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Abstract

The ultimate goal of periodontal therapy remains the complete regeneration of those periodontal 

tissues lost to the destructive inflammatory-immune response, or to trauma, with tissues that 

possess the same structure and function, and to reestablish and sustain a heath promoting biofilm 

from one characterised by dysbiosis. This volume discusses the multiple facets of a transition 

during the late 1960’s to the present day, towards regenerative therapies founded upon a clearer 

understanding of the biophysiology of normal structure and function, rather than empiricism.

This introductory manuscript provides an overview on the requirements of appropriate in-vitro 

laboratory models (e.g. cell culture), of pre-clinical (i.e. animal) models and human studies for 

periodontal wound and bone repair. Laboratory studies may provide valuable fundamental insights 

into basic mechanisms involved in wound repair and regeneration, but also suffer from a uni-

dimensional and simplistic approach that does not account for the complexities of the in vivo 

situation, where multiple cell types and interactions all contribute to definitive outcomes. 

Therefore, such laboratory studies require validatory research employing preclinical models 

specifically designed to demonstrate proof-of-concept efficacy, preliminary safety and adaptation 

to human disease scenarios. Small animal models provide the most economic and logistically 

feasible preliminary approaches, but outcomes do not necessarily translate to larger animal or 

human models. The advantages and limitations of all periodontal regeneration models need to be 

carefully considered when planning investigations to ensure that the optimal design is adopted to 

answer the specific research question posed. Future challenges lie in the areas of stem cell 

research, scaffold designs, cell delivery and choice of growth factors, along with research to 

ensure appropriate gingival coverage in order to prevent gingival recession during the healing 

phase.

The treatment of periodontal diseases represents a significant health care challenge (143) 

and since the genesis of human research endeavours in periodontology, the ultimate 

therapeutic goal has been to completely rebuild those tissues lost to the disease process with 

tissues that are structurally and functionally the same. Early attempts at regeneration were 

empirical, largely based upon clinical experience, and included the utilisation of scaling and 

root planing combined with soft tissue curettage or the use of various flap procedures and 

materials for “bone grafting” (17,30,94,99,100,114). Such approaches occasionally resulted 

in clinical improvements expressed as probing depth reductions or bone defect fill, which at 

the time were termed “new attachment” or “regeneration” (43,98,111,140). However, 
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histological studies in animals and humans subsequently demonstrated that such methods 

did not predictably result in the formation of periodontal ligament, root cementum and bone 

(31,32,78,129).

A proper understanding of the basic biological mechanisms involved in periodontal wound 

repair and regeneration requires the assessment of the macroscopic, microscopic, cellular 

and molecular components of the healing process (Fig. 1). To best determine the molecular 

mechanisms that guide tissue neogenesis during wound repair and regeneration, the use of 

basic science (laboratory) studies needs to be translated to the clinical arena. The bridging of 

discovery research to the clinic and eventual adoption to clinical practice requires preclinical 

animal model studies to determine the safety and early stage effectiveness of new 

technologies. This volume of Periodontology 2000 highlights advances from a myriad of 

approaches to comprehensively determine how wound healing models are employed in oral, 

periodontal and craniofacial tissue regeneration. In this introduction we present those 

requirements for the use of preclinical research in periodontal wound repair as well as 

identifying limitations of the work that would need to be addressed prior to human studies in 

preclinical models or directly in the human clinical trial setting (due to limitations of animal 

models to replicate the human clinical disease scenario). Finally, the key findings of the 

reviews within this volume are summarised.

A historical perspective

A recent history of periodontal regeneration over the past century has been recently 

summarised (44). In the modern era of regenerative biology, pioneering work was made in 

the late 1960’s by Tony Melcher, who demonstrated advances through his studies into the 

biology of periodontal would healing. In 1969 Melcher distinguished the processes or 

“repair” and “regeneration” (82–84) and in 1976 he postulated that “the first cells to 

repopulate a root surface will dictate the nature and quality of tissue that forms there” (82). 

Half a century later, it is perhaps worthwhile reflecting upon the extent to which our current 

treatment concepts are biologically based as Melcher taught, or whether we still to some 

degree at least, fall into the trap of empiricism when aiming to regenerate periodontal 

defects.

Important questions that arise when exploring biological approaches to periodontal 

regeneration include:

• Is there a rationale and role for pre-clinical (animal) models to evaluate the 

biological potential of novel regenerative technologies and what is the clinical 

relevance of such models?

• Are regenerative materials that have been validated using pre-clinical models also 

effective in the human situation?

• What are the current concepts in managing angular (intrabony), furcation and 

recession defects around teeth?

• What options are available for managing defects caused by infection around dental 

implants?
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• What is the role of “surgical technique”, including flap management and suturing, 

in determining improvements in clinical outcomes?

Several decades ago, due to a paucity of knowledge of the etiology and pathogenesis of 

periodontitis, it was believed that bone was the only tissue that played a role in supporting 

the tooth within the alveolus, and that the “diseased bone” was primarily responsible for the 

presence of angular (intra-bony) or furcation defects arising in periodontitis patients 

(88,105). Such beliefs consequently led to the development of treatment protocols that 

focussed primarily on filling the “holes” with great variety of bone grafting materials. The 

latter were largely non-resorbable and thus effectively acted inactive biological fillers. 

Moreover, the majority of studies evaluating the effects of different surgical procedures 

aimed at defect fill with bone grafts, only employed clinical outcome measures such as 

probing pocket depth, probing attachment level, radiological analysis and, direct 

visualisation following surgical reentry procedures (21,43,52,87,98,104,106,111). However, 

such approaches did not facilitate the determination of true periodontal regeneration, an 

outcome that requires systematic histological investigation. Subsequently, pivotal 

histological studies provided evidence that the outcomes of periodontal probing were 

strongly correlated with the level of soft tissue inflammation present, and as such may not 

necessarily reflect genuine tissue regeneration. For instance, if the gingiva is inflamed the tip 

of the probe will easily penetrate the pocket base through the connective tissues and to a 

level apical to the base of the pocket. If inflammation is reduced, the gingival connective 

tissues contract and demonstrate greater resistance to probing, thus preventing the tip of the 

probe from reaching the pocket base (12,77,137).

Subsequent research using different grafting materials in periodontal defects, led to 

improvements in probing pocket depths as well as radiographic bone fill, giving the 

impression that true regeneration had occurred. Similarly, hard tissue infill detected during 

clinical re-entry procedures, was interpreted as proof of periodontal regeneration. A greater 

understanding of the biology of periodontal wound healing and regeneration commenced 

with the publication of a series of studies employing pre-clinical models with ligature-

induced periodontitis, in order to mimic chronic periodontal defects in humans. The results 

were somewhat disappointing and demonstrated that all treatment procedures aiming to 

regenerate periodontal tissues, including root planing and soft tissue curettage, and indeed 

modified Widman flap surgery with or without various bone grafts, consistently resulted in 

the formation of a long junctional epithelium on the instrumented root surface without any, 

or with limited formation of cementum with inserting periodontal ligament fibres (32). 

Moreover, if bone formation was evident histologically in some of the defects, an epithelial 

lining was always interposed between the newly formed bone and the root surface. These 

findings were later confirmed in several independent studies demonstrating that, the 

majority of approaches to periodontal regeneration, remained empirical in nature and lacked 

a foundation in biological science (53,64,101,134).

Almost simultaneously with the experiments of Caton and co-workers were Melcher’s 

reports from a series of elegant experiments that had led him to hypothesize that the cells 

responsible for periodontal regeneration were resident within the periodontal ligament and 

not in the bone itself (82). Thus, Melcher proposed the periodontal ligament as the key tissue 
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responsible for periodontal regeneration. This hypothesis was later tested in a series of 

animal studies that provided evidence that only the granulation tissue originating from the 

periodontal ligament had the capacity to form new cementum, and eventually new alveolar 

bone, whilst the connective tissue originating from the gingival flap or the alveolar bone did 

not promote true periodontal regeneration, as evidenced by the formation of new cementum 

with inserting collagen fibres and new alveolar bone (55,61,63,64,76,89–91).

Knowledge obtained from such pre-clinical (animal) models led to the development of the 

treatment concept termed “guided tissue regeneration” (47,48,93). The guided tissue 

regeneration concept built upon Melcher’s thesis that the first cells to populate the root 

surface would dictate the tissue that formed there. Therefore barrier membranes were 

developed as barriers to the down growth of the junctional epithelium, whist at the same 

time occluding the ingress of fibroblasts from the gingival connective tissues lining the 

surgical flap. Such a dual barrier facilitated those cells arising from the intact periodontal 

ligament to repopulate the debrided root surfaces. This series of well-designed and reported 

experiments (62) is just one example of how a deeper biological understanding of tissue 

structure and function may ultimately translate into a clinically relevant treatment concept, 

once initially tested in animal models. Furthermore, these landmark studies highlighted the 

need for a greater understanding of the biological processes involved in wound healing, 

prior to developing novel treatment concepts, and the potential dangers of introducing 

treatment methods without previously evaluating those concepts in pre-clinical models.

Periodontal regeneration - myth or a reality?

A plethora of different surgical techniques involving the implantation of various types of 

bone graft and/or bone substitutes, root surface demineralization procedures, guided tissue 

regeneration, use of growth/ differentiation factors, enamel matrix proteins, or various 

combinations thereof, have been employed in order to achieve periodontal regeneration, and 

have been shown to promote periodontal regeneration in animals (62,72,80,104,4,133,134). 

Despite positive observations in animal models and successful outcomes reported for many 

of the available regenerative techniques and materials in patients, including histological 

evidence, robust information on the degree to which reported clinical improvements reflect 

true periodontal regeneration, remains limited (19).

When analysing the literature on human studies evaluating healing following the use of 

various regenerative materials for human intrabony defects, it is apparent that periodontal 

regeneration in humans can be achieved to a variable extent with several materials including 

guided tissue regeneration, biological factors, certain types of grafts and numerous 

combinations of the aforementioned (126). In contrast to the findings in animal studies, the 

implantation of alloplastic materials alone has demonstrated at best, limited, and frequently 

no periodontal regeneration in humans (19,56,126). These findings appear to indicate that 

complete periodontal regeneration in humans is possible in certain clinical situations and 

with a limited number of regenerative materials or their combinations. Whilst studies of 

human defects may provide important information on the biological potential of various 

regenerative protocols and biomaterials, the information obtained from such studies needs to 
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be carefully interpreted in the light of the available evidence from preclinical and clinical 

studies.

What are the benefits and limitations of pre-clinical models for research 

into periodontal regeneration and wound healing?

Wound healing principles need to be carefully considered in the development of biomimetic 

materials that can provide an appropriate microenvironment for tissue formation (74). These 

materials are used as matrices for delivery of cells, molecules or scaffolding constructs for 

eventual clinical use. Based on these needs, preclinical studies have enabled the initiation of 

clinical investigations that have resulted in the approvals of new medical devices or drugs 

that promote periodontal tissue repair (46). Preclinical study plans must be adapted for the 

specific purpose of the investigation (mechanistic or outcomes that will link to a surrogate 

clinical measure). An example of a mechanistic goal might be to determine the role of a 

newly discovered cell adhesion molecule during the induction of experimental periodontitis 

in a genetically-modified animal (knock-out or transgenic) model. By contrast, a new drug 

to stimulate periodontal ligament formation may be injected into the gingival tissues to 

histologically examine the soft tissue repair processes at the microscopic level. A preclinical 

model is used since this approach is not readily achievable in humans (at least in a 

meaningful, adequately powered study). Moreover, the objectives of a preclinical study must 

relate to the efficient and effective design of a reconstructive therapy. The choice of the 

endpoints is therefore a critical issue in the study design. Overall, planning a preclinical 

study to evaluate regenerative devices requires decisions about animal species, defect type, 

the study endpoint and study duration (95). Moreover, endpoints must be defined to estimate 

the sample size necessary to achieve the desired power (20). Considering the size of the 

defects as well as morphological changes related to the anatomical defect that can occur 

over time can help to estimate the appropriate study duration.

The selection of preclinical models considers the differing anatomy and healing 

characteristics of rodents and larger animals (128). A summary of commonly used 

preclinical models to evaluate periodontal reconstructive therapies, highlighting those 

related to devices and biologics is illustrated in Tables 1 and 2. Many new regenerative 

approaches that strive to demonstrate a proof-of-concept or early stage mechanistic 

understanding of the wound healing process will employ small animal models as screening 

tools prior to embarking on larger animal studies (131).

Preclinical investigations to promote the development of new regenerative medicines

It typically takes over 10 years and more than 350 Million US dollars to bring a new drug 

from the laboratory to the market (59). Testing in the laboratory and preclinical phases can 

take 3–4 years prior to applying to the US Food and Drug Administration, European 

Medicines Agency or other national-international regulatory authorities to launch clinical 

investigations (Fig. 2). Only one in 1,000 compounds that undergoes this initial phase of 

testing will ever reach the next phase of testing in humans (33). Assuming regulatory 

approval for human testing following submission of an Investigational New Drug 

Application, three phases of clinical trials typically follow:
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• Phase I that establish safety of a drug;

• Phase II which gain preliminary information relative to the efficacy of the agent;

• Phase III is designed to be randomized and controlled in order to determine the 

effectiveness of the biological agent (97).

Common animal models used in periodontal wound healing research

A variety of different animal models such as rats, dogs, and non-human primates have been 

used in periodontal regenerative studies (95). The rat periodontal model has been frequently 

employed for bone regeneration studies (49,54,57, 67). It is valuable as a screening model 

for regenerative molecule assessment due to cost-effectiveness, ease of handling, etc. 

However, the typical defect size is relatively small making visualization challenging, and 

requiring the use of surgical microscopes for defect creation (128). Large animal models, 

such as the canine or non-human primate, are a logical next step. The canine wound healing 

kinetics and tooth anatomy has many similarities to the human situation (142,143). Non-

human primates are highly desirable to evaluate the safety and efficacy of new molecules 

because their anatomical and biological features are very close to humans (68). However, 

their high cost and handling difficulties prevent them from being utilized more frequently. 

The preferred animal model should be selected according to study requirements such as 

periodontal, oral implant, sinus floor augmentation, and alveolar ridge reconstruction.

A study should not be proposed if a clear end-point goal is not established that will 

eventually have an impact on human health or disease. Animal-based research has led to 

significant improvements in quality-of-life for many patients (13,140). However, these 

advances must result from the humane use and care of animals employed in such research. 

The field of periodontal regenerative medicine has advanced to better report and design 

animal studies aimed to truly advancing the field. The National Centre for the Replacement, 

Refinement and Reduction of Animals in Research, a UK Government sponsored 

organization has documented overall marginal quality standards with respect to the 

documentation, design and reporting of animal studies in research (65). These findings have 

led to the development of guidelines for the reporting of preclinical studies to improve their 

quality and overall, to reduce the use of animals in research. The ARRIVE guidelines 

(Animals in Research: Reporting In Vivo Experiments), have been developed using the 

CONSORT Statement as their foundation (66). These guidelines have now become a 

requirement for the publication of preclinical research in many scientific journals. The 

guidelines support animal ethical bodies to improve the overall quality of preclinical 

research. Further, organizations such as the European Federation of Periodontology have 

addressed this issue in several recent publications on periodontal and peri-implant wound 

healing (16,121, 125,138).

Future applications of periodontal wound healing models

The use of pre-clinical animal models, typically under good laboratory practice settings, is 

an important component in the development of new biomaterials for clinical trials (117). In 

vivo models are in general superior to in vitro investigations to aid in the understanding of 

the complex molecular, cellular and tissue reactions that occur in response to delivered 
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regenerative molecules. Despite the limitations of pre-clinical models for human disease, in 

vitro investigations for the simulation of human disease continue to remain inappropriate 

prior to testing in humans. The increased growth of development of biologics and devices 

for application in periodontal regenerative medicine requires a thorough examination of 

when and how the appropriate endpoints can be evaluated prior to entry into human clinical 

trial testing. With continued innovations in more non-invasive ex vivo technologies, the 

needs for pre-clinical testing will only decrease.

However, optimized animal models are still necessary for the evaluation of wound healing 

promoters prior to human testing. Limitations include obvious differences in the host 

response, disease development and anatomical differences among animals and humans. 

Models that can better implement risk factors of disease development known to affect 

periodontal wound healing such as smoking, diabetes and microbial infection may aid in the 

continued refinement of pre-clinical animal models before embarking upon expensive 

human trials. As the personalized medicine field continues to evolve, host-susceptibility and 

identification of those people who best respond to wound healing modifiers may provide 

more translatable outcomes to individual patients. The ultimate result of enhanced pre-

clinical testing will greatly advance patient care for the public and aid in the better 

understanding of wound repair mechanisms.

What is the current “state of the art” in periodontal wound and bone 

healing?

The first reviews in this volume address the role of the various aforementioned models 

employed to evaluate novel treatment approaches for periodontal, bone and peri-implant 

wound healing and their potential role in informing the implementation of clinical therapy in 

humans (41,44,60,123,131).

Preclinical studies are usually performed to evaluate proof-of-principle concepts, safety, and 

possible unwanted effects of candidate biological agents or bone biomaterials, prior to 

proceeding into clinical testing (45,86,95). Selection of the appropriate animal species and 

wound healing model is largely dependent upon the research question or the disease model. 

For example, models involving small animals have been developed largely for screening 

bone biomaterials for their potential to enhance bone formation. Since, no single model can 

completely mimic the anatomical, physiological, biomechanical, and functional environment 

of the human mouth and jaws, the results obtained in small animals need to be validated in 

larger animals (e.g. dogs, mini-pigs or monkeys) whose dento-alveolar anatomy resembles 

more closely that of humans.

Following the application of the guided tissue regeneration principle for treatment of 

periodontal defects, the same principle was used in a number of pre-clinical and clinical 

studies for the regeneration of bone defects or for the augmentation of deficient sites. For 

these techniques, the term “guided bone regeneration” was adopted, pointing to the 

biological rationale based on the mechanical exclusion of neighbouring soft tissues 

surrounding the bone defects, in order to allow only osteogenic cells derived from the 

margins of the bony defect to repopulate the wound area. This biological principle, also 
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based upon Melcher’s theories was first tested in smaller animal models such as rats and 

rabbits, and confirmed later in larger animals (e.g. dogs and monkeys) (4,37–40,70).

An important issue when testing the guided bone regeneration principle is the use of the so 

called “critical size defect”, indicating bone defects that do not heal spontaneously with 

osseous fill but with fibrous connective tissue. Critical size defect models involve healing of 

orthotopic bone sites such as the mandible or the calvarium, and thus allow the evaluation of 

bone grafts and other bone regenerative modalities in a standardized and discriminative 

manner to provide “proof-of-principle” (14,38,58,70,116,117,136). Since it has been 

repeatedly demonstrated that guided bone regeneration can successfully regenerate critical 

size defects, nowadays the use of such experimental models for evaluating the effect of 

different treatment modalities for bone regeneration is recommended, as discussed by Donos 

et al. in this volume (41).

The guided bone regeneration principle has been successfully applied in the treatment of 

patients exhibiting different types of bone defects leading to a substantial increase in the 

cases of dental implant therapy; cases that were previously not feasible due to a lack of bone 

at the recipient site (23–26,51,92). Taken together, these animal experiments serve as a 

beautiful example of the importance of preclinical models (phase-1 studies) in translational 

regenerative dental research.

The successful integration of guided bone regeneration principles into clinical practice over 

the last two decades has led to a substantial increase in the number of dental implants being 

placed and associated bone augmentation procedures. This has coincided with an ageing 

population whose expectations of tooth replacement with fixed prostheses have also 

increased (81,130). However, there has been a coincident increase in the proportion of the 

population suffering from age-related chronic diseases and conditions such as diabetes and 

osteoporosis (50,69,103). Their impact upon bone regeneration procedures related to implant 

rehabilitation is largely un-explored and consequently, there is a pressing need to evaluate 

different bone regenerative techniques in pre-clinical models, to help optimise the treatment 

of patients affected by such systemic conditions. Donos et al. (41) discuss these issues in 

their review. Interestingly, recent data from preclinical models indicate that, in osteoporotic 

animals, a hydrophilic barrier/implant surface may counteract the negative effect of 

osteoporotic-like conditions, whilst the use of guided bone regeneration appears to create an 

environment that facilitates bone formation in experimentally-induced diabetes and 

osteoporosis (73,79). Despite the fact that, at present, it is difficult to draw any conclusions 

regarding the extent to which systemic conditions may affect bone metabolic status, 

vascularisation and healing capacity, the use of various preclinical models simulating 

systemic health and disease are of utmost clinical relevance for developing new concepts 

that enable de novo bone formation via guided bone regeneration in medically compromised 

patients.

The extraction socket as a wound healing model

Tooth extraction is one of the most common surgical procedures performed on humans, yet 

reviewing decades of published literature, it is remarkable to note that very little was known 

about the biological processes that take place during socket healing until recently. Studying 
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the simplest of wound healing models (i.e. the extraction socket), has provided profound 

insights in the temporal sequence of healing events that follow tooth extraction (6,10,11,29, 

146).

Studies by Araujo & colleagues (8) have demonstrated that, the overall wound healing 

events described histologically in dogs are remarkably similar to humans, despite the fact 

that bone modelling and remodelling during socket healing is 3–5 times quicker in dogs. 

Such findings subsequently led to the development of clinical protocols associated with 

tooth extraction. For example, today it is recommended that tooth extraction is planned and 

performed, with attention paid to the subsequent anticipated changes in ridge width and 

height following this intervention. As a result, there is frequently an indication to consider 

adjunctive therapies in order to compensate for such changes, particularly in cases when 

further treatment such as dental implant placement is planned (9,75).

Pre-clinical and human models to study osseointegration and management of peri-implant 
infections

The use of preclinical (animal) and human models has been shown to provide valuable 

information regarding our understanding of the healing of hard and soft tissue integration 

around titanium dental implants (1–3,18,42,71,85, 146). Such healing results from a 

complex cascade of biological events that are initiated by the surgical intervention. The 

temporal sequence of healing events that culminate in osseointegration has been elucidated 

in animals and humans. Implant placement into alveolar bone induces a cascade of healing 

steps, commencing with clot formation and continuing with bone maturation in direct 

contact with the implant surface. Salvi and colleagues (112) demonstrate that 

osseointegration is associated with a decrease in inflammation and an increase in 

osteogenesis-, angiogenesis- and neurogenesis-related gene expression during the early 

stages of wound healing. The attachment and maturation of the soft tissue complex to 

implants (i.e. epithelium and connective tissue) is established 6–8 weeks following surgery 

(126). Moreover, the use of preclinical data has provided important insights into the 

etiology, pathogenesis and therapeutic approaches to peri-implant diseases, since established 

lesions in animals have shown many features in common with those analyzed in human 

biopsy material (5,27,28, 120, 121,122).

The review of Romanos (107) provides some evidence that immediate loading of augmented 

ridges may improve bone stability following implant placement and Schwarz et al. (123) 

discuss the utility of animal models in developing therapeutic approaches to implant failure 

(96,108–110,123). Renvert & Polyzois (102) discuss the limitations of existing approaches 

to managing peri-implant mucositis and peri-implantitis in humans and conclude that the 

most important factor in managing implant failure is patient self-performed oral hygiene.

What can in vitro models offer for a better understanding of periodontal wound and bone 
healing?

In order to improve and further develop treatment strategies aiming to regenerate soft and 

hard tissues at natural teeth and dental implants, it is important to acquire a thorough 

understanding of the characteristics and the role of different wound healing components 
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involved in the complex processes of wound healing and repair, such as cells, matrices, 

molecules and genes, as well as the mechanisms controlling their function. Since these 

processes are complex, it is extremely difficult to understand and define the role of each 

component in determining the final outcome. Furthermore, in animal models that aim to 

simulate a certain clinical situation, the influence of individual components in the wound 

healing cascade is difficult to assess. Such models are also expensive and frequently difficult 

to work with. Thus, in order to understand a certain mechanism, or prior to testing a specific 

biological principle or biomaterial in animals, it makes sense to adopt a stratified approach 

by answering single, well defined questions using specifically designed laboratory models.

A plethora of in vitro models have been described and developed to mimic the wound 

healing events of soft tissues (e.g., oral epithelia or oral fibroblasts) or to measure 

proliferation, attachment and migration, gene expression and differentiation into a 

mineralizing phenotype, as well as biomineralization of periodontal ligament fibroblasts or 

progenitors, osteoblasts or osteoprogenitors and cementoblasts. Other in vitro studies have 

utilized various gene transfer models, models designed to evaluate the effect of implant 

surface modifications on cellular behaviour, or models that address biocompatibility and 

degradation of different types of resorbable membranes (34,141).

Despite the fact that, in general, such laboratory-based models are less expensive and easier 

to perform compared to animal experiments, they differ markedly from the in vivo situation 

since they typically employ single cell types without the surrounding matrix or other 

relevant cell types, and without the influence of external factors. Therefore, results obtained 

using such models often provide critical mechanistic and biological plausibility insights. 

These studies lay the foundation for potential clinical application in more applicable 

preclinical and clinical studies on the disease and injury processes.

Improved clinical outcomes through an improved understanding of biology

There is little doubt that research conducted over the last 25 years into the bio-physiology of 

periodontal and tooth socket healing, has informed the development of novel approaches to 

restoring lost periodontal tissues and bone (8,44,135). In the laser field, comprehensively 

reviewed by Aoki and colleagues (7), a greater understanding of the role of certain 

wavelengths in removing soft and hard deposits, killing bacteria and improving wound 

healing, has led to the application of lasers and of laser-based photodynamic therapy in 

clinical periodontal care. Some positive effects such as the reduction of inflammation (less 

bleeding on probing) following the additional application of photodynamic therapy have 

been demonstrated in randomized controlled clinical studies to be statistically significant 

and clinically relevant and are thus such approaches are frequently used in the maintenance 

phase (15,35,115,135). By contrast, it is clear that laser therapy has thus far failed to 

demonstrate improved periodontal outcomes over and above those achieved by traditional 

instrumentation (119). Such negative findings are also important to report, since they save 

the effort and costs involved in repeating clinical trials of the same, and open up 

opportunities to explore the utility of different wavelengths and protocols.

Other examples where tissue regeneration techniques that have been developed based upon 

learnings from biological research have improved clinical outcomes include intrabony 
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defects, furcation lesions (see reviews by Cortellini & Tonetti [36], and Sanz et al. [113]) 

and recession defects (see Zucchelli et al. [144]). The novel concepts reported in these 

reviews have evolved following in vitro and animal studies, that have informed a better 

understanding of periodontal and bone wound healing and of the role and use of various 

biomaterials on periodontal ligament cells, gingival fibroblasts and bone cells. These 

techniques combine the use of surgical flaps and suturing techniques (see Burkhardt & Lang 

[22]) designed to improve blood clot protection and to enhance wound stability, and the use 

biologically potent biomaterials.

Stem cell research holds great promise for the future of periodontal regeneration, but 

multiple challenges remain including the development of appropriate matrices to deliver cell 

therapies, appropriate growth factor combinations which facilitate physiological healing 

processes in what is ultimately a potentially “infective” healing environment. The latter is a 

challenge that is frequently overlooked or under-estimated, but involves stimulating the 

body’s physiological wound repair processes within a complex milieu of microbial and host 

signalling between innate and acquired immune systems and a colonizing microbiome. 

Similar challenges face bone regenerative procedures around failing implants, which lack a 

periodontal ligament (and thus a vital source of undifferentiated stem cells) and also differ in 

terms of the connective tissue fibre anatomy within the investing soft tissue cuff. Here, 

emerging evidence indicates that early outcomes of bone regeneration are more predictable 

when the implant fixture is re-covered by soft tissues to facilitate healing in a “closed 

system”, where microbial colonisation is not a complication. Nevertheless, longer-term 

studies are needed in this emerging field in order to better understand the biology of healing 

around implants that have suffered peri-implantitis, and also to understand the nature of the 

primary process of peri-implantitis at the tissue level. It appears that we are now at the end 

of the beginning of research into periodontal and bone regeneration and understanding the 

pathobiology of periodontitis and peri-implantitis is fundamental to enable the design of 

regenerative strategies and technologies, that rather than the generic approaches of today.
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Fig. 1. 
Phases during periodontal wound repair and regeneration. Reproduced from Humana Press, 

with permission (Adapted from 146).
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Fig. 2. 
The translational continuum from laboratory research discovery, to preclinical animal model 

testing and eventual acceptance to clinical practice. Reproduced from Quintessence 

Publishing, with permission (From 46, with permission).
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Table 1

Advantages and disadvantages of rat defect models

Defect Type Advantages Disadvantages

Fenestration (periodontal) • gives a proof-of-concept in a short interval

• well-contained defects

• no gingival tissue ingrowth

• narrow healing window

• small size, surgical microscopes 
required

• spontaneous healing

Capsule (vertical ridge) • standardized shape-dimension

• shielded from local environment

• filled solely with cells and fluids emanating 
from the residual bone

• not applicable to alveolar bone

• isolation from oral environment

• spontaneous regeneration

• formation of bone outside the capsule

Alveolar socket • easy and fast to perform

• reproduce well the events occurring in bone 
healing

• small size

• rapid bone repair compared to human

Infrabony peri-implant defect Surgically created

• short-time needed to be generated defect

• standard morphology-dimension

Surgically created

• spontaneous regeneration

• narrow evaluation window

Reproduced from (95), with permission.
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Table 2

Advantages and disadvantages of large animals defect models

Defect Type Animal Model Advantages Disadvantages

Furcation/infrabony periodontal defect Dog & Monkey Surgical Acute-chronic

• short time to be 
created-less 
expensive

• standardized 
morphological 
characteristics

• do not regenerate 
spontaneously 
(chronic)

• class II–III 
furcation

• bilateral similar 
defect

• horizontal defect 
allows an 
estimation of the 
origin of the newly 
formed tissue

• solid database 
describing healing 
(dog)

• minimal palatal 
recession (monkey)

Ligature-induced

• microbiological 
features similar to 
humans

• morphological 
features similar to 
humans

• do not regenerate 
spontaneously

• can make similar 
lesions as control in 
contralateral defects

Surgical Acute

• do not reproduce inflammatory/
infective conditions

• spontaneous partial regeneration 
(monkey)

Surgical Chronic

• soft tissues compromised

• variable amount of connective 
tissue regeneration

Ligature-induced

• non-predictable disease 
development

• non-standardized defect 
morphology (dog)

• require time to be created & 
expensive

Alveolar socket Dog & Monkey • easy and fast to 
perform

• reproduce well the 
events occurring in 
bone healing

• rapid bone repair compared to 
human (dog)

Infrabony peri-implant defect Dog & Monkey Surgically created

• short-time needed 
to be generated 
defect

• standard 
morphology-
dimension

Ligature-induced

• morphological and 
microbiological 

Surgically created

• spontaneous regeneration

Ligature-induced

• spontaneous partial regeneration

• long time required to generate 
defect
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Defect Type Animal Model Advantages Disadvantages

similarities with 
humans

Supra-alveolar peri-implant defect Dog • limited spontaneous 
regeneration

• reproducibly 
created

• requires space-providing devices

Reproduced from (95), with permission.
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