspace (with or without inertia and damping compensation). Since an 

explicit model is not known, an estimate of the patient’s effort is modeled using radial basis 

functions (RBFs) learned at many points covering the workspace, and these estimated 

functions are updated throughout training [22•, 25, 57]. Others use Bayesian learning 

techniques to determine the appropriate amount of assistance needed to complete the task 

[72]. In one implementation by Pérez-Rodríguez et al. [23•], the learned model of patient 

ability is used to anticipate deviations from a desired trajectory and apply corrective forces 

before the deviations occur, thus reducing the force applied by the robot. Wolbrecht et al. 

[25, 57] compared their adaptive controller with a forgetting term to a version without a 

forgetting term in trials with stroke patients and healthy subjects, showing that the forgetting 

term leads to higher levels patient involvement in therapy. More recent improvements in the 

model of patient effort have included directionality of movement as well, since stroke 

patients often have more difficulty with flexion than extension, or vice versa, but so far, this 

improved controller has only been validated with unimpaired subjects [65••]. This group 

also plans to include velocity dependence in their model in the future, and testing with 

stroke patients is planned [65••].

Another promising alternative is to adaptively adjust the difficulty of the movement task. 

Masia et al. [64] asked subjects to track a target moving in a sinusoidal pattern with wrist 

movement, and increased the required range of motion after each successful trial. Their 

preliminary results with three stroke subjects showed the potential of this method to increase 

subjects’ range of wrist motion. A larger follow-up study by Squeri et al. [24•] with eleven 

stroke subjects further supported these results, showing improvements in the subjects’ active 

range of motion and measurable improvements to motor function. A different approach to 

adjusting task difficulty was taken by Badesa et al. [74], who used machine learning 

methods to classify the subject’s physiological state as “relaxed,” “medium-stressed,” or 

“over-stressed” based on a number of physiological measures (pulse rate, respiration rate, 

skin temperature, and galvanic skin response) and adjusted the task difficulty accordingly. 

Their results have shown feasibility of the proposed method, but patient trials have not yet 

been conducted.

Great promise has been shown for these assist-as-needed methods to encourage active 

patient participation in therapy by providing the minimum assistance necessary for the 

patient to complete a movement. Clinical trials thus far have demonstrated feasibility of the 

methods and functional improvements as a result of the training. However, controlled 

clinical trials are still needed to compare training methods and quantify possible benefits 

over traditional therapy.
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Detection of Patient Intent

Detection of patient intent has also shown promise as a way to engage patients more actively 

in their therapy. Current methods include triggering based on force, velocity, or time 

thresholds, or detecting movement intent based on electromyography (EMG) or 

electroencephalography (EEG) (see Table 2). Particularly for severely impaired patients who 

have trouble completing movements, these approaches might help encourage patients to 

make an effort to move the affected limb. The simplest implementations of triggered 

assistance use force, position, or time cues as triggers. In force-triggered scenarios, robot 

assistance is initiated when the patient exerts force above a certain threshold in the 

movement direction [12, 38, 40, 49, 75]. A force trigger is appropriate for patients who have 

a severely limited range of motion but are able to exert some force near the starting position 

of the limb; in this case, the patient’s movement intention causes the beginning of the 

movement, and the limb is carried through a range of motion that the patient would be 

unable to achieve unassisted. Similarly, a velocity trigger is appropriate for a patient who 

has a limited range of motion but is able to initiate movement near the starting position. 

Krebs et al. [19] implemented a velocity trigger in which the required velocity threshold 

decreased over time, in order to allow patients with different movement capabilities to use 

the device. In more extreme cases in which a patient is unable to produce sufficient force or 

velocity to trigger robotic assistance, a time trigger can also be used, such that the robot will 

begin to move the patient’s passive limb after a certain amount of time has passed [86]. In 

this case, it is assumed that the patient is attempting to move the affected limb but is unable 

to do so. Another alternative for patients who are unable to produce significant force or 

velocity is to use gaze tracking to select a target and initiate motion [76•].

Other implementations rely on EMG signals from surface electrodes on the patient’s arm to 

trigger-assisted movement upon detection of muscle activation over a specified threshold, 

since some patients may be able to produce muscle activity but not movement or force [19, 

77, 79, 87–89]. These triggered approaches are useful for patients who have limited 

movement capability, but since they allow the patient to remain passive after triggering the 

movement, the patient’s movement intention might not continue for the duration of the 

movement. Therefore, some groups have used EMG continuously throughout a movement to 

ensure continued patient engagement. For example, Song et al. [78•] provided an assistive 

force proportional to the measured EMG levels; their study with sixteen stroke subjects 

showed that this method helped subjects achieve a larger range of motion and improved 

targeting accuracy. However, continuous EMG control methods typically allow significant 

freedom of movement, rather than enforcing a normative movement profile; thus, a criticism 

of these methods is that they may reinforce pathological movement instead of encouraging 

recovery of normal movement patterns. Despite this drawback, the use of EMG signals to 

drive a robotic therapy device has been shown to generate improved muscle coordination 

and reduced spasticity in stroke patients [27, 87, 90], but these studies did not compare 

different treatment methods.

As another alternative, some researchers have advocated the use of EEG to detect movement 

intention through non-invasive surface electrodes on the patient’s scalp [91]. One of the 

primary advantages of using EEG over EMG is that many patients have a tendency toward 
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muscle spasms or activation of the wrong groups of muscles; using EEG allows the system 

to measure movement intention at the brain, thus bypassing these abnormal muscle 

activation patterns. EEG also allows participation by patients who cannot actually produce 

voluntary motion of the affected limb. In this case, mental practice of the movement can still 

activate the necessary regions of the brain, thus inducing some neural plasticity even if 

movement is not produced [92]. Since mental practice has been shown to be more efficient 

when combined with appropriate somatosensory feedback [93], using a robotic system to 

move the patient’s arm can improve the effectiveness of the training. Currently, most EEG-

based systems use motor imagery to trigger movement using a two-state classification; 

subjects are asked to imagine the arm moving or at rest, and the resulting signals are 

classified as a “move” or “rest” cue to determine when to initiate robot assistance [81, 83–

85•, 94, 95]. Typically, the movement is to a predefined target, though Frisoli et al. [82•] 

have enabled subjects to choose target objects independently by combining the EEG cue 

with eye tracking and a Kinect system to detect when the subject is focusing attention on an 

object in the environment. More recently, continuous control has been demonstrated using 

the move/rest classification probability to command a movement speed in the robotic system 

[29••]. EEG-triggered systems have been shown to be feasible and able to detect movement 

intention with high accuracy [29, 81, 82•, 84], and in some cases, they have been shown to 

compare favorably to standard robotic therapy [95], but large-scale controlled clinical trials 

remain to be done.

The MAHI EXO-II: A Case Study in Adaptive Robotic Training for Wrist 

Rehabilitation

As an example of a system with an adaptive assist-as-needed controller and detection of 

patient intent, we consider the MAHI EXO-II and the RiceWrist, two versions of a wrist 

exoskeleton for stroke rehabilitation developed in the Mechatronic and Haptic Interfaces 

(MAHI) Laboratory at Rice University. The RiceWrist acts on three degrees of freedom 

(forearm pronation/supination, wrist flexion/ extension, and radial/ulnar deviation), and the 

MAHI EXO-II acts on the same wrist degrees of freedom and one additional degree of 

freedom (elbow flexion/extension). For performance specifications and differences between 

the two devices, see [6, 40, 41].

The MAHI EXO-II currently has three control modes, similar to those originally 

implemented in the RiceWrist [40]. These control modes are designed for patients with 

different levels of impairment. For patients who are unable to move the affected limb, there 

is a passive mode in which the robot carries the patient’s joint through a desired trajectory. 

For patients capable of some voluntary movement and/or force generation, there is a 

triggered mode that initiates the desired trajectory upon detection of forces over a specified 

threshold. For patients capable of full movement, there is an active mode in which the robot 

provides a velocity-dependent resistance against the patient’s movement. In the future, the 

MAHI EXO-II will also include an assist-as-needed mode, which is currently being 

developed on the RiceWrist [22•]. This controller is based on a model-based adaptive 

controller previously developed by Slotine and Li [96]; this type of controller includes a 

model of the controlled system (in this case, the patient/robot system) and continually 
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updates estimates of the model parameters while running. In order to assist only as much as 

needed, the controller is designed to model the residual functional abilities of the subject 

with position-dependent Gaussian RBFs. The RBFs are defined at many points throughout 

the workspace, and the parameters related to these functions are estimated during the 

training by the controller. In order to continually challenge subjects and prevent over-

reliance on the robot [57], the adaptive controller is modified so that it possesses uniformly 

ultimately bounded stability characteristics, rather than asymptotic stability, and a novel 

feedback modification algorithm is implemented which can modify the allowable error 

bound and challenge the subjects according to their error performance. Furthermore, in order 

to avoid applying resistance forces while the subject is “performing better” compared to a 

previously defined desired trajectory, an online trajectory recalculation algorithm is 

implemented. The online trajectory recalculation is based on an experimentally defined 

physiological wrist movement profile, and it generates a position trajectory that is both 

continuous and time differentiable. The resulting controller is able to assist a patient’s 

movements when the patient lags behind a desired trajectory and allow unimpeded motion if 

the patient is able to complete the desired trajectory without assistance. This assist-as-

needed control algorithm has been tested with 5 healthy subjects and is currently being 

implemented on MAHI EXO-II and tested with spinal cord injury patients.

Our current work also focuses on promoting active cognitive engagement during therapy by 

detecting the patient’s intent to move using EEG signals. This approach capitalizes on 

previous work that has demonstrated high classification accuracy of movement intention 

[97, 98] and builds on that work by incorporating the intention into the control scheme of a 

therapeutic robot. We make use of the readiness potential, a slow cortical potential that 

occurs over the central-medial scalp prior to a voluntary movement, as an indicator of the 

patient’s intent to move. The EEG classifier must be calibrated to a specific patient by 

training a two-class support vector machine to distinguish between move and rest cognitive 

states. To date, a pilot study has been performed to determine the best mode of operation for 

the calibration of the EEG classifier [85•, 99]. These modes included passive mode, 

velocity-triggered mode, backdrive mode (in which the motors are turned off), and 

observation mode (in which the patient observes another person using the exoskeleton). 

Three healthy individuals and one stroke subject were used in the experiment. In a one 

degree-of-freedom target-hitting task with the elbow, significant readiness potential was 

seen in both the healthy and impaired subjects, and high single-trial classification accuracy 

was achieved. The study showed that the velocity-triggered and passive modes could be 

viable and pertinent modes of operation for calibrating the EEG system with significantly 

impaired patients. Our future work includes testing the trained EEG classifier in a closed 

loop to provide more engaging therapy. It has been hypothesized that the kinesthetic 

feedback provided during this type of closed loop therapy could enhance presynaptic 

activity to the cell population or network responsible for moving the impaired limb [100]. 

Clinical trials will be performed to assess the efficacy of our intention-driven robotic 

therapy.
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Conclusions

In this review, we have considered the development of robotic systems for upper-limb 

rehabilitation for stroke patients from a historical perspective and with a focus on modern 

methods to encourage patient engagement in therapy. The primary benefit of robotic therapy 

shown so far is the ability to provide high-intensity therapy with less effort than traditional 

therapy, making high-intensity training feasible. The importance of engaging the patient in 

therapy has been clearly demonstrated through studies of both active and passive 

movements assisted by robotic systems, and therefore recent research has focused on the 

ability of robotic systems to engage the patient using assist-as-needed strategies and 

measures of patient movement intent. These techniques promise to maximize patient effort 

and engagement by minimizing the level of assistance provided by the robot as much as 

possible while still enabling subjects to achieve the desired motions. Assist-as-needed 

strategies have moved toward adaptive controllers that estimate patient effort and 

impairment in real time based on movement data collected by the robot, thus changing the 

level of assistance provided even during a single movement. Intention detection using 

biometrics from EMG and EEG can further involve the patient by providing an online 

measure of patient effort; these methods may allow inclusion of more severely impaired 

patients in robotic training protocols. A combination of assist-as-needed methods with 

online detection of patient intent might further improve patient engagement in therapy.

Although feasibility and positive functional gains have been shown for many of these 

methods that encourage patient engagement, it is still unclear that which methods are most 

appropriate for different situations and levels of patient impairment. One might expect that 

the optimal methods of promoting patient engagement will depend on the movement 

capabilities of the patient. Assist-as-needed controllers encourage active participation by 

patients who are able to generate some voluntary movement, but in their current form, they 

may not be appropriate for severely impaired patients who cannot generate motion because 

they do not require movement intention if the patient is completely passive. Measures of 

patient intent also depend on the capabilities of the patient. Triggering movement assistance 

with a force or velocity threshold is reasonable for patients who are capable of some 

voluntary force generation or movement, and triggered assistance can enforce a normative 

movement path. For patients who are unable to generate the necessary force or velocity, 

EMG and EEG signals can still generate a measure of movement intent to drive the robotic 

system. EEG allows measure of intent to move in subjects with any level of impairment, but 

it is currently limited to commanding move and rest signals to single targets (though 

continuous velocity commands to single targets are starting to become feasible). EMG 

provides more user control over movements, in some cases allowing users to define their 

own movement trajectories. However, providing this level of control is only appropriate for 

users who are able to generate voluntary muscle activation in a normative pattern, since 

allowing users to define that the trajectory may result in the reinforcement of pathological 

movements.

Given the many methods available and the strengths and weaknesses of each, it should be 

possible to design patient-specific training protocols, depending upon each patient’s type of 

injury, level of impairment, and phase of recovery. However, studies completed to date have 
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not explored effects across different patient populations. Carefully controlled, large-scale 

clinical studies are needed to compare available treatment methods across patient 

populations and to determine how the efficacy of the methods depends on the characteristics 

of specific patients. The results of such studies will enable therapists optimize treatment 

methods for restoring upper-limb function after stroke in patients with a variety of needs and 

abilities.
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