Skip to main content
. Author manuscript; available in PMC: 2015 May 22.
Published in final edited form as: Curr Phys Med Rehabil Rep. 2014 Jun 28;2(3):184–195. doi: 10.1007/s40141-014-0056-z

Table 2.

Sampling of recent work in the detection of patient intent for robotic upper-limb stroke rehabilitation

Paper Device Intent Detection
Movement type
Subject testing
Signal Type Triggered Continuous
move/rest
Continuous
proportional
velocity
Point-
to-
point
Continuous Unconstrained Validation with
healthy subjects
Validation with
impaired
subjects
Validation
in
simulation
[19] MIT-Manus (2D planar
endpoint manipulator)
Velocity or
EMG
* * *
[38] Gentle/G (3-dof grasp
robot)
Force * *
[75] ARM Guide (1-dof linear
reaching)
Velocity * * 1
[49] ARM Guide (1-dof linear
reaching)
Displacement * * 19
[76•] ARMin III (7-dof arm
exoskeleton)
Gaze
duration
and
velocity
* * *
[77] NEUROExos (1-dof elbow
exoskeleton)
EMG * * 10
[78•] 1-dof wrist flexion/
extension
EMG * * 16
[79] 1-dof elbow exoskeleton EMG * * 1
[80] 1-dof elbow exoskeleton EMG * * 8
[28••] AssistOn-Mobile (2D
planar arm motions)
EEG * * 1
[81] MIT-Manus (2D planar
endpoint manipulator)
EEG * * 8
[82•] L-Exos (4-dof arm
exoskeleton) and EEG
Eye tracking
and EEG
* * 3 4
[83] MIT-Manus (2D planar
endpoint manipulator)
EEG * * 25
[84] Barrett WAM (7-dof robot
arm) for endpoint control
EEG * * 6 3
[85•] MAHI Exo-II (4-dof
elbow/wrist exoskeleton)
EEG * * 3 1

In the subject testing columns, numbers indicate number of subjects tested, if known